Effectiveness of Climate-Smart Agriculture Innovations in Smallholder Agriculture System in Ethiopia
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Measurements
- (a)
- |Gi = 1) = + λ1i;
- (b)
- |Gi = 0) = + λ2i;
- (c)
- |Gi = 1) = + λ1i;
- (d)
- |Gi = 0) = + λ2i.
3. Results and Discussion
3.1. Livelihood Vulnerability and Adoption of CSA Innovations
3.2. Food Security and Adoption of CSA Innovations
3.3. GHG Emissions and Adoption of CSA Innovations
3.4. Impacts of Climate-Smart Agriculture Innovations: ESR Estimation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CSA Innovations | Improved Variety | Crop ResidueManagement | Crop Rotation | Compost | ||||||||
Adopter | Non-Adopter | t Value | Adopter | Non-Adopter | t Value | Adopter | Non-Adopter | t Value | Adopter | Non-Adopter | t Value | |
Natural disaster | 0.52 | 0.61 | −3.7 *** | 0.57 | 0.59 | −1.2 | 0.62 | 0.56 | 3.1 *** | 0.57 | 0.60 | −1.2 |
Climate change | 0.65 | 0.72 | −3.7 *** | 0.73 | 0.67 | 3.2 *** | 0.75 | 0.67 | 3.9 *** | 0.69 | 0.71 | −0.7 |
Exposure index | 0.58 | 0.67 | −4.54 *** | 0.64 | 0.63 | −0.76 | 0.68 | 0.61 | 4.18 *** | 0.63 | 0.65 | −1.2 |
Ecosystem | 0.34 | 0.31 | 3.3 *** | 0.38 | 0.40 | −2.3 ** | 0.32 | 0.32 | 0.7 | 0.33 | 0.29 | 4.4 *** |
Agriculture | 0.3 | 0.35 | −4.6 *** | 0.33 | 0.34 | −0.5 | 0.33 | 0.34 | −1.4 | 0.31 | 0.37 | −6.9 *** |
Sensitivity index | 0.38 | 0.37 | 1.66 | 0.36 | 0.38 | −2.53 *** | 0.37 | 0.37 | 0.2 | 0.38 | 0.36 | 2.96 *** |
Wealth | 0.71 | 0.62 | 6.9 *** | 0.65 | 0.71 | −5.25 *** | 0.64 | 0.71 | −4.7 *** | 0.65 | 0.74 | −6.7 *** |
Technology/innovation | 0.90 | 0.76 | 19.2 *** | 0.81 | 0.80 | 0.5 | 0.81 | 0.80 | 0.7 | 0.82 | 0.79 | 3.0 *** |
Infrastructure | 0.16 | 0.15 | 0.4 | 0.15 | 0.16 | −0.35 | 0.16 | 0.15 | 1.1 | 0.16 | 0.14 | −2.1 ** |
Knowledge | 0.75 | 0.79 | −2.7 ** | 0.77 | 0.78 | −0.1 | 0.75 | 0.79 | −2.2 ** | 0.77 | 0.79 | −1.8 |
Social network | 0.74 | 0.75 | −1.7 | 0.73 | 0.76 | −2.7 ** | 0.75 | 0.75 | 0.6 | 0.74 | 0.76 | −1.4 |
Adaptive capacity index | 0.36 | 0.33 | 5.66 *** | 0.35 | 0.33 | 3.88 *** | 0.35 | 0.33 | 3.44 *** | 0.34 | 0.32 | 3.9 *** |
IPCC-LVI = (E − AC) * S/100 | 0.09 | 0.12 | −6.96 *** | 0.106 | 0.112 | −0.8 | 0.12 | 0.10 | 3.16 *** | 0.106 | 0.115 | −1.33 |
CSA Innovations | Row Planting | SWC | Agroforestry | |||||||||
Adopter | Non-Adopter | t Value | Adopter | Non-Adopter | t Value | Adopter | Non-Adopter | t Value | ||||
Natural disaster | 0.57 | 0.62 | −1.9 * | 0.63 | 0.53 | 4.4 *** | 0.63 | 0.57 | 2.4 ** | |||
Climate change | 0.68 | 0.76 | −3.5 *** | 0.73 | 0.66 | 3.55 *** | 0.73 | 0.69 | 1.6 | |||
Exposure index | 0.62 | 0.68 | 3.1 *** | 0.67 | 0.59 | 4.98 *** | 0.67 | 0.62 | 2.45 ** | |||
Ecosystem | 0.33 | 0.27 | 7.9 *** | 0.32 | 0.31 | 1.7 * | 0.35 | 0.31 | 4.8 *** | |||
Agriculture | 0.32 | 0.39 | −7.9 *** | 0.33 | 0.34 | 1.2 | 0.30 | 0.34 | −4.5 *** | |||
Sensitivity index | 0.38 | 0.34 | 4.61 *** | 0.37 | 0.37 | 0.2 | 0.38 | 0.37 | 2.39 ** | |||
Wealth | 0.67 | 0.72 | −3.2 *** | 0.67 | 0.69 | 1.15 | 0.61 | 0.70 | −5.7 *** | |||
Technology/innovation | 0.82 | 0.76 | 5.1 *** | 0.79 | 0.82 | −3.4 *** | 0.83 | 0.80 | 2.6 ** | |||
Infrastructure | 0.16 | 0.14 | 1.5 | 0.16 | 0.15 | −1.0 | 0.16 | 0.15 | 1.3 | |||
Knowledge | 0.76 | 0.81 | −3.1 *** | 0.76 | 0.79 | −1.9 * | 0.75 | 0.78 | −1.9 * | |||
Social network | 0.74 | 0.76 | −1.6 | 0.74 | 0.75 | −1.1 | 0.73 | 0.75 | −1.7 | |||
Adaptive capacity index | 0.34 | 0.32 | 2.87 *** | 0.34 | 0.33 | 1.8 * | 0.35 | 0.33 | 3.6 *** | |||
IPCC-LVI = (E − AC) * S/100 | 0.106 | 0.123 | −3.47 *** | 0.123 | 0.097 | 2.2 ** | 0.123 | 0.107 | 0.16 |
Indicators | Improved Variety | Crop Residue Management | Crop Rotation | Compost | Row Planting | SWC | Agroforestry |
---|---|---|---|---|---|---|---|
Wood lot (in ha) | 15 | 15 | 13 | 29 | 33 | 19 | 12 |
Area of teff (in ha) | 154 | 243 | 197 | 323 | 361 | 253 | 107 |
Teff yield (in qt/ha) | 21.1 | 27.8 | 20.7 | 42.0 | 47.8 | 26.8 | 13.6 |
Area of maize (in ha) | 130 | 209 | 156 | 276 | 296 | 219 | 97 |
Maize yield (in qt/ha) | 18.2 | 25.1 | 19.9 | 38.0 | 44.5 | 24.7 | 14.6 |
Area of wheat (in ha) | 158 | 239 | 193 | 317 | 333 | 232 | 112 |
Wheat yield (in qt/ha) | 22.2 | 27.3 | 22.1 | 41.5 | 47.7 | 26.2 | 16.5 |
Area of potato (in ha) | 59 | 70 | 74 | 111 | 122 | 87 | 37 |
Potato yield (in qt/ha) | 8.5 | 8.8 | 9.2 | 16.1 | 18.8 | 11.2 | 6.1 |
Area of faba bean (in ha) | 28 | 37 | 31 | 50 | 54 | 40 | 17 |
Faba bean yield (in qt/ha) | 4.5 | 4.7 | 4.6 | 8.1 | 9.1 | 5.1 | 2.6 |
Area of barley (in ha) | 24 | 38 | 31 | 55 | 62 | 44 | 22 |
Barley yield (in qt/ha) | 2.7 | 4.2 | 3.8 | 7.2 | 9.3 | 4.6 | 2.9 |
Dairy cattle (in number) | 235 | 339 | 289 | 493 | 566 | 402 | 159 |
Other cattle (in number) | 251 | 388 | 319 | 566 | 645 | 438 | 158 |
Sheep (in number) | 304 | 480 | 398 | 760 | 883 | 607 | 203 |
Goat (in number) | 60 | 63 | 50 | 94 | 109 | 60 | 37 |
Horse (in number) | 44 | 86 | 60 | 113 | 129 | 101 | 28 |
Poultry (in number) | 249 | 303 | 269 | 504 | 650 | 399 | 145 |
Milk (in tons) | 7 | 15 | 9 | 20 | 20 | 15 | 6 |
Meat (in tons) | 15 | 23 | 18 | 33 | 39 | 25 | 9 |
Lime (in ton) | 15 | 22 | 19 | 34 | 34 | 192 | 10 |
UREA (in tons) | 23.2 | 32.2 | 23.8 | 40.1 | 44.5 | 25.4 | 16.2 |
NPS (in tons) | 51 | 61.2 | 44.5 | 93.8 | 103.8 | 48 | 45.1 |
Firewood (in ton) | 489.9 | 716.0 | 584.7 | 1062.4 | 1192.5 | 803.4 | 363.5 |
References
- UNFCC. Paris Agreement; UNFCC: New York, NY, USA, 2015. [Google Scholar]
- Intergovernmental Panel on Climate Change. Africa. In Climate Change 2014—Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1266. [Google Scholar]
- Bouroncle, C.; Imbach, P.; Rodríguez-Sánchez, B.; Medellín, C.; Martinez-Valle, A.; Läderach, P. Mapping climate change adaptive capacity and vulnerability of smallholder agricultural livelihoods in Central America: Ranking and descriptive approaches to support adaptation strategies. Clim. Chang. 2016, 141, 123–137. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers. In An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SRCCL); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef] [Green Version]
- FAO. Climate-Smart Agriculture Sourcebook; FAO: Rome, Italy, 2013. [Google Scholar]
- Ermias, T.; Woldeamlak, B.; Uhlenbrook, S.; Wenninger, J. Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: Spatially explicit statistical modeling of systematic transitions. Agric. Ecosyst. Environ. 2013, 165, 98–117. [Google Scholar] [CrossRef]
- Gebremicael, T.G.; Mohamed, Y.A.; Betrie, G.D.; van der Zaag, P.; Teferi, E. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. J. Hydrol. 2013, 482, 57–68. [Google Scholar] [CrossRef]
- Simane, B.; Zaitchik, B.F.; Foltz, J.D. Agroecosystem specific climate vulnerability analysis: Application of the livelihood vulnerability index to a tropical highland region. Mitig. Adapt. Strategy. Glob. Chang. 2016, 21, 39–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simeneh, D.; Fisseha, G. Perception of Farmers Toward Physical Soil and Water Conservation Structures in Wyebla Watershed, Northwest Ethiopia. World J. Agric. Sci. 2016, 1, 57–63. [Google Scholar] [CrossRef]
- Yibekal, T.; Chanyalew, A.; Getachew, E. Understanding the process of adaptation to climate change by small-holder farmers: The case of east Hararghe Zone, Ethiopia. Agric. Food Econ. 2013, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Melak, M.; Birgit, K. Food Insecurity in Ethiopia: Population, Food Production and Market. In Proceedings of the 32nd International Conference of the System Dynamics Society, Delft, The Netherlands, 20–24 July 2014; pp. 1–29. [Google Scholar]
- Bewket, W. Climate change perceptions and adaptive responses of smallholder farmers in central highlands of Ethiopia. Int. J. Environ. Stud. 2012, 69, 507–523. [Google Scholar] [CrossRef]
- Porter, J.R.; Soussana, J.-F.; Fereres, E.; Long, S.P.; Mohren, F.G.; Pandya-Lorch, R.; Peltonen-Sainio, P.; Rosswall, T.; von Braun, J. European perspectives: An agronomic science plan for food security in a changing climate. In Handbook of Climate Change and Agroecosystems: Global and Regional Aspects and Implications; World Scientific: Singapore, 2013; pp. 73–84. Available online: https://books.google.com/books?hl=en&lr=&id=EmOes-iIaeAC&oi=fnd&pg=PA73&dq=%22climate+smart+agriculture%22&ots=AQFL9ikdOb&sig=YyYWLlE5MRUoZ_6v2BL1EvQiIss (accessed on 27 December 2016).
- Kerr, R.B.; Hasegawa, T.; Rodel, L. IPCC WGII Sixth Assessment Report: Food, Fibre and Ecosystem. Clim. Chang. 2022, 2022. [Google Scholar]
- Martin, N.; Stefan, S.; Qaim, M. Knowledge-Based Agricultural Innovations in Asia: The System of Rice Intensification (SRI) in Timor Leste, Pacific News. 2011. Available online: http://www.pacific-geographies.org/wp-content/uploads/sites/2/2017/06/PN35_noltze.pdf (accessed on 7 September 2022).
- Zerssa, G.; Feyssa, D.; Kim, D.-G.; Eichler-Löbermann, B. Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture. Agriculture 2021, 11, 192. [Google Scholar] [CrossRef]
- Harrison, R.D.; Thierfelder, C.; Baudron, F.; Chinwada, P.; Midega, C.; Schaffner, U.; Berg, J.V.D. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J. Environ. Manag. 2019, 243, 318–330. [Google Scholar] [CrossRef]
- Thierfelder, C.; Chivenge, P.; Mupangwa, W.; Rosenstock, T.S.; Lamanna, C.; Eyre, J.X. How climate-smart is conservation agriculture (CA)?—Its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. Food Secur. 2017, 9, 537–560. [Google Scholar] [CrossRef] [Green Version]
- Mutenje, M.J.; Farnworth, C.R.; Stirling, C.; Thierfelder, C.; Mupangwa, W.; Nyagumbo, I. A cost-benefit analysis of climate-smart agriculture options in Southern Africa: Balancing gender and technology. Ecol. Econ. 2019, 163, 126–137. [Google Scholar] [CrossRef]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; A Minang, P.; Kowero, G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Lasco, R.D.; Delfino, R.J.P.; Espaldon, M.L.O. Agroforestry systems: Helping smallholders adapt to climate risks while mitigating climate change. WIREs Clim. Chang. 2014, 5, 825–833. [Google Scholar] [CrossRef]
- Charles, R.; Munishi, P.; Nzunda, E.F. Agroforestry as Adaptation Strategy under Climate Change in Mwanga District, Kilimanjaro, Tanzania. Int. J. Environ. Prot. 2013, 3, 29–38. [Google Scholar]
- Amadu, F.O.; Miller, D.C.; McNamara, P.E. Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecol. Econ. 2020, 167, 106443. [Google Scholar] [CrossRef]
- Reppin, S.; Kuyah, S.; de Neergaard, A.; Oelofse, M.; Rosenstock, T.S. Contribution of agroforestry to climate change mitigation and livelihoods in Western Kenya. Agrofor. Syst. 2020, 94, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Abbas, F.; Hammad, H.M.; Fahad, S.; Cerdà, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H.F. Agroforestry: A sustainable environmental practice for carbon sequestration under the climate change scenarios—A review. Environ. Sci. Pollut. Res. 2017, 24, 11177–11191. [Google Scholar] [CrossRef] [PubMed]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Clay, N.; Zimmerer, K.S. Who is resilient in Africa’s Green Revolution? Sustainable intensification and Climate Smart Agriculture in Rwanda. Land Use Policy 2020, 97, 104558. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.M.; Thornton, P.; Zougmoré, R.; van Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef]
- Bonetto, S.; Facello, A.; Cristofori, E.I.; Camaro, W.; Demarchi, A. An Approach to Use Earth Observation Data as Support to Water Management Issues in the Ethiopian Rift. In Climate Change Adaptation in Africa: Fostering Resilience and Capacity to Adapt. Climate Change Management; Leal Filho, W., Belay, S., Kalangu, J., Means, W., Munishi, P., Musiyiwa, K., Eds.; Springer: Cham, Switzerland, 2016; pp. 357–374. [Google Scholar] [CrossRef]
- Beyene, A.D.; Mekonnen, A.; Kassie, M.; di Falco, S.; Bezabih, M. Determinants of Adoption and Impacts of Sustainable Land Management and Climate Smart Agricultural Practices (SLM-CSA): Panel Data Evidence from the Ethiopian Highlands. 2017. Available online: https://www.efdinitiative.org/ (accessed on 7 September 2022).
- Kombat, R.; Sarfatti, P.; Fatunbi, O.A. A Review of Climate-Smart Agriculture Technology Adoption by Farming Households in Sub-Saharan Africa. Sustainability 2021, 13, 12130. [Google Scholar] [CrossRef]
- FDRE. Ethiopia’s Climate Resilient Green Economy National Adaptation Plan; FDRE: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Eshete, G.; Assefa, B.; Lemma, E.; Kibret, G.; Ambaw, G. Ethiopia Climate-Smart Agriculture Roadmap. 2020. Available online: https://cgspace.cgiar.org/handle/10568/110993 (accessed on 13 September 2022).
- Fentie, A.; Beyene, A.D. Climate-smart agricultural practices and welfare of rural smallholders in Ethiopia: Does planting method matter? Land Use Policy 2019, 85, 387–396. [Google Scholar] [CrossRef]
- Tesfaye, W.; Blalock, G.; Tirivayi, N. Climate-Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways. Am. J. Agric. Econ. 2021, 103, 878–899. [Google Scholar] [CrossRef]
- Simane, B.; Zaitchik, B.F.; Ozdogan, M. Agroecosystem Analysis of the Choke Mountain Watersheds, Ethiopia. Sustainability 2013, 5, 592–616. [Google Scholar] [CrossRef] [Green Version]
- Cochran, W. Sampling Techniques. 1977. Available online: https://scholar.google.com.tr/scholar?q=sampling+techniques&btnG=&hl=en&as_sdt=0,5#0 (accessed on 7 September 2022).
- World Food Programme. Food consumption analysis—Calculation and use of the food consumption score in food security analysis. In Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Maxwell, D.; Vaitla, B.; Tesfay, G.; Abadi, N. Resilience, Food Security Dynamics and Poverty Traps in Northern Ethiopia. Analysis of a Biannual Panel Data Set, 2011–2013; Feinstein International Center, Friedman School of Nutrition Science and Policy at Tufts University: Boston, MA, USA, 2013. [Google Scholar]
- Wekesa, B.M.; Ayuya, O.I.; Lagat, J.K. Effect of climate-smart agricultural practices on household food security in smallholder production systems: Micro-level evidence from Kenya. Agric. Food Secur. 2018, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Nie, F.; Bi, J. Comparison of food consumption score (FCS) and calorie intake indicators to measure food security. In 2015 International Conference on Social Science, Education Management and Sports Education; Atlantis Press: Zhengzhou, China, 2015; pp. 1152–1158. [Google Scholar] [CrossRef] [Green Version]
- Aweke, C.S.; Hassen, J.Y.; Wordofa, M.G.; Moges, D.K.; Endris, G.S.; Rorisa, D.T. Impact assessment of agricultural technologies on household food consumption and dietary diversity in eastern Ethiopia. J. Agric. Food Res. 2021, 4, 100141. [Google Scholar] [CrossRef]
- Lovon, M.; Mathiassen, A. Are the World Food Programme’s food consumption groups a good proxy for energy deficiency? Food Secur. 2014, 6, 461–470. [Google Scholar] [CrossRef]
- WFP. Comprehensive Food Security & Vulnerability Analysis Guidelines; WFP: East London, South Africa, 2009; p. 27. [Google Scholar] [CrossRef]
- Marivoet, W.; Becquey, E.; Van Campenhout, B. How well does the Food Consumption Score capture diet quantity, quality and adequacy across regions in the Democratic Republic of the Congo (DRC)? Food Secur. 2019, 11, 1029–1049. [Google Scholar] [CrossRef] [Green Version]
- FAO. Guidelines for Measuring Household and Individual Dietary Diversity; FAO: Rome, Italy, 2010. [Google Scholar]
- Füssel, H.-M. Vulnerability: A generally applicable conceptual framework for climate change research. Glob. Environ. Change 2007, 17, 155–167. [Google Scholar] [CrossRef]
- Füssel, H.-M.; Klein, R.J. Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Clim. Chang. 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Füssel, H.-M. Vulnerability of Coastal Populations. In Climate Change, Justice and Sustainability; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Hahn, M.B.; Riederer, A.M.; Foster, S.O. The livelihood vulnerability index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. Glob. Environ. Chang. 2009, 19, 74–88. [Google Scholar] [CrossRef]
- Madhuri; Tewari, H.R.; Bhowmick, P.K. Livelihood vulnerability index analysis: An approach to study vulnerability in the context of Bihar. Jàmbá J. Disaster Risk Stud. 2014, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dendir, Z.; Simane, B. Livelihood vulnerability to climate variability and change in different agroecological zones of Gurage Administrative Zone, Ethiopia. Prog. Disaster Sci. 2019, 3, 100035. [Google Scholar] [CrossRef]
- Maru, H.; Haileslassie, A.; Zeleke, T.; Esayas, B. Analysis of smallholders’ livelihood vulnerability to drought across agroecology and farm typology in the upper awash sub-basin, Ethiopia. Sustainability 2021, 13, 9764. [Google Scholar] [CrossRef]
- Colomb, V.; Touchemoulin, O.; Bockel, L.; Chotte, J.L.; Martin, S.; Tinlot, M.; Bernoux, M. Selection of appropriate calculators for landscape-scale greenhouse gas assessment for agriculture and forestry. Environ. Res. Lett. 2013, 8, 15029. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Sudha Rani, Y.; Girija Veni, V.; Sharma, K.L.; Maruthi Sankar, G.R.; Prasad, J.V.N.S.; Prasad, Y.G.; Sahrawat, K.L. Assessing village-level carbon balance due to greenhouse gas mitigation interventions using EX-ACT model. Int. J. Environ. Sci. Technol. 2016, 13, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Kebede, A.T.; Graaff, J.; Kassie, M. Household-Level Determinants of Soil and Water Conservation Adoption Phases: Evidence from North-Western Ethiopian Highlands. Environ. Manag. 2016, 57, 620–636. [Google Scholar] [CrossRef] [Green Version]
- Abate, T.; Shiferaw, B.; Menkir, A.; Wegary, D.; Kebede, Y.; Tesfaye, K.; Kassie, M.; Bogale, G.; Tadesse, B.; Keno, T. Factors that transformed maize productivity in Ethiopia. Food Secur. 2015, 7, 965–981. [Google Scholar] [CrossRef] [Green Version]
- Kindie, T.; Kassie, M.; Cairns, J.E.; Michael, M.; Stirling, C.; Abate, T.; Prasanna, B.M.; Mekuria, M.; Hailu, H.; Rahut, D.B.; et al. Potential for Scaling up Climate Smart Agricultural Practices: Examples from Sub-Saharan Africa. In Climate Change Adaptation in Africa; Springer: Cham, Switzerland, 2017; pp. 185–203. [Google Scholar] [CrossRef]
- Mihretie, A.A.; Misganaw, G.S.; Siyum Muluneh, N. Adoption Status and Perception of Farmers on Improved Tef Technology Packages: Evidence from East Gojjam Zone, Ethiopia. Adv. Agric. 2022, 2022, 1–15. [Google Scholar] [CrossRef]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Heckman, J.; Navarro-Lozano, S. Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models. Rev. Econ. Stat. 2004, 86, 30–57. [Google Scholar] [CrossRef] [Green Version]
- Lokshin, M.; Sajaia, Z. Maximum likelihood estimation of endogenous switching regression models. Stata J. 2004, 4, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Carter, D.; Milon, J.W. Price Knowledge in Household Demand for Utility Services. Land Econ. 2005, 81, 265–283. [Google Scholar] [CrossRef]
- Shiferaw, B.; Kassie, M.; Jaleta, M.; Yirga, C. Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy 2014, 44, 272–284. [Google Scholar] [CrossRef]
- Thierfelder, C.; Rusinamhodzi, L.; Setimela, P.; Walker, F.; Eash, N.S. Conservation agriculture and drought-tolerant germplasm: Reaping the benefits of climate-smart agriculture technologies in central Mozambique. Renew. Agric. Food Syst. 2016, 31, 414–428. [Google Scholar] [CrossRef] [Green Version]
- Teklewold, H.; Mekonnen, A.; Kohlin, G.; Di Falco, S. Does adoption of multiple climate-smart practices improve farmers’climate resilience? Empirical evidence from the nile basin of Ethiopia. Clim. Chang. Econ. 2017, 8, 1750001. [Google Scholar] [CrossRef]
- Teklewold, H.; Gebrehiwot, T.; Bezabih, M. Climate smart agricultural practices and gender differentiated nutrition outcome: An empirical evidence from Ethiopia. World Dev. 2019, 122, 38–53. [Google Scholar] [CrossRef]
- Turmel, M.-S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Jaleta, M.; Kassie, M.; Erenstein, O. Determinants of maize stover utilization as feed, fuel and soil amendment in mixed crop-livestock systems, Ethiopia. Agric. Syst. 2015, 134, 17–23. [Google Scholar] [CrossRef]
- Tittonell, P.; Gérard, B.; Erenstein, O. Tradeoffs around crop residue biomass in smallholder crop-livestock systems—What’s next? Agric. Syst. 2015, 134, 119–128. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Change 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Golabi, M.H.; Denney, M.J.; Iyekar, C. Use of Composted Organic Wastes as Alternative to Synthetic Fertilizers for Enhancing Crop Productivity and Agricultural Sustainability on the Tropical Island of Guam. In Proceedings of the 13th International Soil Conservation Organisation Conference, Brisbane, Australia, 4–8 July 2004; pp. 1–6. Available online: http://tucson.ars.ag.gov/isco/isco13/PAPERSF-L/GOLABI.pdf (accessed on 7 September 2022).
- Eshete, Y.; Alamirew, B.; Bishaw, Z. Yield and Cost Effects of Plot-Level Wheat Seed Rates and Seed Recycling Practices in the East Gojam Zone, Amhara Region, Ethiopia: Application of the Dose–Response Model. Sustainability 2021, 13, 3793. [Google Scholar] [CrossRef]
- Wolka, K.; Mulder, J.; Biazin, B. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agric. Water Manag. 2018, 207, 67–79. [Google Scholar] [CrossRef]
- Kato, E.; Ringler, C.; Yesuf, M.; Bryan, E. Soil and water conservation technologies: A buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia. Agric. Econ. 2011, 42, 593–604. [Google Scholar] [CrossRef]
- Teklewold, H.; Mekonnen, A.; Kohlin, G. Climate change adaptation: A study of multiple climate-smart practices in the Nile Basin of Ethiopia. Clim. Dev. 2019, 11, 180–192. [Google Scholar] [CrossRef]
- Khatri-Chhetri, A.; Aryal, J.J.P.; Sapkota, T.T.B.; Khurana, R. Economic benefits of climate-smart agricultural practices to smallholder farmers in the Indo-Gangetic Plains of India. Curr. Sci. 2016, 110, 1251–1256. [Google Scholar] [CrossRef]
- Ng’ombe, J.N.; Kalinda, T.H.; Tembo, G. Does adoption of conservation farming practices result in increased crop revenue? Evidence from Zambia. Agrekon 2017, 56, 205–221. [Google Scholar] [CrossRef]
- Makate, C.; Makate, M.; Mango, N.; Siziba, S. Increasing resilience of smallholder farmers to climate change through multiple adoption of proven climate-smart agriculture innovations. Lessons from Southern Africa. J. Environ. Manag. 2019, 231, 858–868. [Google Scholar] [CrossRef]
- Mango, N.; Siziba, S.; Makate, C. The impact of adoption of conservation agriculture on smallholder farmers’ food security in semi-arid zones of southern Africa. Agric. Food Secur. 2017, 6, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Bazzana, D.; Foltz, J.; Zhang, Y. Impact of climate smart agriculture on food security: An agent-based analysis. Food Policy 2022, 111, 102304. [Google Scholar] [CrossRef]
- Gaudin, A.C.M.; Tolhurst, T.N.; Ker, A.P.; Janovicek, K.; Tortora, C.; Martin, R.C.; Deen, W. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability. PLoS ONE 2015, 10, e0113261. [Google Scholar] [CrossRef] [Green Version]
- Brouder, S.M.; Gomez-Macpherson, H. The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agric. Ecosyst. Environ. 2014, 187, 11–32. [Google Scholar] [CrossRef]
- Mashingaidze, N.; Twomlow, S. Weed Growth and Crop Yield Responses to Tillage and Mulching under Different Crop Rotation Sequences in Semi-Arid Conditions, Soil Use. 2017. Available online: http://onlinelibrary.wiley.com/doi/10.1111/sum.12338/full (accessed on 24 April 2017).
- Nyanga, H. Food Security, Conservation Agriculture and Pulses: Evidence from Smallholder Farmers in Zambia. J. Food Res. 2012, 1, 120. [Google Scholar] [CrossRef] [Green Version]
- Ngwira, A.; Sleutel, S.; de Neve, S. Soil carbon dynamics as influenced by tillage and crop residue management in loamy sand and sandy loam soils under smallholder farmers’ conditions in Malawi. Nutr. Cycl. Agroecosyst. 2012, 92, 315–328. [Google Scholar] [CrossRef]
- Al-Sari, M.I.; Sarhan, M.A.A.; Al-Khatib, I.A. Assessment of compost quality and usage for agricultural use: A case study of Hebron, Palestine. Environ. Monit. Assess. 2018, 190, 223. [Google Scholar] [CrossRef]
- Warnars, L.M.E.; Hivos. Bioslurry: A supreme fertilizer Positive effects of bioslurry on crops. In Proceedings of the Practitioners’ Track, IFOAM Organic World Congress 2014, ‘Building Organic Bridges’, Istanbul, Turkey, 13–15 October 2014; pp. 13–15. [Google Scholar]
- Teshome, A.; de Graaff, J.; Ritsema, C.; Kassie, M. Farmers’ Perceptions about the Influence of Land Quality, Land Fragmentation and Tenure Systems on Sustainable Land Management in the North Western Ethiopian Highlands. Land Degrad. Dev. 2014, 27, 884–898. [Google Scholar] [CrossRef]
- Vandercasteelen, J.; Dereje, M.; Minten, B.; Taffesse, A.S. Labour, profitability and gender impacts of adopting row planting in Ethiopia. Eur. Rev. Agric. Econ. 2018, 45, 471–503. [Google Scholar] [CrossRef]
- Ayal, M.; Negash, R.; Abebe, A. Determinants of Adoption of Teff Row Planting Practice: The Case of Baso Liben Woreda, East Gojjam Zone, Amhara Region, Ethopia. Int. J. Curr. Res. Acad. Rev. 2018, 6, 16–22. [Google Scholar] [CrossRef]
- Negash, W. Effect of Row Spacing on Yield and Yield Components of Teff [Eragrostis tef (Zucc.) Trotter] Varieties in Gonji Kolela District, North Western Ethiopia. J. Biol. Agric. Healthc. 2017, 7, 35–43. [Google Scholar]
- Tamirat, N. Impact Analysis of Row Planting Teff Crop Technology on Household Welfare:A Case Study of Smallholder Farmers of Duna District in Hadiya Zone, Ethiopia. J. Econ. Sustain. Dev. 2020, 11, 4–9. [Google Scholar] [CrossRef]
- Teshome, A.; Rolker, D.; de Graaff, J. Financial viability of soil and water conservation technologies in northwestern Ethiopian highlands. Appl. Geogr. 2013, 37, 139–149. [Google Scholar] [CrossRef]
- Moges, D.M.; Taye, A.A. Determinants of farmers’ perception to invest in soil and water conservation technologies in the North-Western Highlands of Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 56–61. [Google Scholar] [CrossRef]
- Adimassu, Z.; Langan, S.; Johnston, R.; Mekuria, W.; Amede, T. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis. Environ. Manag. 2017, 59, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Adimassu, Z.; Mekonnen, K.; Yirga, C.; Kessler, A. Effect of soil bunds on runoff, soil and nutrient losses, and crop yield in the central highlands of Ethiopia. Land Degrad. Dev. 2014, 25, 554–564. [Google Scholar] [CrossRef]
- Kassie, M.; Köhlin, G.; Bluffstone, R.; Holden, S. Are soil conservation technologies “win-win?” A case study of Anjeni in the north-western Ethiopian highlands. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2011; Volume 35, pp. 89–99. [Google Scholar]
- Vancampenhout, K.; Nyssen, J.; Gebremichael, D.; Deckers, J.; Poesen, J.; Haile, M.; Moeyersons, J. Stone bunds for soil conservation in the northern Ethiopian highlands: Impacts on soil fertility and crop yield. Soil Tillage Res. 2006, 90, 1–15. [Google Scholar] [CrossRef]
- Adgo, E.; Teshome, A.; Mati, B. Impacts of long-term soil and water conservation on agricultural productivity: The case of Anjenie watershed, Ethiopia. Agric. Water Manag. 2013, 117, 55–61. [Google Scholar] [CrossRef]
- Sileshi, M.; Kadigi, R.; Mutabazi, K.; Sieber, S. Impact of soil and water conservation practices on household vulnerability to food insecurity in eastern Ethiopia: Endogenous switching regression and propensity score matching approach. Food Secur. 2019, 11, 797–815. [Google Scholar] [CrossRef]
- Makate, C. Effective scaling of climate smart agriculture innovations in African smallholder agriculture: A review of approaches, policy and institutional strategy needs. Environ. Sci. Policy 2019, 96, 37–51. [Google Scholar] [CrossRef]
- Deichert, G.; Gedamu, A.; Nemomsa, B. Role of Sustainable Land Management (SLM) in Adapting to Climate Variability Through Agricultural Practices—Experiences from Ethiopian Highlands. In Climate Change Adaptation in Africa; Springer: Cham, Switzerland, 2017; pp. 475–492. [Google Scholar] [CrossRef]
- Jirata, M.; Grey, S.; Kilawe, E. Ethiopia Climate-Smart Agriculture Scoping Study; FAO: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Tsige, M.; Synnevåg, G.; Aune, J.B. Gendered constraints for adopting climate-smart agriculture amongst smallholder Ethiopian women farmers. Sci. Afr. 2020, 7, e00250. [Google Scholar] [CrossRef]
- Asmare, F.; Teklewold, H.; Mekonnen, A. The effect of climate change adaptation strategy on farm households welfare in the Nile basin of Ethiopia. Int. J. Clim. Chang. Strategy Manag. 2019, 11, 518–535. [Google Scholar] [CrossRef]
District/Woreda | Kebele | Sample Size | Agroecosystem Zone (AESZ) |
---|---|---|---|
Dejen | Gelgele | 77 | AESZ1: Lowland agroecosystem |
Awabel | Enebi | 55 | AESZ2: Midland with black soil |
Basoliben | Limichim | 104 | AESZ3: Midland with brown soil |
Machakel | Debre Kelemu | 63 | AESZ4: Midland with sloping land |
Sinan | Yeted | 125 | AESZ5: The hilly and mountainous highland |
Total | 424 |
Adoption Decision | Treatment Effect | ||
---|---|---|---|
To Adopt | Not to Adopt | ||
Adopters | |Gi = 1) | |Gi = 1) | ATT = Y11 − Y21 |
Non-adopters | |Gi = 0) | |Gi = 0) | ATU = Y10 − Y20 |
Heterogeneity effects | H1 = Y11 − Y10 | H2 = Y21 − Y20 | TH = ATT − ATU |
CSA Innovation | Adoption Category | Food Security Status | Chi2 | ||
---|---|---|---|---|---|
Poor | Borderline | Acceptable | |||
Improved variety | Adopter | 17.8 | 43.4 | 38.8 | 2.6 |
Non-adopter | 22.1 | 46.9 | 31.0 | ||
Crop residue management | Adopter | 9.7 | 44.1 | 46.2 | 39.4 *** |
Non-adopter | 30.3 | 47.4 | 22.4 | ||
Crop rotation | Adopter | 22.6 | 47.1 | 30.3 | 1.1 |
Non-adopter | 19.8 | 45.2 | 35.1 | ||
Compost | Adopter | 21.9 | 44.4 | 33.7 | 0.83 |
Non-adopter | 18.8 | 48.6 | 32.6 | ||
Row planting | Adopter | 18.9 | 46.3 | 34.8 | 3.14 |
Non-adopter | 26.7 | 44.6 | 28.7 | ||
Soil and water conservation (SWC) | Adopter | 30.8 | 42.5 | 26.6 | 27.9 *** |
Non-adopter | 10.5 | 49.3 | 40.2 | ||
Agroforestry | Adopters | 17.2 | 49.4 | 33.3 | 0.97 |
Non-adopters | 21.7 | 44.9 | 33.3 |
CSA Innovations | Food Consumption Score (FCS) | Household Dietary Diversity Score (HDDS) | ||||
---|---|---|---|---|---|---|
Adopter | Non-Adopter | t Value | Adopter | Non-Adopter | t Value | |
Improved varieties | 40.6 (1.0) | 37.1 (0.6) | 3.0 *** | 4.25 | 3.78 | 0.47 *** |
Crop residue management | 42.2 (0.7) | 34.7 (0.7) | 7.3 *** | 4.11 | 3.76 | 0.35 *** |
Crop rotation | 37.4 (0.9) | 38.6 (0.7) | 1.0 | 4.03 | 3.87 | 0.17 |
Compost | 38.4 (0.7) | 37.8 (0.9) | 0.6 | 4.07 | 3.60 | 0.49 *** |
Row planting | 38.9 (0.6) | 36.2 (1.1) | 2.1 ** | 4.06 | 3.45 | 0.58 *** |
SWC | 35.4 (0.8) | 41.0 (0.7) | −5.3 *** | 3.83 | 4.01 | 0.18 |
Agroforestry | 38.9 (1.1) | 38.0 (0.6) | 0.7 | 4.43 | 3.80 | 0.63 *** |
CSA Innovations | GHG Emission (per ha per year) | Net GHG Emission (per ha per year per yield) | ||||
---|---|---|---|---|---|---|
Adopter | Non-Adopter | t Value | Adopter | Non-Adopter | t Value | |
Improved varieties | 3.35(0.3) | 3.56(0.2) | −0.5 | 2.2(0.2) | 2.4(0.3) | −0.8 |
Crop residue management | 3.21(0.3) | 3.75(0.2) | −1.44 | 1.9(0.2) | 2.7(0.4) | −1.7 * |
Crop rotation | 3.12(0.3) | 3.7(0.2) | −1.5 | 2.0(0.3) | 2.5(0.3) | −1.0 |
Compost | 3.0(0.2) | 4.41(0.3) | −3.5 *** | 1.8(0.2) | 3.2(0.5) | −2.9 *** |
Row planting | 3.4(0.2) | 3.81(0.4) | 0.9 | 2.2(0.3) | 2.7(0.5) | −0.9 |
SWC | 3.1(0.3) | 3.88(0.2) | −2.0 ** | 2.0(0.3) | 2.6(0.4) | −1.5 |
Agroforestry | 3.4(0.5) | 3.5(0.2) | 0.3 | 2.4(0.3) | 2.3(0.3) | 0.2 |
CSA Innovations | Livelihood Vulnerability Index (LVI) | Food Consumption Score (FCS) | Farm GHG Emission | ||||||
---|---|---|---|---|---|---|---|---|---|
Actual LVI if Farm Households Do Adopt (A) | Counterfactual LVI if Farm Households Do Not Adopt (B) | Adoption Effects on LVI (C) | Actual FCS if Farm Households Do Adopt (A) | Counterfactual FCS if Farm Households Do Not Adopt (B) | Adoption Effects on FCS (C) | Actual GHG if Farm Households Do Adopt (A) | Counterfactual GHG if Farm Households Do Not Adopt (B) | Adoption Effects on GHG (C) | |
Improved variety | 0.65(0.003) | 0.69(0.002) | ATT = −0.04 (0.004) *** | 40.2(0.51) | 28.2(0.5) | ATT = 12.0 (0.7) *** | 3.65(0.15) | 5.6(0.21) | ATT = −193 (0.25) *** |
Crop residue management | 0.67(0.002) | 0.63(0.002) | ATT = 0.034 (0.004) *** | 42.16(0.35) | 15.31(0.44) | ATT = 26.85(0.57) *** | 3.2(0.19) | −1.8(0.19) | ATT = 4.95 (0.27) *** |
Crop rotation | 0.68(0.003) | 0.72(0.003) | ATT = −0.043 (0.004) *** | 37.3(0.42) | 38.75(0.38) | ATT = −1.41 (0.56) ** | 3.28(0.15) | 4.7(0.21) | ATT = −1.4 (0.26) *** |
Compost | 0.67(0.002) | 0.71(0.002) | ATT = −0.05 (0.003) *** | 38.4(0.3) | 23.7(0.42) | ATT = 14.75(0.50) *** | 3.11(0.14) | 5.8(0.15) | ATT = −2.68 (0.21) *** |
Row planting | 0.67(0.002) | 0.72(0.20) | ATT = −0.06 (0.003) *** | 38.9(0.24) | 37.1(0.31) | ATT = 1.77 (0.39) *** | 3.51(0.11) | 4.57(0.15) | ATT = −1.05 (0.19) *** |
SWC | 0.68(0.002) | 0.72(0.002) | ATT = −0.05 (0.003) *** | 35.5(0.4) | 33.75(0.26) | ATT = 1.69 (0.52) *** | 3.05(0.22) | −2.14(0.13) | ATT = 5.2 (0.18) *** |
Agroforestry | 0.67(0.005) | 0.73(0.003) | ATT = −0.06 (0.005) *** | 38.75(0.67) | 23.6(0.49) | ATT = 15.11(0.83) *** | 3.6(0.17) | 7.5(0.13) | ATT = −3.93 (0.36) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teklu, A.; Simane, B.; Bezabih, M. Effectiveness of Climate-Smart Agriculture Innovations in Smallholder Agriculture System in Ethiopia. Sustainability 2022, 14, 16143. https://doi.org/10.3390/su142316143
Teklu A, Simane B, Bezabih M. Effectiveness of Climate-Smart Agriculture Innovations in Smallholder Agriculture System in Ethiopia. Sustainability. 2022; 14(23):16143. https://doi.org/10.3390/su142316143
Chicago/Turabian StyleTeklu, Abyiot, Belay Simane, and Mintewab Bezabih. 2022. "Effectiveness of Climate-Smart Agriculture Innovations in Smallholder Agriculture System in Ethiopia" Sustainability 14, no. 23: 16143. https://doi.org/10.3390/su142316143
APA StyleTeklu, A., Simane, B., & Bezabih, M. (2022). Effectiveness of Climate-Smart Agriculture Innovations in Smallholder Agriculture System in Ethiopia. Sustainability, 14(23), 16143. https://doi.org/10.3390/su142316143