Cooling Performance Prediction for Hydraulic Thermoelectric Radiant Cooling Panels with Experimental Validation
Abstract
:1. Introduction
2. System Overview
3. Simulation Model Analysis
3.1. Model Parameters
3.2. Thermoelectric Module Model
3.3. Heat Transfer Model
3.4. Loop Simulation
3.5. Simulation Results
4. Experimental Validation
4.1. Experiment Overview
4.2. Experimental Cases
4.3. Validation Methods and Results
4.3.1. Validation Methods
4.3.2. Validation Results
4.4. Uncertainty Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuazua-Ros, A.; Martín-Gómez, C.; Ibañez-Puy, E.; Vidaurre-Arbizu, M.; Gelbstein, Y. Investigation of the Thermoelectric Potential for Heating, Cooling and Ventilation in Buildings: Characterization Options and Applications. Renew. Energy 2019, 131, 229–239. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Liu, Z.; Yu, J.; Xu, X.; Su, X. Towards Net Zero Energy Building: The Application Potential and Adaptability of Photovoltaic-Thermoelectric-Battery Wall System. Appl. Energy 2020, 258, 114066. [Google Scholar] [CrossRef]
- Shen, L.; Pu, X.; Sun, Y.; Chen, J. A Study on Thermoelectric Technology Application in Net Zero Energy Buildings. Energy 2016, 113, 9–24. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Gong, G.; Li, H.; Tang, G. Review of Solar Thermoelectric Cooling Technologies for Use in Zero Energy Buildings. Energy Build. 2015, 102, 207–216. [Google Scholar] [CrossRef]
- Lim, H.; Jeong, J.W. Energy Saving Potential of Thermoelectric Modules Integrated into Liquid Desiccant System for Solution Heating and Cooling. Appl. Therm. Eng. 2018, 136, 49–62. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Chen, Z. A Hybrid System Integrating Photovoltaic Module and Thermoelectric Devices for Power and Cooling Cogeneration. Sol. Energy 2022, 239, 350–358. [Google Scholar] [CrossRef]
- Ibañez-Puy, M.; Bermejo-Busto, J.; Martín-Gómez, C.; Vidaurre-Arbizu, M.; Sacristán-Fernández, J.A. Thermoelectric Cooling Heating Unit Performance under Real Conditions. Appl. Energy 2017, 200, 303–314. [Google Scholar] [CrossRef]
- Sarbu, I.; Dorca, A. A Comprehensive Review of Solar Thermoelectric Cooling Systems. Int. J. Energy Res. 2018, 42, 395–415. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, W.W.; Liu, C.W.; Ding, W.T.; Liu, D.; Zhao, F.Y. Performance Evaluation of a Thermoelectric Ventilation System Driven by the Concentrated Photovoltaic Thermoelectric Generators for Green Building Operations. Renew. Energy 2020, 147, 1565–1583. [Google Scholar] [CrossRef]
- Vián, J.G.; Astrain, D.; Domínguez, M. Numerical Modelling and a Design of a Thermoelectric Dehumidifier. Appl. Therm. Eng. 2002, 22, 407–422. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Liu, Z.; Wu, J.; Zhang, Y.; Wu, Z. Three Dimensional Temperature Field of Thermoelectric Radiant Panel System: Analytical Modeling and Experimental Validation. Int. J. Heat Mass Transf. 2017, 114, 169–186. [Google Scholar] [CrossRef]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of Thermoelectric of the Electronic Density of States. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Byrnes, J.; Mitchell, D.R.G.; Aminorroaya Yamini, S. Thermoelectric Performance of Thermally Aged Nanostructured Bulk Materials—A Case Study of Lead Chalcogenides. Mater. Today Phys. 2020, 13, 100190. [Google Scholar] [CrossRef]
- Androulakis, J.; Lin, C.H.; Kong, H.J.; Uher, C.; Wu, C.I.; Hogan, T.; Cook, B.A.; Caillat, T.; Paraskevopoulos, K.M.; Kanatzidis, M.G. Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics: Enhanced Performance in Pb1−xSnxTe-PbS. J. Am. Chem. Soc. 2007, 129, 9780–9788. [Google Scholar] [CrossRef]
- Shoeibi, S.; Kargarsharifabad, H.; Sadi, M.; Arabkoohsar, A.; Mirjalily, S.A.A. A Review on Using Thermoelectric Cooling, Heating, and Electricity Generators in Solar Energy Applications. Sustain. Energy Technol. Assess. 2022, 52, 102105. [Google Scholar] [CrossRef]
- Irshad, K.; Habib, K.; Algarni, S.; Saha, B.B.; Jamil, B. Sizing and Life-Cycle Assessment of Building Integrated Thermoelectric Air Cooling and Photovoltaic Wall System. Appl. Therm. Eng. 2019, 154, 302–314. [Google Scholar] [CrossRef]
- Cheon, S.Y.; Lim, H.; Jeong, J.W. Applicability of Thermoelectric Heat Pump in a Dedicated Outdoor Air System. Energy 2019, 173, 244–262. [Google Scholar] [CrossRef]
- Lertsatitthanakorn, C.; Wiset, L.; Atthajariyakul, S. Evaluation of the Thermal Comfort of a Thermoelectric Ceiling Cooling Panel (TE-CCP) System. J. Electron. Mater. 2009, 38, 1472–1477. [Google Scholar] [CrossRef]
- Lertsatitthanakorn, C.; Tipsaenprom, W.; Srisuwan, W.; Atthajariyakul, S. Study on the Cooling Performance and Thermal Comfort of a Thermoelectric Ceiling Cooling Panel System. Indoor Built Environ. 2008, 17, 525–534. [Google Scholar] [CrossRef]
- Lim, H.; Jeong, J.W. Energy Saving Potential of Thermoelectric Radiant Cooling Panels with a Dedicated Outdoor Air System. Energy Build. 2018, 169, 353–365. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Liu, Z.; Wu, J.; Zhang, Y.; Wu, Z. Numerical Evaluation on Energy Saving Potential of a Solar Photovoltaic Thermoelectric Radiant Wall System in Cooling Dominant Climates. Energy 2018, 142, 384–399. [Google Scholar] [CrossRef]
- Shen, L.; Tu, Z.; Hu, Q.; Tao, C.; Chen, H. The Optimization Design and Parametric Study of Thermoelectric Radiant Cooling and Heating Panel. Appl. Therm. Eng. 2017, 112, 688–697. [Google Scholar] [CrossRef]
- Shen, L.; Xiao, F.; Chen, H.; Wang, S. Investigation of a Novel Thermoelectric Radiant Air-Conditioning System. Energy Build. 2013, 59, 123–132. [Google Scholar] [CrossRef]
- Lim, H.; Kang, Y.K.; Jeong, J.W. Development of Empirical Models to Predict Cooling Performance of a Thermoelectric Radiant Panel. Energy Build. 2019, 202, 109387. [Google Scholar] [CrossRef]
- Lim, H.; Kang, Y.K.; Jeong, J.W. Thermoelectric Radiant Cooling Panel Design: Numerical Simulation and Experimental Validation. Appl. Therm. Eng. 2018, 144, 248–261. [Google Scholar] [CrossRef]
- Lim, H.; Jeong, J.W. Numerical and Experimental Study on the Performance of Thermoelectric Radiant Panel for Space Heating. Materials 2020, 13, 550. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Kang, Y.K.; Jeong, J.W. Application of a Phase Change Material to a Thermoelectric Ceiling Radiant Cooling Panel as a Heat Storage Layer. J. Build. Eng. 2020, 32, 101787. [Google Scholar] [CrossRef]
- The American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE). ASHRAE Handbook: HVAC Systems and Equipment, Chapter 6: Radiant Heating and Cooling; ASHRAE: Atlanta, GA, USA, 2016. [Google Scholar]
- Ha, J.-W.; Kim, Y.-J.; Kim, H.-Y.; Song, Y.-H. Verification of Low-temperature Condenser Water and Operation Time considering Climate Zones. J. Korean Inst. Archit. Sustain. Environ. Build. Syst. 2020, 14, 298–309. [Google Scholar] [CrossRef]
- Hahm, H.C.; Park, C.Y. Experimental Study on the Performance of an Electric Component Liquid Cooling System with Variation of the Waterblock Internal Shape. Korean J. Air-Cond. Refrig. Eng. 2013, 25, 331–337. [Google Scholar] [CrossRef] [Green Version]
- TEC1-12715, Specification of Thermoelectric Module, High Performance and Highly Reliable Solution for Cooling and Heating Applications. Available online: https://datasheetspdf.com/pdf/869807/Creativetechnology/TEC1-12715/1 (accessed on 5 November 2022).
- Chen, M.; Snyder, G.J. Analytical and Numerical Parameter Extraction for Compact Modeling of Thermoelectric Coolers. Int. J. Heat Mass Transf. 2013, 60, 689–699. [Google Scholar] [CrossRef]
- Jeong, J.-W.; Mumma, S. Designing a Dedicated Outdoor Air System with Ceiling Radiant Cooling Panels. ASHRAE J. 2006, 48, 56–66. [Google Scholar]
- The American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE). ASHRAE Handbook-Fundamentals, Chapter 26: Heat, Air, and Moisture Control in Building Assemblies—Material Roperties; ASHRAE: Atlanta, GA, USA, 2013. [Google Scholar]
- Kim, M.; Cho, H.; Lee, S.; Joung, J.; Jeong, J. Experimental analysis and design of hydraulic thermoelectric radiant cooling panel. In Proceedings of the 42nd AIVC Conference Proceedings 2022, Rotterdam, The Netherlands, 5–6 October 2022; pp. 578–583. [Google Scholar]
- ASHRAE Standard 55; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Atlanta, GA, USA, 2010.
- Churchill, S.W.; Ozoe, H. Correlations for laminar forced convection in flow over an isothermal flat plate and in developing and fully developed flow in an isothermal tube. J. Heat Transf. 1973, 95, 416–419. [Google Scholar] [CrossRef]
- Thomas, W.C. Note on the heat transfer equation for forced convection flow over a flat plate with an unheated starting length. Mech. Eng. News 1977, 9, 361–368. [Google Scholar]
- The American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE). ASHRAE Handbook-Fundamentals, Chapter 4: Heat Transfer; ASHRAE: Atlanta, GA, USA, 2013. [Google Scholar]
- ASHRAE Guideline 2-2010; Engineering Analysis of Experimental Data. ASHRAE: Atlanta, GA, USA, 2010.
- Lim, H.; Lee, S.J.; Su, Y.; Jeong, J.W. Experimental Study and Prediction Model of a Liquid Desiccant Unit for Humidification during the Heating Season. J. Build. Eng. 2022, 45, 103549. [Google Scholar] [CrossRef]
Symbol | Description | Minimum | Mid-Value | Maximum |
---|---|---|---|---|
Tcws | Temperature of cooling water supply | 24 °C | 26 °C | 28 °C |
Flow rate of cooling water supply | 0.014 kg/s | 0.025 kg/s | ||
εWB | Heat exchange effectiveness of water block | 0.035 | 0.92 | |
Ac | Heat exchange area of cooling surface | 0.0256 m2 | 0.036204 m2 | |
Rh | Thermal resistance of hot side | 0.15 K/W | 0.275 K/W |
Material | Thermal Conductivity | Dimension | Thickness |
---|---|---|---|
Aluminum panel | 237 W/m·K | 400 mm × 400 mm | 3 mm |
Water block | 237 W/m·K | 80 mm × 40 mm | 10 mm |
Insulation | 0.034 W/m·K | 400 mm × 400 mm | 9 mm |
Thermoelectric module | Equation (7) | 40 mm × 40 mm | 4.7 mm |
Symbol | Description | Value |
---|---|---|
A | Dimension | 40 mm × 40 mm |
l | Thickness | 4.7 mm |
N | Number of thermoelement couples | 127 |
ΔTmax | Maximum temperature difference | 70 °C |
Vmax | Maximum input voltage | 16 V |
Imax | Maximum input current (DC) | 15 A |
Maximum cooling capacity | 150.2 W | |
R | Electrical resistance (AC) | 0.72–0.88 Ω |
Tcws [°C] | [kg/s] | εWB [-] | Ac [m2] | Rh [K/W] | Tcwr [°C] | Th [°C] | [W/m2] | P [W/m2] | COPpanel [-] | |
---|---|---|---|---|---|---|---|---|---|---|
Case 1 | 24 | 0.025 | 0.035 | 0.0256 | 0.275 | 24.05 | 25.4 | 136.55 | 51.94 | 2.629 |
Case 2 | 24 | 0.025 | 0.92 | 0.0256 | 0.275 | 24.05 | 25.4 | 136.55 | 45.14 | 3.025 |
Case 3 | 24 | 0.025 | 0.035 | 0.036204 | 0.275 | 24.05 | 25.4 | 136.55 | 36.73 | 3.718 |
Case 4 | 24 | 0.025 | 0.035 | 0.0256 | 0.15 | 24.05 | 25.4 | 136.55 | 51.54 | 2.649 |
Case 5 | 24 | 0.014 | 0.035 | 0.0256 | 0.275 | 24.08 | 25.4 | 136.55 | 57.26 | 2.385 |
Case 6 | 24 | 0.014 | 0.92 | 0.0256 | 0.275 | 24.08 | 25.4 | 136.55 | 51.15 | 2.67 |
Case 7 | 24 | 0.014 | 0.035 | 0.036204 | 0.275 | 24.08 | 25.4 | 136.55 | 40.49 | 3.372 |
Case 8 | 24 | 0.014 | 0.035 | 0.0256 | 0.15 | 24.08 | 25.4 | 136.55 | 51.54 | 2.649 |
Case 9 | 26 | 0.025 | 0.035 | 0.0256 | 0.275 | 26.04 | 27.6 | 136.55 | 75.66 | 1.805 |
Case 10 | 26 | 0.025 | 0.92 | 0.0256 | 0.275 | 26.04 | 27.6 | 136.55 | 66.06 | 2.067 |
Case 11 | 26 | 0.025 | 0.035 | 0.036204 | 0.275 | 26.04 | 27.6 | 136.55 | 53.5 | 2.552 |
Case 12 | 26 | 0.025 | 0.035 | 0.0256 | 0.15 | 26.04 | 27.6 | 136.55 | 74.93 | 1.822 |
Case 13 | 26 | 0.014 | 0.035 | 0.0256 | 0.275 | 26.09 | 27.6 | 136.55 | 82.99 | 1.645 |
Case 14 | 26 | 0.014 | 0.92 | 0.0256 | 0.275 | 26.09 | 27.6 | 136.55 | 66.52 | 2.053 |
Case 15 | 26 | 0.014 | 0.035 | 0.036204 | 0.275 | 26.09 | 27.6 | 136.55 | 58.68 | 2.327 |
Case 16 | 26 | 0.014 | 0.035 | 0.0256 | 0.15 | 26.09 | 27.6 | 136.55 | 74.93 | 1.822 |
Case 17 | 28 | 0.025 | 0.035 | 0.0256 | 0.275 | 28.06 | 29.8 | 136.55 | 104.87 | 1.302 |
Case 18 | 28 | 0.025 | 0.92 | 0.0256 | 0.275 | 28.06 | 29.8 | 136.55 | 91.82 | 1.487 |
Case 19 | 28 | 0.025 | 0.035 | 0.036204 | 0.275 | 28.06 | 29.8 | 136.55 | 74.16 | 1.841 |
Case 20 | 28 | 0.025 | 0.035 | 0.0256 | 0.15 | 28.06 | 29.8 | 136.55 | 104.17 | 1.311 |
Case 21 | 28 | 0.014 | 0.035 | 0.0256 | 0.275 | 28.11 | 29.8 | 136.55 | 115.28 | 1.185 |
Case 22 | 28 | 0.014 | 0.92 | 0.0256 | 0.275 | 28.11 | 29.8 | 136.55 | 92.37 | 1.478 |
Case 23 | 28 | 0.014 | 0.035 | 0.036204 | 0.275 | 28.11 | 29.8 | 136.55 | 81.51 | 1.675 |
Case 24 | 28 | 0.014 | 0.035 | 0.0256 | 0.15 | 28.11 | 29.8 | 136.55 | 104.17 | 1.311 |
Symbol | Description | Minimum | Maximum | |
---|---|---|---|---|
Tcws | Temperature of cooling water supply | 24 °C | 26 °C | 28 °C |
Flow rate of cooling water supply | 0.014 kg/s | 0.025 kg/s |
Tcws | ||
---|---|---|
Case 1 | 24 °C | 0.025 kg/s |
Case 2 | 24 °C | 0.014 kg/s |
Case 3 | 26 °C | 0.025 kg/s |
Case 4 | 26 °C | 0.014 kg/s |
Case 5 | 28 °C | 0.025 kg/s |
Case 6 | 28 °C | 0.014 kg/s |
Tcws | Tcwr | Tc | Th | P | |||
---|---|---|---|---|---|---|---|
Case 1 | 24.1 °C | 0.025 kg/s | 24.4 °C | 15.9 °C | 25.3 °C | 130 W/m2 | 38.5 W/m2 |
Case 2 | 23.9 °C | 0.014 kg/s | 24.4 °C | 15.9 °C | 25.3 °C | 123.3 W/m2 | 39.3 W/m2 |
Case 3 | 25.9 °C | 0.025 kg/s | 26.1 °C | 16.1 °C | 27.2 °C | 125.2 W/m2 | 62.6 W/m2 |
Case 4 | 26 °C | 0.014 kg/s | 26.3 °C | 15.8 °C | 27.9 °C | 126.7 W/m2 | 60.2 W/m2 |
Case 5 | 27.9 °C | 0.025 kg/s | 28 °C | 16.1 °C | 29.3 °C | 121.6 W/m2 | 79.3 W/m2 |
Case 6 | 27.9 °C | 0.014 kg/s | 28.4 °C | 16.2 °C | 29.7 °C | 120.9 W/m2 | 78.1 W/m2 |
Simulation COP | Experiment COP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.014 kg/s | 0.025 kg/s | ΔCOP | 0.014 kg/s | 0.025 kg/s | ΔCOP | |||||
Tcws | Tcws | |||||||||
28 °C | 1.185 | 1.302 | +9.9% | 28 °C | 1.533 | 1.548 | +1.0% | |||
26 °C | 1.645 | 1.805 | +9.7% | 26 °C | 2.000 | 2.105 | +5.2% | |||
ΔCOP | +38.9% | +38.6% | ΔCOP | +30.4% | +36.0% | |||||
Simulation COP | Experiment COP | |||||||||
0.014 kg/s | 0.025 kg/s | ΔCOP | 0.014 kg/s | 0.025 kg/s | ΔCOP | |||||
Tcws | Tcws | |||||||||
26 °C | 1.645 | 1.805 | +9.7% | 26 °C | 2.000 | 2.105 | +5.2% | |||
24 °C | 2.385 | 2.629 | +10.2% | 24 °C | 3.129 | 3.377 | +7.9% | |||
ΔCOP | +44.9% | +45.7% | ΔCOP | +56.5% | +60.4% |
Tcws [°C] | [kg/s] | εWB [-] | Ac [m2] | Rh [K/W] | Tcwr [°C] | Tc [°C] | Th [°C] | COPpanel [-] | ΔCOP | |
---|---|---|---|---|---|---|---|---|---|---|
Case 1 | 24 | 0.025 | 0.035 | 0.0256 | 0.275 | 24.05 | 16 | 25.4 | 2.629 | |
Case 1-εWB | 24 | 0.025 | 0.92 | 0.0256 | 0.275 | 24.05 | 16 | 25.4 | 3.025 | +15.1% |
Case 1-Ac | 24 | 0.025 | 0.035 | 0.036204 | 0.275 | 24.05 | 16 | 25.4 | 3.718 | +41.4% |
Case 1-Rh | 24 | 0.025 | 0.035 | 0.0256 | 0.15 | 24.05 | 16 | 25.4 | 2.649 | +0.8% |
Case 2 | 24 | 0.014 | 0.035 | 0.0256 | 0.275 | 24.08 | 16 | 25.4 | 2.385 | |
Case 2-εWB | 24 | 0.014 | 0.92 | 0.0256 | 0.275 | 24.08 | 16 | 25.4 | 2.67 | +11.9% |
Case 2-Ac | 24 | 0.014 | 0.035 | 0.036204 | 0.275 | 24.08 | 16 | 25.4 | 3.372 | +41.4% |
Case 2-Rh | 24 | 0.014 | 0.035 | 0.0256 | 0.15 | 24.08 | 16 | 25.4 | 2.649 | +11.1% |
Case 3 | 26 | 0.025 | 0.035 | 0.0256 | 0.275 | 26.04 | 16 | 27.6 | 1.805 | |
Case 3-εWB | 26 | 0.025 | 0.92 | 0.0256 | 0.275 | 26.04 | 16 | 27.6 | 2.067 | +14.5% |
Case 3-Ac | 26 | 0.025 | 0.035 | 0.036204 | 0.275 | 26.04 | 16 | 27.6 | 2.552 | +41.4% |
Case 3-Rh | 26 | 0.025 | 0.035 | 0.0256 | 0.15 | 26.04 | 16 | 27.6 | 1.822 | +1% |
Case 4 | 26 | 0.014 | 0.035 | 0.0256 | 0.275 | 26.09 | 16 | 27.6 | 1.645 | |
Case 4-εWB | 26 | 0.014 | 0.92 | 0.0256 | 0.275 | 26.09 | 16 | 27.6 | 2.053 | +24.8% |
Case 4-Ac | 26 | 0.014 | 0.035 | 0.036204 | 0.275 | 26.09 | 16 | 27.6 | 2.327 | +41.4% |
Case 4-Rh | 26 | 0.014 | 0.035 | 0.0256 | 0.15 | 26.09 | 16 | 27.6 | 1.822 | +10.8% |
Case 5 | 28 | 0.025 | 0.035 | 0.0256 | 0.275 | 28.06 | 16 | 29.8 | 1.302 | |
Case 5-εWB | 28 | 0.025 | 0.92 | 0.0256 | 0.275 | 28.06 | 16 | 29.8 | 1.487 | +14.2% |
Case 5-Ac | 28 | 0.025 | 0.035 | 0.036204 | 0.275 | 28.06 | 16 | 29.8 | 1.841 | +41.4% |
Case 5-Rh | 28 | 0.025 | 0.035 | 0.0256 | 0.15 | 28.06 | 16 | 29.8 | 1.311 | +0.7% |
Case 6 | 28 | 0.014 | 0.035 | 0.0256 | 0.275 | 28.11 | 16 | 29.8 | 1.185 | |
Case 6-εWB | 28 | 0.014 | 0.92 | 0.0256 | 0.275 | 28.11 | 16 | 29.8 | 1.478 | +24.8% |
Case 6-Ac | 28 | 0.014 | 0.035 | 0.036204 | 0.275 | 28.11 | 16 | 29.8 | 1.675 | +41.4% |
Case 6-Rh | 28 | 0.014 | 0.035 | 0.0256 | 0.15 | 28.11 | 16 | 29.8 | 1.311 | +10.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kang, Y.-K.; Joung, J.; Jeong, J.-W. Cooling Performance Prediction for Hydraulic Thermoelectric Radiant Cooling Panels with Experimental Validation. Sustainability 2022, 14, 16214. https://doi.org/10.3390/su142316214
Kim M, Kang Y-K, Joung J, Jeong J-W. Cooling Performance Prediction for Hydraulic Thermoelectric Radiant Cooling Panels with Experimental Validation. Sustainability. 2022; 14(23):16214. https://doi.org/10.3390/su142316214
Chicago/Turabian StyleKim, Minseong, Yong-Kwon Kang, Jaewon Joung, and Jae-Weon Jeong. 2022. "Cooling Performance Prediction for Hydraulic Thermoelectric Radiant Cooling Panels with Experimental Validation" Sustainability 14, no. 23: 16214. https://doi.org/10.3390/su142316214
APA StyleKim, M., Kang, Y. -K., Joung, J., & Jeong, J. -W. (2022). Cooling Performance Prediction for Hydraulic Thermoelectric Radiant Cooling Panels with Experimental Validation. Sustainability, 14(23), 16214. https://doi.org/10.3390/su142316214