Are Chilimira Fishers of Engraulicypris sardella (Günther, 1868) in Lake Malawi Productive? The Case of Nkhotakota District
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Sampling and Data Collection Procedure
3. Theory and Calculations
3.1. The Chilimira Gear of Lake Malawi
3.2. Theoretical Framework
3.3. Stochastic Frontier Analysis
3.4. Measurement of Output for Technical Efficiency Analysis
3.5. Empirical Specification Model
3.6. Output Elasticities
3.7. Statement of Hypothesis
4. Results and Discussion
4.1. Fishers’ Demographic and Socio-Economic Characteristics
4.2. Fisher and Fishing-Specific Factors
4.3. Estimation of Technical Efficiency
4.3.1. Hypothesis Testing and Model Validity
4.3.2. Diagnostic Tests
4.3.3. Estimation of Parameters of the Stochastic Chilimira Production
4.3.4. Technical Efficiency for Chilimira Fishery
4.3.5. Determinants of Technical Inefficiency
4.3.6. Estimated Actual and Potential Level of Output from Chilimira Fishery
4.3.7. Chilimira Fisher Input Elasticity
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020; Sustainability in Action; FAO: Rome, Italy, 2020; 224p. [Google Scholar] [CrossRef]
- Ngor, P.B.; Mccann, K.S.; Grenouillet, G.; So, N.; Mcmeans, B.C.; Lek, S. Evidence of indiscriminate fishing effects in one of the world’s largest inland fisheries. Sci. Rep. 2018, 8, 8947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolding, J.; van Zwieten, P.A.M.; Martin, F.; Funge, S.S.; Poulain, F.; Food and Agriculture Organization of the United Nations. Freshwater Small Pelagic Fish and Their Fisheries in Major African Lakes and Reservoirs in Relation to Food Security and Nutrition; FAO Fisheries and Aquaculture Technical Paper No. 642; FAO: Rome, Italy, 2019; p. 124. Available online: https://www.fao.org/3/ca0843en/ca0843en.pdf (accessed on 7 November 2020).
- Banda, M.C.; Kanyerere, G.Z.; Rusuwa, B.B. The status of the Chambo in Malawi: Fisheries and biology. In The Chambo Restoration Strategic Plan; Banda, M., Jamu, D., Njaya, F., Makuliwa, M., Maluwa, A., Eds.; WorldFish Center: Penang, Malaysia, 2005; pp. 1–8. Available online: https://digitalarchive.worldfishcenter.org/bitstream/handle/20.500.12348/1956/WF_413.pdf?sequence=1&isAllowed=y (accessed on 28 December 2021).
- Government of Malawi. National Fisheries and Aquaculture Policy, 2nd ed.; Department of Fisheries, Ministry of Agriculture, Irrigation and Water Development: Lilongwe, Malawi, 2016; 23p. [Google Scholar]
- Government of Malawi. Annual Economic Report 2022. In Lilongwe, Malawi; 2022. Available online: https://www.jedhub.org/report (accessed on 25 September 2022).
- Breuil, C.; Grima, D. Baseline Report Malawi; Smart Fish Programme of the Indian Ocean Commission, Fisheries Management FAO Component: Ebene, Mauritius, 2014; Available online: http://www.fao.org/3/a-br797e.pdf (accessed on 7 November 2021).
- The Food and Agriculture Organization of the United Nations. Fishery and Aquaculture Country Profiles; Malawi. Country Profile Fact Sheets; FAO: Rome, Italy, 2022. [Google Scholar]
- Jamu, D.; Salim, M.; Josephs, L.; Kanyerere, G.; Ngochera, M. Biodiversity and Biomass Trawl Survey of Demersal Fish Stocks in the Shallow and Deep Waters of Lake Malawi; USAID/REFRESH Project, Pact Publication: Lilongwe, Malawi, 2021; 37p. [Google Scholar]
- The Fisheries Integration of Society and Habitats. Environmental Threats and Opportunity Assessment (ETOA) of Four Major Lakes in Malawi. Lilongwe, Malawi. 2015. Available online: https://cepa.org.mw/Library/biodiversity/EnvironmentalThreatsandOpportunityAssessmentofFourMajorLakesinMalawi.pdf (accessed on 8 November 2020).
- Nankwenya, B.; Kaunda, E.; Chimatiro, S. The demand for fish products in Malawi: An almost ideal demand system estimation. J. Econ. Sustain. Dev. 2017, 8, 63–71. Available online: https://iiste.org/Journals/index.php/JEDS/article/view/38380%0Ahttps://iiste.org/Journals/index.php/JEDS/article/download/38380/39456%0Ahttps://iiste.org/Journals/index.php/JEDS/article/view/38380/39456 (accessed on 7 February 2021).
- Government of Malawi. 2018 Malawi Population and Housing. Zomba, Malawi. 2019. Available online: http://www.nsomalawi.mw/images/stories/data_on_line/demography/census_2018/2018%20Malawi%20Population%20and%20Housing%20Census%20Main%20Report.pdf (accessed on 14 April 2021).
- CASA. Aquaculture Sector Strategy—Malawi. 2020. Available online: https://www.casaprogramme.com/wp-content/uploads/CASA-Malawi-AquacultureSector-analysis-report.pdf (accessed on 17 January 2022).
- Alem, H. The role of technical efficiency achieving sustainable development: A dynamic analysis of Norwegian dairy farms. Sustainability 2021, 13, 1841. [Google Scholar] [CrossRef]
- Jamnia, A.R.; Mazloumzadeh, S.M.; Keikha, A.A. Estimate the technical efficiency of fishing vessels operating in Chabahar region, Southern Iran. J. Saudi. Soc. Agric. Sci. 2015, 14, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Behr, A. Production and Efficiency Analysis with R; Springer International Publishing: Geneva, Switzerland, 2015; pp. 1–227. [Google Scholar]
- Khatiwada, D.; Yadav, P. Technical Efficiency of Ginger Production in Ilam District of Nepal: A Stochastic Production Frontier Approach. Adv. Agric. 2022, 2022, 3007634. [Google Scholar] [CrossRef]
- Mussa, H.; Kaunda, E.; Jere, W.W.L.; Ng’ong’ola, D.H. Resource use efficiency in tilapia production in Central and Southern Malawi. Aquac. Econ. Manag. 2020, 24, 213–231. [Google Scholar] [CrossRef]
- Jueseah, A.S.; Tumi, T.; Knutsson, O.; Kristofersson, D.M. Technical Efficiency Analysis of Coastal Small-Scale Fisheries in Liberia. Sustainability 2021, 13, 7767. [Google Scholar] [CrossRef]
- Zhaoqun, S.; Rong, W.; Yugui, Z. Analysis on technical efficiency and influencing factors of fishing vessels: A case study of Haizhou Bay, China. Iran. J. Fish Sci. 2018, 17, 516–532. [Google Scholar]
- Mkuna, E.; Baiyegunhi, L.J.S. Analysis of the technical efficiency of Nile perch (Lates niloticus) fishers in the Tanzanian portion of Lake Victoria: A stochastic frontier analysis. Lakes Reserv. Res. Manag. 2019, 24, 228–238. [Google Scholar] [CrossRef]
- Estrada, G.A.C.; Suazo, M.Á.Q.; Cid, J.D.D. The effect of collective rights-based management on technical efficiency: The case of Chile’s common sardine and anchovy fishery. Mar. Resour. Econ. 2018, 33, 87–112. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Wang, H.-J.; Horncastle, A. A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Čechura, L.; Kroupová, Z.Ž. Technical efficiency in the European dairy industry: Can we observe systematic failures in the efficiency of input use? Sustainability 2021, 13, 1830. [Google Scholar] [CrossRef]
- Pinello, D.; Liontakis, A.; Sintori, A.; Tzouramani, I. Assessing the Efficiency of Small-Scale and Bottom Trawler Vessels in Greece sustainability. Sustainability 2016, 8, 681. [Google Scholar] [CrossRef] [Green Version]
- Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. J. Prod. Anal. 1992, 3, 153–169. [Google Scholar] [CrossRef]
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Kopp, R.J. The Measurement of Productive Efficiency. Q. J. Econ. 1981, 96, 477–503. [Google Scholar] [CrossRef]
- Sesabo, J.K.; Tol, R.S.J. Technical efficiency of small-scale fishing households in Tanzanian coastal villages: An empirical analysis. Afr. J. Aquat. Sci. 2007, 32, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Gumulira, I.; Forrester, G.; Lazar, N. Bioeconomic analysis of Engraulicypris sardella (USIPA) in South east arm of Lake Malawi. Int. J. Fish Aquac. 2019, 11, 86–96. [Google Scholar]
- Morioka, S.; Kaunda, E. Preliminary examination of hatching season and growth of Engraulicypris sardella (Pisces: Cyprinidae) larvae and juveniles in Lake Malawi. Afr. Zool. 2005, 40, 9–14. [Google Scholar] [CrossRef]
- The Fisheries Integration of Society and Habitats. The State of Knowledge of the Usipa, Engraulicyprus sardella, Resource and Fishery of the Southeast and Southwest Arms of Lake Malawi; The Fisheries Integration of Society and Habitats: Lilongwe, Malawi, 2017. [Google Scholar]
- Government of Malawi. 2020 Annual Frame Survey Report; Department of Fisheries: Lilongwe, Malawi, 2020.
- Thompson, A.B. Early life history of Engraulicypris sardella (Cyprinidae) in Lake Malawi. J. Plankton Res. 1996, 18, 1349–1368. [Google Scholar] [CrossRef] [Green Version]
- Phiri, T.B.; Jere, W.W.L. Comparative assessment of fish catch using light Emitting diode bulbs and Tilley lamps for light attraction in “Chilimira” fishery in Lake Malawi. Int. J. Fish Aquat. Stud. 2019, 7, 275–278. Available online: https://www.fisheriesjournal.com/archives/2019/vol7issue2/PartD/7-1-44-125.pdf (accessed on 5 November 2021).
- Selgrath, J.C.; Gergel, S.E.; Vincent, A.C.J. Shifting gears: Diversification, intensification, and effort increases in small-scale fisheries (1950–2010). PLoS ONE 2018, 13, e0190232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, S.W.; Lalavanua, W.; Cullis, B.R.; Cocks, N. Small-scale fishing income and fuel consumption: Fiji’s artisanal sea cucumber fishery. ICES J. Mar. Sci. 2018, 75, 1758–1767. [Google Scholar] [CrossRef]
- Njaya, F. Governance Challenges of the Implementation of Fisheries Co-Management: Experiences from Malawi. Int. J. Commons 2007, 1, 137. [Google Scholar] [CrossRef]
- Donda, S.; Njaya, F. Food Security and Poverty Alleviation through Improved Valuation and Governance of River Fisheries in Africa. Fisheries Co-Management in Malawi: An Analysis of the Underlying Policy Process; WorldFish Center: Lilongwe, Malawi, 2007; Available online: http://pubs.iclarm.net/wfcms/file/bmz/Malawi_policy.pdf (accessed on 20 November 2020).
- Grønbæk, L.; Lindroos, M.; Munro, G.; Pintassilgo, P. Game Theory and Fisheries Management Theory and Applications; Springer Nature: Cham, Switzerland, 2020; 160p. [Google Scholar]
- Bell, R.J.; Collie, J.S.; Jamu, D.; Banda, M. Changes in the biomass of Chambo in the southeast arm of Lake Malawi: A stock assessment of Oreochromis spp. J. Great Lakes Res. 2012, 38, 720–729. [Google Scholar] [CrossRef]
- Hara, M. Restoring the Chambo in Southern Malawi: Learning from the past or re-inventing the wheel? Aquat. Ecosyst. Health Manag. 2006, 9, 419–432. [Google Scholar] [CrossRef]
- Hara, M. Community Response: Decline of the Chambo in Lake Malawi’s Southeast Arm. In Poverty Mosaics: Realities and Prospects in Small-Scale Fisheries; Jentoft, S., Eide, A., Eds.; Springer Science+Business Media: Bellville, South Africa, 2011; pp. 251–273. [Google Scholar]
- Kanyerere, G.Z.; Kaonga, D.; Mponda, O.; Nkhoma, B.; Ngulande, E. Status of the large-scale commercial trawl fisheries in southern Lake Malawi. Aquat. Ecosyst. Health Manag. 2018, 21, 121–131. [Google Scholar] [CrossRef]
- Mkumbo, O.C.; Marshall, B.E. The Nile perch fishery of Lake Victoria: Current status and management challenges. Fish Manag. Ecol. 2015, 22, 56–63. [Google Scholar] [CrossRef]
- Limuwa, M.M. Small Scale Fishing Communities’ Perceptions of Climate Change and Its Impact on Livelihoods, Gender Roles and Adaptive Capacity—A Case of Lake Malawi. Ph.D. Thesis, Norwegian University of Life Sciences, As, Norway, 2019. Available online: https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/2583975 (accessed on 10 April 2021).
- Mpomwenda, V. Environment and Natural Resources Productive Performance of the Lake Victoria Fishing Fleet in Uganda: Technical Efficiency and Fishers’ Perspective. Master’s. Thesis, University of Iceland, Reykjavík, Iceland, 2018. Available online: https://skemman.is/bitstream/1946/30269/1/MSThesis_Veronica_Mpomwenda.pdf (accessed on 7 August 2021).
- The Food and Agriculture Organization of the United Nations. Fisheries Management in the South-East Arm of Lake Malawi, the Upper Shire and Lake Malombe, with Particular Reference to the Fisheries on Chambo (Oreochromis spp); FAO: Rome, Italy, 1993; Available online: https://www.fao.org/3/t0783e/T0783E05.htm (accessed on 2 November 2022).
- Mwalupaso, G.E.; Wang, S.; Rahman, S.; Alavo, E.J.P.; Tian, X. Agricultural informatization and technical efficiency in maize production in Zambia. Sustainability 2019, 11, 2451. [Google Scholar] [CrossRef] [Green Version]
- Antwi, D.K.S. Comparative Analysis of the Performance of Purse Seine and Drift Gill Technologies among Artisanal Marine Fishers in the Central Region of Ghana. University of Ghana. 2017. Available online: https://ugspace.ug.edu.gh/bitstream/handle/123456789/23641/Comparative%20Analysis%20of%20the%20Performance%20of%20Purse%20Seine%20and%20Drift%20Gill%20Technologies%20among%20Artisanal%20Marine%20Fishers%20in%20the%20Central%20Region%20of%20Ghana.pdf?sequence=1&isAllowed=y (accessed on 24 March 2021).
- Kirkley, J.E.; Squires, D.; Strand, I.E. Assessing Technical Efficiency in Commercial Fisheries: The Mid-Atlantic Sea Scallop Fishery. Am. J. Agric. Econ. 1995, 77, 686–697. [Google Scholar] [CrossRef]
- De Oliveira, M.M.C. Application of Bio-Economic Models in the Management of the Dredge Fleet in Portugal PQDT—Global. Ph.D. Thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2014. Available online: https://www.proquest.com/dissertations-theses/application-bio-economic-models-management-dredge/docview/1914887787/se-2?accountid=15198%0A (accessed on 28 August 2020).
- Seok, J.H.; Moon, H.; Kim, G.S.; Reed, M.R. Is aging the important factor for sustainable agricultural development in Korea? Evidence from the relationship between aging and farm technical efficiency. Sustainability 2018, 10, 2137. [Google Scholar] [CrossRef] [Green Version]
- Coelli, T.J.; Rao, P.D.S.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Springer Science+Business Media B.V: New York, NY, USA, 2005; 341p. [Google Scholar]
- Kassa, Y. Determinants of Technical Efficiency of Maize. University of Gondor. 2017. Available online: https://core.ac.uk/download/pdf/199937443.pdf (accessed on 21 April 2021).
- Kyi, T.; von Oppen, M. Stochastic frontier production function and technical efficiency estimation: A case study on irrigated rice in Myanmar. In Rice Research Activities in Myanmar; Myanmar Academy of Agricultural, Forestry, Livestock, and Fishery Sciences: Naypyitaw, Myanmar, 2004; pp. 446–474. Available online: http://ftp3.gwdg.de/pub/tropentag/proceedings/1999/referate/STD_C6.pdf (accessed on 29 August 2021).
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Wang, H.J.; Schmidt, P. One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels. J. Prod. Anal. 2002, 18, 129–144. [Google Scholar] [CrossRef]
- Sayer, C.; Palmer-newton, A.F.; Darwall, W.R.T. Conservations Priorities for Freshwater Biodiversity in the Lake Malawi/Nyasa/Niassa Catchment; IUCN: Cambridge, UK; Gland, Switzerland, 2019; 214p, Available online: https://portals.iucn.org/library/sites/library/files/documents/RL-2019-001-En.pdf (accessed on 2 November 2022).
- Álvarez, A. Some Issues on the Estimation of Technical Efficiency in Fisheries. In Economic Discussion Paper; Universidad de Oviedo: Oviedo, Spain, 2001; 19p, Available online: https://www.unioviedo.es/oeg/ESP/esp_2001_02.pdf (accessed on 3 June 2021).
- Truong, N.X. Technical Efficiency of the Gillnet Fishery in Da Nang, Vietnam: An Application of a Stochastic Production Frontier. Master’s Thesis, University of Tromsø, Tromsø, Norway, 2009; 70p. Available online: https://munin.uit.no/bitstream/handle/10037/2583/thesis.pdf?isAllowed=y&sequence=2 (accessed on 7 September 2020).
- Coelli, T.; Henningsen, A. Frontier: Stochastic Frontier Analysis R Package Version. 2017. Available online: https://cran.r-project.org/package=frontier: (accessed on 20 October 2021).
- Henningsen, A. Microeconomic Analysis and Modelling: Package ‘micEcon’ 2021. Available online: http://www.micecon.org (accessed on 11 November 2021).
- Limuwa, M.M.; Synnevåg, G. A gendered perspective on the fish value chain, livelihood Patterns and coping strategies under climate change -Insights from Malawi’s small-scale fisheries. Afr. J. Food Agric. Nutr. Dev. 2018, 18, 13521–13540. [Google Scholar] [CrossRef]
- Limuwa, M.M.; Sitaula, B.K.; Njaya, F.; Storebakken, T. Evaluation of small-scale fishers’ perceptions on climate change and their coping strategies: Insights from lake Malawi. Climate 2018, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Mvula, S. Factors Influencing Choice of Fishing Location in Nankumba. Master’s Thesis, University of Malawi, Bunda College of Agriculture, Zomba, Malawi, 2009; 104p. Available online: https://aquadocs.org/bitstream/handle/1834/26886/Mvula%252C_SWT.pdf?sequence=1&isAllowed=y (accessed on 7 November 2020).
- Thompson, A.B.; Allison, E.H. Potential yield estimates of unexploited pelagic fish stocks in Lake Malawi. Fish Manag. Ecol. 1997, 4, 31–48. [Google Scholar] [CrossRef]
- SOFTDP. Small Scale Offshore Fisheries Technology Development Project Document; Government of Malawi and Icelandic International Development Agency (ICEIDA) Publications: Lilongwe, Malawi, 2005; Available online: https://www.fao.org/3/ad738e/ad738e03.pdf (accessed on 4 March 2021).
- Gengnagel, T.; Wollburg, P.; Mills, E. Alternatives to Fuel-based Lighting for Night Fishing: Field Tests of Lake and Ocean Applications in East Africa. In The Lumina Project; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2013. Available online: https://light.lbl.gov/pubs/tr/lumina-tr11-night-fishing.pdf (accessed on 3 December 2021).
- King, M. Fisheries Biology, Assessment and Management, 2nd ed.; Blackwell Publishing: Oxford, UK, 2007; 405p. [Google Scholar]
- Obiero, K.O.; Abila, R.O.; Njiru, M.J.; Raburu, P.O.; Achieng, A.O.; Kundu, R.; Ogello, E.O.; Munguti, J.M.; Lawrence, T. The challenges of management: Recent experiences in implementing fisheries co-management in Lake Victoria, Kenya. Lakes Reserv. Res. Manag. 2015, 20, 139–154. [Google Scholar] [CrossRef]
- Turner, J.L. Size Structure of Cichlid Populations of Lake Malawi Resulting from Bottom Trawling. J. Fish Board Can. 1977, 34, 232–238. [Google Scholar] [CrossRef]
- Stevenson, T.C.; Tissot, B.N.; Dierking, J. Fisher behaviour influences catch productivity and selectivity in West Hawaii aquarium fishery. ICES J. Mar. Sci. 2011, 68, 813–822. [Google Scholar] [CrossRef] [Green Version]
- The Fisheries Integration of Society and Habitats. The Rise of Fishing with Mosquito Nets and Implications of Harvesting Juvenile Fish; USAID/FISH Project, Pact Publication: Lilongwe, Malawi, 2017; 7p. Available online: https://pdf.usaid.gov/pdf_docs/PA00W55P.pdf (accessed on 7 November 2020).
- Phiri, F.; Yuan, X. Technical Efficiency of Tilapia Production in Malawi And China: Application of Stochastic Frontier Production Approach. J. Aquac. Res. Dev. 2018, 9, 1–7. [Google Scholar] [CrossRef]
Socio-Economic Factors | Mean | Std. Dev | Median | Minimum | Maximum |
---|---|---|---|---|---|
Respondent age (Years) | 43.14 | 11.26. | 42.00 | 21.00 | 79.00 |
Fisher experience (Years) | 22.65 | 11.62. | 21.00 | 1.00 | 57.00 |
Education level (Years) | 6.62 | 3.14 | 7.00 | 1.00 | 12.00 |
Household size | 8.54 | 4.18 | 8.00 | 2.00 | 26.00 |
Household income (USD) | 174.58 | 94.70 | 118.34 | 5.92 | 1775.15 |
Fisher and Fishing Factors | Mean | Std. Dev | Minimum | Maximum |
---|---|---|---|---|
Fish output (kgs) | 1074.03 | 293.92 | 120.00 | 4000.00 |
Chilimira Head length (m) | 101.62 | 25.99 | 52.50 | 175.00 |
Chilimira Height (m) | 49.86 | 10.60 | 22.00 | 96.00 |
Bunt area (m2) | 1352.99 | 549.81 | 256.00 | 3844.00 |
Mosquito Net (MN) area (m2) | 32.90 | 10.17 | 20.00 | 36.00 |
LED bulbs | 4.52 | 1.78 | 2.00 | 12.00 |
Boat with engine size (ft) | 20.91 | 2.24 | 17.00 | 26.00 |
Planked canoes size (ft) | 14.29 | 1.44 | 12.00 | 21.00 |
Canoes size (ft) | 8.44 | 1.32 | 5.00 | 12.00 |
Engine size (horsepower) | 15.20 | 6.39 | 5.00 | 30.00 |
Fuel (litres) | 24.09 | 11.34 | 10.00 | 50.00 |
Time spent fishing (Hours) | 12.95 | 1.77. | 7.50 | 16.00 |
Number of hauls per trip | 6.92 | 2.51 | 2.00 | 15.00 |
Fishing depth (m) | 173.59 | 53.56 | 60.00 | 300.00 |
Null Hypothesis | Df | Decision | ||
---|---|---|---|---|
35.98 | 15 | 0.00 | Translog is appropriate | |
35.51 | 1 | 0.00 | Inefficiency effects are present | |
69.76 | 13 | 0.00 | Socioeconomic and fisher-specific variables determine the |
Variable | Parameter | Estimate | Std. Error | Z | Pr(>|z|) |
---|---|---|---|---|---|
Intercept | −17.40 | 25.03 | −0.70 | 0.49 | |
Bunt | 3.87 | 2.72 | 1.42 | 0.09 * | |
Mesh | −7.68 | 8.67 | −0.89 | 0.03 ** | |
Fuel | 0.50 | 0.77 | 0.65 | 0.52 | |
Labour | 2.10 | 7.09 | 0.30 | 0.77 | |
LED | 3.37 | 3.09 | 1.09 | 0.08 * | |
Bunt squared | −0.03 | 0.29 | −0.11 | 0.91 | |
Mesh squared | 3.01 | 2.29 | 1.31 | 0.19 | |
Fuel squared | 0.30 | 0.10 | 3.15 | 0.00 *** | |
Labour squared | 0.74 | 1.32 | 0.56 | 0.57 | |
LED squared | −0.38 | 0.37 | −1.02 | 0.31 | |
Bunt × Mesh | −1.09 | 0.54 | −2.01 | 0.04 ** | |
Bunt × Fuel | 0.00 | 0.06 | 0.06 | 0.95 | |
Bunt × Labour | −0.32 | 0.40 | −0.79 | 0.43 | |
Bunt × LED | 0.23 | 0.21 | 1.10 | 0.27 | |
Mesh × Fuel | 0.20 | 0.21 | 0.91 | 0.36 | |
Mesh × Labour | −1.85 | 1.23 | −1.50 | 0.13 | |
Mesh × LED | 0.21 | 0.67 | 0.31 | 0.76 | |
Fuel × Labour | −0.23 | 0.14 | −1.68 | 0.09 * | |
Fuel × LED | −0.12 | 0.09 | −1.33 | 0.18 | |
Labour × LED | 0.57 | 0.46 | 1.25 | 0.21 | |
Diagnostic statistics | |||||
Lambda | 1.09 | 0.14 | 8.07 | 0.00 *** | |
Sigma Squared | 0.36 | 0.05 | 7.03 | 0.00 *** | |
Gamma | 0.56 | 0.17 | 3.10 | 0.00 *** | |
Log likelihood function | −285.77 *** | ||||
Likelihood-ratio test | 31.78 *** | ||||
Wald chi-square [20] | 148.38 *** | ||||
Observations | N | 355 |
Variable | Parameter | Coefficients | Std Error | Z | p-Value |
---|---|---|---|---|---|
Intercept | 0.62 | 0.47 | 1.31 | 0.19 | |
ChAge | 0.01 | 0.01 | 1.12 | 0.26 | |
Education | −0.01 | −0.02 | −0.61 | 0.54 | |
HHsize | 0.00 | 0.01 | 0.16 | 0.87 | |
Experience | −0.01 | 0.01 | −0.93 | 0.35 | |
Hauls | 0.05 | 0.02 | 2.50 | 0.01 *** | |
Head-length | 0.00 | 0.00 | 0.85 | 0.40 | |
Horsepower | 0.01 | 0.01 | 0.83 | 0.41 | |
Boat | −0.05 | 0.03 | −2.03 | 0.04 ** | |
Depth | −0.00 | 0.00 | −2.12 | 0.03 ** | |
Age | 0.00 | 0.01 | 0.19 | 0.85 | |
BVC | 0.07 | 0.16 | 0.47 | 0.64 | |
Role | −0.08 | 0.08 | −1.04 | 0.30 | |
Mosquito net [MN] | −0.04 | 0.02 | −2.12 | 0.03 ** |
Output | Mean | Std. Dev | Minimum | Maximum |
---|---|---|---|---|
Actual Output | 1074.03 ± 42.14 a | 793.92 | 120.00 | 4000.00 |
Potential Output | 1698.49 ± 53.29 b | 1003.99 | 315.76 | 6628.79 |
Output | Technical Efficiency Score | Mean | Std. Dev | Minimum | Maximum |
---|---|---|---|---|---|
Actual | 0.20–0.50 | 510.55 a | 323.22 | 120.00 | 2000.00 |
Potential | 1282.92 a | 682.20 | 315.76 | 4520.86 | |
Actual | 0.51–0.60 | 1134.81 b | 652.58 | 320.00 | 4000.00 |
Potential | 2017.92 b | 1087.66 | 618.23 | 6628.79 | |
Actual | 0.61–0.70 | 1265.31 bc | 602.81 | 400.00 | 2800.00 |
Potential | 1945.14 b | 913.80 | 571.77 | 4089.55 | |
Actual | 0.71–0.80 | 1579.53 c | 1180.62 | 400.00 | 4000.00 |
Potential | 2115.87 b | 1590.86 | 503.75 | 5384.84 | |
Actual | 0.80–1.00 | 1527.32 c | 713.72 | 480.00 | 4000.00 |
Potential | 1765.49 b | 792.20 | 589.48 | 4701.92 |
Input Variable (ln) | Description | Scale Elasticity | Std. Error |
---|---|---|---|
Bunt | Area of the bunt in metre square | 3.25 | 2.68 |
Mesh | Mesh size of the bunt | −1.03 | 0.87 |
Labour | Crew member × fishing time | −0.08 | 4.60 |
FUEL | Quantity of petrol used per trip | 0.15 | 0.27 |
LED | Number of LED bulbs per trip | 2.01 | 2.57 |
Return to scale | 4.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simfukwe, K.; Limuwa, M.M.; Njaya, F. Are Chilimira Fishers of Engraulicypris sardella (Günther, 1868) in Lake Malawi Productive? The Case of Nkhotakota District. Sustainability 2022, 14, 16018. https://doi.org/10.3390/su142316018
Simfukwe K, Limuwa MM, Njaya F. Are Chilimira Fishers of Engraulicypris sardella (Günther, 1868) in Lake Malawi Productive? The Case of Nkhotakota District. Sustainability. 2022; 14(23):16018. https://doi.org/10.3390/su142316018
Chicago/Turabian StyleSimfukwe, Kingdom, Moses Majid Limuwa, and Friday Njaya. 2022. "Are Chilimira Fishers of Engraulicypris sardella (Günther, 1868) in Lake Malawi Productive? The Case of Nkhotakota District" Sustainability 14, no. 23: 16018. https://doi.org/10.3390/su142316018
APA StyleSimfukwe, K., Limuwa, M. M., & Njaya, F. (2022). Are Chilimira Fishers of Engraulicypris sardella (Günther, 1868) in Lake Malawi Productive? The Case of Nkhotakota District. Sustainability, 14(23), 16018. https://doi.org/10.3390/su142316018