E-Commerce Parcel Distribution in Urban Areas with Sustainable Performance Indicators
Abstract
:1. Introduction
1.1. Characteristics of E-Commerce Parcels
1.2. Two-Echelon Distribution System with Mobile Hub
2. Materials and Methods
- Determination of the distribution system. E-commerce parcels have specific characteristics, in contrast to regular parcels (Table 1) or other commodities, so it is necessary to determine the most effective and efficient distribution system;
- Selection of PMH location. We build a conceptual framework for determining the best location for PMHs to distribute parcels. The method used is a spatial analysis by calculating the center of gravity of the research variables;
- Determination of PMH vehicle. The PMH vehicles used need to be determined in terms of type, capacity, and number in accordance with the volume of packages;
- Routing and scheduling. We use the Clark and Wright algorithm (saving algorithm) to create a cluster and then use the optimization model to determine the optimal route;
- Calculation of sustainable performance indicators. The routing and scheduling results determine the distance of PMHs from the destinations and thus the city freighter travel distance, which is then used to calculate the transportation performance in terms of its economic, social, and environmental aspects. The results of routing and scheduling calculations are then used to calculate economic and environmental indicators. The social indicators were measured through sampling interviews with 30 courier operators.
2.1. Establishment of a 2-Echelon Distribution System Organization for E-Commerce Parcels
- The PMH departs from the distribution center to the PMH location (phase I) according to the predetermined route and schedule;
- The PMH arrives at the location to hand over the parcel (unloading) to the deliverymen according to their respective delivery zones;
- The officer delivers the parcel to the customer’s address within the designated delivery area within a maximum of 4 h;
- The PMH continues the journey to the next location (point b), then proceeds until the last location before returning to the distribution center;
- The PMH departs from the distribution center to the PMH location (phase II) to pick up parcels and hand them over to the deliveryman for the second delivery;
- This process is repeated for n stages as planned.
2.2. Construction of a Conceptual Framework for the Location Choice for PMHs
- PMH locations can be booked every day at a fixed price;
- The delivery zone is served by a maximum of one PMH fleet;
- PMH carries out the process of loading the pick-up package and unloading the package that will be delivered within 30 min;
- PMH’s capacity is large enough to accommodate packages that will be delivered to the designated unit zone;
- Delivery officers pick up and deliver packages in one zone within 4 h per stage.
2.3. Determination of the Type, Quantity, and Capacity of PMHs
2.4. Determination of Routing and Scheduling Using the 2E-SS-CVRP-PMH-SPD Model
- = PMH operational cost from distribution center to parcels and satellites.
- = Operational cost of sending city freighters to deliver or pick up parcels.
- = 1 if the urban vehicle service is selected (dispatched); otherwise 0.
- = 1 if the city freighter assignment is selected (operated); otherwise 0.
- = 1 if the itinerary of demand is used; otherwise 0.
2.5. Calculation of Sustainable Performance Indicators
- PMH operations consist of the total cost of the PMH fleet, the cost of the city freighter fleet in the form of motorbikes, the cost of the PMH driver, and the operating costs of the deliveryman.
- The PMH fleet cost (PFC) consists of:
- a.
- The PMH fleet fee;
- b.
- The PMH fleet operational costs, including fuel, parking, and tolls;
- c.
- The PMH driver cost (PDC) consists of the drivers’ salaries/incentives;
- The operational cost of deliverymen (OCD) consists of:
- a.
- The operational cost of the motorcycles, especially fuel;
- b.
- The deliverymen’s salaries/incentives;
- The total cost of a PMH (TCP):
- = CO2 emissions (kg)
- = fuel usage (terra joule/TJ)
- = emission factor (kg/TJ). This value is equal to the carbon content of the fuel multiplied by 44/12
- = fuel type (e.g., premium, diesel, natural gas, LPG, etc.)
2.6. Case Study Description
2.7. Research Data Sources
3. Result and Discussion
3.1. Data Collection and Processing
3.2. Determination of the Number of Clusters
3.3. Relationship between Variables
3.4. Determination of PMH Locations and Clustering
3.5. Calculation of PMH Total Capacity (Base on Parcel’s CoG)
3.6. Routing and Scheduling
3.7. Distribution Model Validation
- The distance of the outermost point of each cluster is between 4.58 km to 10.25 km, with an average of 6.93 km;
- The parcel distribution CoG in 2020 vs. 2021 has a distance of between 0.27 km and 1.81 km with an average of 0.74 km (column 10) or 9.8% of the average length of the outermost point of each cluster.
3.8. Calculation of Sustainable Transport Indicators
3.9. Results
4. Conclusions and Next Research
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Citation | Del Pia and Filippi, 2006 [53] | Arvidsson and Pazirandeh, 2017 [29] | Marujo et al., 2018 [11] | Moshref-Javadi et al., 2020 [35] | |
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Country | Italy | Sweden | Brazil (Rio de Janero) | USA | |
Vehicle | Hub | Truck | Bus, truck, barge, tram | Conventional truck | Conventional truck |
Satellite | Small vehicle | LEV/cargo cycles | Cargo tricycles | Unmanned Aerial Vehicle (UAV)/drone | |
Commodity | Garbage | General | General | Social subsidies | |
Location Choice | n.a. | n.a. | n.a. | n.a. | |
MAH | Number | n.a. | n.a. | n.a. | n.a. |
Capacity | n.a. | n.a. | n.a. | n.a. | |
Modeling | Type | Capacitated Arc Routing Problem with Mobile Depots (CARP-MD) | n.a. | Monte Carlo simulation | Simultaneous Traveling Repairman Problem with Drones (STRPD) |
Fix | MILP | n.a. | n.a. | MILP | |
Heuristic | Rendezvous and VND-CARP | n.a. | n.a. | Adaptive Large Neighborhood Search (ALNS) with 8 Algorithms | |
Performance | Economy | n.a. | Cost of standing, running, and overhead | The level of service and the operational cost of the delivery process | Cost objective |
Social | n.a. | n.a. | n.a. | Customer waiting time objective | |
Environment | n.a. | CO2 (Cefic and ECTA, 2011) | GHG, CO, NOx, NMHC, particulate matter (PM), and CO2 | n.a. |
Citation | Ding et al., 2019 [18] | Verlinde et al., 2014 [12] | Savuran and Karakaya, 2016 [32] | Bashiri et al., 2018 [36] | |
---|---|---|---|---|---|
5 | 6 | 7 | 8 | ||
Country | China | Belgium | Germany (Berlin) | Australia | |
Vehicle | Hub | Battery charger robot | Trailer | Conventional truck | Conventional truck |
Satellite | Robot | Electric cyclo cargo | Unmanned air vehicle/drone | n.a. | |
Commodity | Battery | Parcel | General | Services (postal, hospital, etc.) | |
Location Choice | n.a. | Center of Brussels | n.a. | Dynamic | |
MAH | Number | Simulation | 1 | n.a. | P-mobile |
Capacity | n.a. | Trailer (20’) | n.a. | n.a. | |
Modeling | Type | Generalized Multiple Depots TSP (GMDTSP), | (Capacitated, simultaneous pickup & delivery) VRP | Capacitated Mobile Depot VRP (C-MoDVRP) | Dynamic facility location problem |
Fix | n.a. | n.a. | n.a. | n.a. | |
Heuristic | Multiple Depots Random Select (MDRS), dec-MDRS, and MDRS-IM | n.a. | (GA-C-MoDVRP) compared with NN and HC | Genetic Algorithm | |
Performance | Economy | Minimize waiting time | Transport impact/Lead time (95–>87%) | Performance of GA, 2-opt local search method | n.a. |
Social | n.a. | Survey of 12 person | n.a. | n.a. | |
Environment | n.a. | STREAM emission factors (C02, S02, Nox, PM) | n.a. | n.a. |
Citation | Jeong and Lee, 2019 [31] | Anagnostopoulos et al., 2015 [30] | Leyerer et al., 2019 [34] | Faugère et al., 2020 [10] | Prastyantoro et al., 2022 | |
---|---|---|---|---|---|---|
9 | 10 | 11 | 12 | 13 | ||
Country | USA | Rusia | Germany | USA | Indonesia | |
Vehicle | Hub | Conventional truck | Big truck | Truck, van, etc. | Trailer | L300/minibus/CDE |
Satellite | Drone | Small truck | Van, cargo tricycle, etc. | Cargo tricycle | Motorcycle (electric/conventional), scooter | |
Commodity | General | Cesspit | Parcel | Parcel | E-commerce parcel | |
Location Choice | n.a. | n.a. | Decision support system (DSS) | Center of gravity (zone) | CoG from 3 variables and 2 constraints | |
MAH | Number | 1 or 2 | 1 small truck; big truck | n.a. | n.a. | Parcel volume/PMH capacity |
Capacity | n.a. | Small; Big | n.a. | simulation | 720 kg/1000 kg/1100 kg | |
Modeling | Type | Vehicle-carrier routing problem (VCRP) | Dynamic VRP | Dynamic VRP | (Capacitated, simultaneous pickup and delivery) VRP | (Capacitated PMH, SS, and SPD) VRP |
Fix | Optimation (time and cost) | n.a. | MILP | MILP (cost minimization) | MILP (cost minimization) | |
Heuristic | n.a. | n.a. | n.a. | n.a. | Clark and Wright (saving algorithm) | |
Performance | Economy | Cost minimization | Cost minimization | Cost minimization | cost per parcel | Total cost operational |
Social | Minimize waiting time | n.a. | n.a. | Minimize waiting time | Operator staff agreeableness | |
Environment | n.a. | n.a. | CO2 | CO2 | CO2 (IPCC based) |
Appendix B
Alternative#0 | Capacity | Cluster #1 | Cluster #2 | Cluster #3 | Cluster #4 | Cluster #5 | Cluster #6 | Route | Load Factor | |
---|---|---|---|---|---|---|---|---|---|---|
PMH#1 (1.5 L) | 1.1 | ton | 0.32 | 0.32 | 0.44 | 0-1-3-5-0 | 97% | |||
PMH#3 (1.5 L) | 1.1 | ton | 0.30 | 0.32 | 0.38 | 0-2-4-6-0 | 91% |
Alternative#1 | Capacity | Cluster #1 | Cluster #2 | Cluster #3 | Cluster #4 | Cluster #5 | Cluster #6 | Route | Load Factor | |
---|---|---|---|---|---|---|---|---|---|---|
PMH#1 (GB) | 0.72 | Ton | 0.32 | 0.38 | 0-6-1-0 | 97% | ||||
PMH#2 (GB) | 0.72 | Ton | 0.30 | 0.32 | 0-4-2-0 | 86% | ||||
PMH#3 (1.3 L) | 1 | Ton | 0.32 | 0.44 | 0-3-5-0 | 76% |
Alternative#2 | Capacity | Cluster #1 | Cluster #2 | Cluster #3 | Cluster #4 | Cluster #5 | Cluster #6 | Route | Load Factor | |
---|---|---|---|---|---|---|---|---|---|---|
PMH#1 (1.5 L) | 1.1 | ton | 0.32 | 0.32 | 0.44 | 0-1-5-3-0 | 97% | |||
PMH#2 (1.5 L) | 1.1 | ton | 0.30 | 0.32 | 0.38 | 0-6-2-4-0 | 91% |
Alternative#3 | Capacity | Cluster #1 | Cluster #2 | Cluster #3 | Cluster #4 | Cluster #5 | Cluster #6 | Route | Load Factor | |
---|---|---|---|---|---|---|---|---|---|---|
PMH#1 (GB) | 0.72 | ton | 0.30 | 0.38 | 0-2-6-0 | 95% | ||||
PMH#2 (GB) | 0.72 | ton | 0.32 | 0.32 | 0-3-4-0 | 88% | ||||
PMH#3 (1.3 L) | 1 | ton | 0.32 | 0.44 | 0-5-1-0 | 76% |
Alternative#4 | Capacity | Cluster #1 | Cluster #2 | Cluster #3 | Cluster #4 | Cluster #5 | Cluster #6 | Cluster #7 | Cluster #8 | Cluster #9 | Route | Load Factor | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PMH#1 (GB) | 0.72 | ton | 0.25 | 0.16 | 0-8-1-0 | 57% | |||||||
PMH#1 (GB) | 0.72 | 0.18 | 0.29 | 0-7-2-0 | 65% | ||||||||
PMH#1 (GB) | 0.72 | 0.30 | 0.21 | 0-6-9-0 | 71% | ||||||||
PMH#2 (GB) | 0.72 | ton | 0.25 | 0.23 | 0-4-5-0 | 67% | |||||||
PMH#3 (1.3 L) | 0.72 | ton | 0.21 | 0-3-0 | 29% |
Alternative#5 | Capacity | Cluster #1 | Cluster #2 | Cluster #3 | Cluster #4 | Cluster #5 | Cluster #6 | Cluster #7 | Cluster #8 | Cluster #9 | Route | Load Factor | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PMH#1 (GB) | 0.72 | ton | 0.25 | 0.18 | 0.16 | 0-8-1-2-0 | 82% | ||||||
PMH#2 (GB) | 0.72 | ton | 0.21 | 0.29 | 0.21 | 0-9-7-3-0 | 97% | ||||||
PMH#3 (1.3 L) | 1 | ton | 0.25 | 0.23 | 0.30 | 0-4-5-6-0 | 78% |
Alternative#6 | Capacity | Cluster #1 | Cluster #2 | Cluster #3 | Cluster #4 | Cluster #5 | Cluster #6 | Cluster #7 | Cluster #8 | Cluster #9 | Route | Load Factor | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PMH#1 (GB) | 0.72 | ton | 0.18 | 0.29 | 0.21 | 0-9-7-2-0 | 94% | ||||||
PMH#2 (GB) | 0.72 | ton | 0.25 | 0.30 | 0.16 | 0-6-8-4-0 | 99% | ||||||
PMH#3 (GB) | 0.72 | ton | 0.25 | 0.21 | 0.23 | 0-1-3-5-0 | 95% |
Appendix C
Scenario and Alternative | Economy (IDR/Item) | Environment/CO2 (kg/Year) | Scenario and Alternative | Economy (IDR/Item) | Environment/CO2 (kg/Year) | Scenario and Alternative | Economy (IDR/Item | Environment/CO2 (kg/Year) *** | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Delivery * | SPD | Delivery | SPD ** | Delivery | SPD | ||||||
(1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) |
Scenario B Alt-2 | 3188 | 2512 | 223.18 | Scenario B Alt-1 | 3216 | 2392 | 222.69 | Scenario D | 3613 | 2779 | 19.31 |
Scenario B Alt-3 | 3201 | 2462 | 202.51 | Scenario B Alt-3 | 3201 | 2462 | 202.51 | Scenario C | 4604 | 3542 | 19.31 |
Scenario B Alt-1 | 3216 | 2392 | 222.69 | Scenario B Alt-6 | 3218 | 2475 | 227.88 | Scenario B Alt-3 | 3201 | 2462 | 202.51 |
Scenario B Alt-6 | 3218 | 2475 | 227.88 | Scenario B Alt-5 | 3221 | 2478 | 229.04 | Scenario B Alt-1 | 3216 | 2392 | 222.69 |
Scenario B Alt-5 | 3221 | 2478 | 229.04 | Scenario B Alt-2 | 3188 | 2512 | 223.18 | Scenario B Alt-2 | 3188 | 2512 | 223.18 |
Scenario B Alt-4 | 3295 | 2602 | 235.42 | Scenario B Alt-4 | 3295 | 2602 | 235.42 | Scenario B Alt-6 | 3218 | 2475 | 227.88 |
Scenario A | 3392 | 3084 | 413.95 | Scenario D | 3613 | 2779 | 19.31 | Scenario B Alt-5 | 3221 | 2478 | 229.04 |
Scenario D | 3613 | 2779 | 19.31 | Scenario A | 3392 | 3084 | 413.95 | Scenario B Alt-4 | 3295 | 2602 | 235.42 |
Scenario C | 4604 | 3542 | 19.31 | Scenario C | 4604 | 3542 | 19.31 | Scenario A | 3392 | 3084 | 413.95 |
References
- Setyowati, D. Wajah Baru E-Commerce RI di Tengah Serbuan Raksasa Teknologi Dunia—E-Commerce Katadata.co.id. Katadata.co.id. 2020. Available online: https://katadata.co.id/desysetyowati/digital/5f9684c9c202f/wajah-baru-e-commerce-ri-di-tengah-serbuan-raksasa-teknologi-dunia (accessed on 21 January 2021).
- Pusparisa, Y.; Ridhoi, M.A. Mayoritas Anak Muda Berbelanja Di E-Commerce Untuk Hemat Waktu by Katadata. 2020. Databoks.Katadata.Co.Id. Available online: https://databoks.katadata.co.id/datapublish/2020/11/04/mayoritas-anak-muda-berbelanja-di-e-commerce-untuk-hemat-waktu (accessed on 1 October 2020).
- Morganti, E.; Dablanc, L.; Fortin, F. Final deliveries for online shopping: The deployment of pickup point networks in urban and suburban areas. Res. Transp. Bus. Manag. 2014, 11, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Hidayatno, A.; Destyanto, A.R.; Fadhil, M. Model conceptualization on e-commerce growth impact to emissions generated from urban logistics transportation: A case study of Jakarta. Energy Procedia 2019, 156, 144–148. [Google Scholar] [CrossRef]
- Han, C. Konsumen Indonesia Menginginkan Pengalaman Pengiriman e-Commerce Yang Lebih Baik, Sebuah Survei Oleh Parcel Perform Membuktikan. iPrice Gr. 2019. Available online: https://iprice.co.id/trend/insights/konsumen-indonesia-menginginkan-pengalaman-pengiriman-e-commerce-yang-lebih-baik-sebuah-survei-oleh-parcel-perform-membuktikan. (accessed on 19 January 2020).
- Kayikci, Y. E-Commerce in Logistics and Supply Chain Management. In Advanced Methodologies and Technologies in Business Operations and Management; IGI Global: Hershey, PA, USA, 2019; pp. 1015–1026. [Google Scholar] [CrossRef]
- Gevaers, R.; Van De Voorde, E.; Vanelslander, T. Characteristics and typology of lastmile logistics from an innovation perspective in an Urban context. In City Distribution and Urban Freight Transport: Multiple Perspectives; Edward Elgar Publishing: Cheltenham, UK, 2011; pp. 56–71. [Google Scholar] [CrossRef]
- Goodman, R.W. Whatever You Call It, Just Don’ t Think of Last-Mile Logistics, Last. Glob. Logist. Supply Chain Strateg. 2005, 9, 1–6. [Google Scholar]
- Katadata Insight Center (KIC). Jawa Masih Mendominasi Penetrasi e-Commerce Indonesia. Katadata.co.id. 2018. Available online: https://databoks.katadata.co.id/datapublish/2018/09/18/jawa-masih-mendominasi-penetrasi-e-commerce-indonesia (accessed on 5 September 2019).
- Faugère, L.; White, C.; Montreuil, B. Mobile access hub deployment for urban parcel logistics. Sustainability 2020, 12, 7213. [Google Scholar] [CrossRef]
- Marujo, L.G.; Goes, G.V.; D’Agosto, M.A.; Ferreira, A.F.; Winkenbach, M.; Bandeira, R.A.M. Assessing the sustainability of mobile depots: The case of urban freight distribution in Rio de Janeiro. Transp. Res. Part D Transp. Environ. 2018, 62, 256–267. [Google Scholar] [CrossRef]
- Verlinde, S.; Macharis, C.; Milan, L.; Kin, B. Does a Mobile Depot Make Urban Deliveries Faster, More Sustainable and More Economically Viable: Results of a Pilot Test in Brussels. Transp. Res. Procedia 2014, 4, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kumar, R.; Panchal, R.; Tiwari, M.K. Impact of COVID-19 on logistics systems and disruptions in food supply chain. Int. J. Prod. Res. 2021, 59, 1993–2008. [Google Scholar] [CrossRef]
- Dinda, W.I.B.S.; Umum, K.; Logistik, A.; Masita, Z.I.; Jasa, K.T. Industri Logistik Bangkit 2021. Available online: https://investor.id/business/228874/industri-logistik-bangkit-2021. (accessed on 15 December 2021).
- Handoko, B. Pertumbuhan e-Commerce Indonesia Buka Peluang Sektor Logistik. 2021. Available online: https://www.antaranews.com/berita/2255218/pertumbuhan-e-commerce-indonesia-buka-peluang-sektor-logistik (accessed on 21 December 2021).
- Eka, R. Petak B2C dan C2C Semakin Berbaur, Persaingan Mengarah Pada Pengalaman Terbaik Pengguna. 2018, pp. 1–9. Available online: https://dailysocial.id/post/e-ecommerce-di-indonesia-2018 (accessed on 1 May 2020).
- Cherrett, T.; Dickinson, J.; McLeod, F.; Sit, J.; Bailey, G.; Whittle, G. Logistics impacts of student online shopping—Evaluating delivery consolidation to halls of residence. Transp. Res. Part C Emerg. Technol. 2017, 78, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Schöder, D.; Ding, F.; Campos, J.K. The Impact of E-Commerce Development on Urban Logistics Sustainability. Open J. Soc. Sci. 2016, 4, 43001. [Google Scholar] [CrossRef]
- Sugiharto, J. Perubahan Insentif GoSend, CELIOS: Era Bakar Uang Startup Berakhir. 2021. Available online: https://bisnis.tempo.co/read/1471922/perubahan-insentif-gosend-celios-era-bakar-uang-startup-berakhir. (accessed on 19 December 2021).
- Rodrigue, J.-P. 7.4–Logistics and Freight Distribution. In The Geography of Transport Systems, 5th ed.; Routledge: London, UK, 2020. [Google Scholar]
- Hurtado, P.A.; Dorneles, C.; Frazzon, E. Big Data application for E-commerce’s Logistics: A research assessment and conceptual model. IFAC-PapersOnLine 2019, 52, 838–843. [Google Scholar] [CrossRef]
- Soysal, M.; Bloemhof-Ruwaard, J.M.; Bektaş, T. The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations. Int. J. Prod. Econ. 2015, 164, 366–378. [Google Scholar] [CrossRef]
- Yu, M.; Lee, C.Y.; Wang, J.J. The regional port competition with different terminal competition intensity. Flex. Serv. Manuf. J. 2017, 29, 659–688. [Google Scholar] [CrossRef]
- Belgin, O.; Karaoglan, I.; Altiparmak, F. Two-echelon vehicle routing problem with simultaneous pickup and delivery: Mathematical model and heuristic approach. Comput. Ind. Eng. 2018, 115, 1–16. [Google Scholar] [CrossRef]
- Crainic, T.G.; Ricciardi, N.; Storchi, G. Models for evaluating and planning city logistics systems. Transp. Sci. 2009, 43, 432–454. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, Y.; Jian, X.; Lu, Y. The two-echelon distribution system considering the real-time transshipment capacity varying. Transp. Res. Part B Methodol. 2018, 110, 239–260. [Google Scholar] [CrossRef]
- Ducret, R. Parcel deliveries and urban logistics: Changes and challenges in the courier express and parcel sector in Europe—The French case. Res. Transp. Bus. Manag. 2014, 11, 15–22. [Google Scholar] [CrossRef]
- Vakulenko, Y.; Shams, P.; Hellström, D.; Hjort, K. Service innovation in e-commerce last mile delivery: Mapping the e- customer journey. J. Bus. Res. 2019, 101, 461–468. [Google Scholar] [CrossRef]
- Arvidsson, N.; Pazirandeh, A. An ex ante evaluation of mobile depots in cities: A sustainability perspective. Int. J. Sustain. Transp. 2017, 11, 623–632. [Google Scholar] [CrossRef]
- Anagnostopoulos, T.; Zaslavsky, A. High Capacity Trucks Serving as Mobile Depots for Waste Collection in IoT-Enabled Smart Cities. In Internet of Things, Smart Spaces, and Next Generation Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2015; Volume 3, pp. 80–94. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, S. Optimization of Vehicle-Carrier Routing: Mathematical Model and Comparison with Related Routing Models. Procedia Manuf. 2020, 39, 307–313. [Google Scholar] [CrossRef]
- Savuran, H.; Karakaya, M. Efficient route planning for an unmanned air vehicle deployed on a moving carrier. Soft Comput. 2016, 20, 2905–2920. [Google Scholar] [CrossRef]
- Mendoza-Del Villar, L.; Oliva-Lopez, E.; Luis-Pineda, O.; Benešová, A.; Tupa, J.; Garza-Reyes, J.A. Fostering economic growth, social inclusion & sustainability in industry 4.0: A systemic approach. Procedia Manuf. 2020, 51, 1755–1762. [Google Scholar] [CrossRef]
- Leyerer, M.; Oliver, M.; Maximilian, S. Decision Support for Sustainable and Resilience-Oriented Urban Parcel Delivery; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 0123456789. [Google Scholar]
- Moshref-javadi, M.; Hemmati, A.; Winkenbach, M. A truck and drones model for last-mile delivery: A mathematical model and heuristic approach. Appl. Math. Model. 2020, 80, 290–318. [Google Scholar] [CrossRef]
- Bashiri, M.; Rezanezhad, M.; Tavakkoli-Moghaddam, R.; Hasanzadeh, H. Mathematical modeling for a p-mobile hub location problem in a dynamic environment by a genetic algorithm. Appl. Math. Model. 2018, 54, 151–169. [Google Scholar] [CrossRef]
- Mengshoel, A.M. Mixed methods research—So far easier said than done? Man. Ther. 2012, 17, 373–375. [Google Scholar] [CrossRef]
- Boloori, A.; Zanjirani, R. Computers & Industrial Engineering Facility location dynamics: An overview of classifications and applications. Comput. Ind. Eng. 2012, 62, 408–420. [Google Scholar] [CrossRef]
- Hesse, M. Regulation of Regional Distribution Complexes. Tijdschr. Voor Econ. Soc. Geogr. 2004, 95, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.; Wilhelm, W.E. Strategic, tactical and operational decisions in multi-national logistics networks: A review and discussion of modelling issues. Int. J. Prod. Res. 2000, 38, 1501–1523. [Google Scholar] [CrossRef]
- Yuan, C. Research on K-Value Selection Method of K-Means Clustering Algorithm. J 2019, 2, 226–235. [Google Scholar] [CrossRef]
- Faccio, M.; Gamberi, M. New City Logistics Paradigm: From the “Last Mile” to the “Last 50 Miles” Sustainable Distribution. Sustainability 2015, 7, 14873–14894. [Google Scholar] [CrossRef] [Green Version]
- Albergaria, R.; Bandeira, D.M.; Vasconcelos, G.; Neves, D.; Gonçalves, S.; De Almeida, M.; Agosto, D. Electric vehicles in the last mile of urban freight transportation: A sustainability assessment of postal deliveries in Rio de Janeiro-Brazil. Transp. Res. Part D 2019, 67, 491–502. [Google Scholar] [CrossRef]
- Brotodewo, N. Penilaian Indikator Transportasi Berkelanjutan Pada Kawasan Metropolitan di Indonesia. J. Reg. City Plan. 2010, 21, 165–182. [Google Scholar]
- Hays, T.; Keskinocak, P.; de L’opez, V.M. Strategies and challenges of internet grocery retailing logistics. In Applications of Supply Chain Management and e-Commerce Research; Springer: Boston, MA, USA, 2005; pp. 217–252. [Google Scholar]
- Morganti, E.; Seidel, S.; Blanquart, C.; Dablanc, L.; Lenz, B. The Impact of E-commerce on Final Deliveries: Alternative Parcel Delivery Services in France and Germany. Transp. Res. Procedia 2014, 4, 178–190. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Consumers’ Attitudes Towards Cross-Border Trade and Consumer Protection; European Union: Luxembourg, 2013; Available online: http://ec.europa.eu/public_opinion/flash/fl_358_en.pdf (accessed on 21 December 2021).
- Bitkom, e.V. Shopping Digital—Wie die Digitalisierung den Handel Tiefgreifend Verändert. Bundesverband Informationswirtschaft, Telekommunikation Und Neue Medien e.V. 2017, pp. 1–42. Available online: https://www.bitkom.org/sites/default/files/file/import/171124-Studienbericht-Handel-Web.pdf. (accessed on 21 December 2021).
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Joewono, T.B.; Rizki, M.; Belgiawan, P.F.; Irawan, M.Z. Why do shoppers keep making online shopping trips? Learning from evidence in Bandung, Indonesia. Asian Transp. Stud. 2020, 6, 100016. [Google Scholar] [CrossRef]
- Bachdar, S. Lima Kota Indonesia dengan Jumlah Pembelanja Online Terbesar. 2018. Available online: https://marketeers.com/lima-kota-indonesia-dengan-jumlah-pembelanja-online-terbesar/ (accessed on 1 May 2020).
- Pratiwi, G. Pandemi Masih Bergulir, Kurir Instan dalam Kota Digenjot. Pikiran Rakyat. 2021. Available online: https://www.pikiran-rakyat.com/ekonomi/pr-012096828/pandemi-masih-bergulir-kurir-instan-dalam-kota-digenjot (accessed on 5 January 2022).
- Del Pia, A.; Filippi, C. A variable neighborhood descent algorithm for a real waste collection problem with mobile depots. Int. Trans. Oper. Res. 2006, 13, 125–141. [Google Scholar]
Characteristics | Regular Parcels | E-Commerce Parcels |
---|---|---|
Business Growth | 10–12% in 2021 [14] | 33% with a market value of IDR 337 trillion in 2021 [15] |
Subject | Parcel sender | Customer/e-buyer/parcel receiver |
Price and weight | variation ≤ 30 kg | Item price between IDR 100 k–500 k with weight around 2.2 kg/small parcel [16] |
Delivery Destination | Nationwide | 75.77% in urban Java [9] |
Delivery Destination Concentration | Scattered | There are e-buyer areas such as student dormitories, settlements, and offices [17] |
Delivery Time | Standard, express, premium | Express, premium/demanding [18] |
Service Availability | Workdays, office hours | Non-stop or 24/7 [18] |
Price | Market Mechanism | Market Mechanism + startup intervention [19] |
Notation | Remark |
---|---|
Set of external zones (distribution center). | |
Set of products (express service). | |
Set of customers. | |
Set of demand: volume vol(d) of product p(d) available, starting in period t(d) at the external zone e(d), to be delivered to a customer c(d) during the time interval (a(d), b(d)); δ(d): service time at the customer. | |
Set of PMH vehicles. | |
Capacity of urban truck type τ. | |
Number of urban trucks of type τ. | |
Set of urban vehicle types that may be used to transport product p. | |
Set of city freighter types. | |
The capacity of city freighter type ν. | |
Number of city freighters of type ν. | |
Set of city freighter types that may be used to transport product p. | |
Set of mobile hubs/PMH locations. | |
The capacity of satellites in terms of the number of city freighters it may accommodate simultaneously. | |
Time required to unload an urban vehicle of type τ at any satellite. | |
Travel time between two points i,j in the city, where each point may be a customer, an external zone, a satellite, or a depot; travel is initiated in period t, and the duration is adjusted for the corresponding congestion conditions. |
Stakeholder | Role | Interest |
---|---|---|
CEP operators |
|
|
Shippers |
| Better services (fast) with flat cost (social) |
Buyers | Receive the parcel | Better services (fast) with a flat cost even if practical operations are changed |
Citizens | People who live, work, and spend their free time in the city | A safe and healthy environment |
Local authorities | Municipality | Increase the livability of the city in many ways (pollution, safety, and congestion) |
Number of Clusters | Silhouette Coefficient Value | Rank |
---|---|---|
1 | - | - |
2 | 0.45582675319963720 | 1 |
3 | 0.36520875766877960 | 9 |
4 | 0.38307243667650710 | 8 |
5 | 0.39287226705658157 | 7 |
6 | 0.41702320039842740 | 2 |
7 | 0.41599444461142326 | 4 |
8 | 0.41040660200445080 | 5 |
9 | 0.41600486734332126 | 3 |
10 | 0.40774175075599070 | 6 |
Cluster | Parcel/X1 | E-Buyer/X2 | Quota/X3 | Mean/X4 = (X2 + X3)/2 | Distance (km) | Outermost Point Distance (km) | Distance/Outermost Point Distance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lat | Long | Lat | Long | Lat | Long | Lat | Long | X1–X2 | X1–X3 | X1–X4 | X1–X2 | X1–X3 | X1–X4 | ||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | |
1 | −6.88149 | 107.59554 | −6.88848 | 107.59423 | −6.88261 | 107.59521 | −6.88555 | 107.59472 | 0.79 | 0.13 | 0.46 | 8.65 | 9.1% | 1.5% | 5.3% |
2 | −6.90741 | 107.64614 | −6.90822 | 107.63973 | −6.90880 | 107.64620 | −6.90851 | 107.64296 | 0.71 | 0.15 | 0.37 | 7.94 | 9.0% | 1.9% | 4.7% |
3 | −6.93206 | 107.68941 | −6.92728 | 107.68128 | −6.92395 | 107.69843 | −6.92562 | 107.68986 | 1.04 | 1.34 | 0.72 | 9.72 | 10.7% | 13.8% | 7.4% |
4 | −6.94468 | 107.64150 | −6.94184 | 107.63453 | −6.94424 | 107.64146 | −6.94304 | 107.63799 | 0.83 | 0.05 | 0.43 | 6.97 | 11.9% | 0.7% | 6.1% |
5 | −6.91693 | 107.61152 | −6.91386 | 107.61193 | −6.92190 | 107.60985 | −6.91788 | 107.61089 | 0.34 | 0.58 | 0.13 | 6.71 | 5.1% | 8.7% | 1.9% |
6 | −6.93554 | 107.58367 | −6.93621 | 107.59111 | −6.93451 | 107.58173 | −6.93536 | 107.58642 | 0.82 | 0.24 | 0.30 | 5.23 | 15.8% | 4.6% | 5.8% |
Mean | 0.76 | 0.42 | 0.40 | 7.54 | 10.3% | 5.2% | 5.2% | ||||||||
SD | 0.18 | 0.40 | 0.16 | 1.58 |
Cluster | Parcel/X1 | E-Buyer/X2 | Quota/X3 | Mean/X4 = (X2 + X3)/2 | Distance (km) | Outermost Point Distance | Distance/Outermost Point Distance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lat | Long | Lat | Long | Lat | Long | Lat | Long | X1–X2 | X1–X3 | X1–X4 | (km) | X1–X2 | X1–X3 | X1–X4 | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | |
1 | −6.87343 | 107.59547 | −6.87654 | 107.58981 | −6.87869 | 107.59069 | −6.87761 | 107.59025 | 0.71 | 0.79 | 0.74 | 7.15 | 10.0% | 11.0% | 10.4% |
2 | −6.89967 | 107.62041 | −6.89934 | 107.61870 | −6.89304 | 107.62218 | −6.89619 | 107.62044 | 0.19 | 0.76 | 0.39 | 6.98 | 2.8% | 10.9% | 5.5% |
3 | −6.91220 | 107.65145 | −6.91085 | 107.64272 | −6.90968 | 107.65328 | −6.91026 | 107.64800 | 0.98 | 0.35 | 0.44 | 10.25 | 9.5% | 3.4% | 4.3% |
4 | −6.92201 | 107.69871 | −6.92537 | 107.69277 | −6.92119 | 107.70331 | −6.92328 | 107.69804 | 0.75 | 0.52 | 0.16 | 5.52 | 13.7% | 9.3% | 2.9% |
5 | −6.94853 | 107.66494 | −6.93935 | 107.66654 | −6.94993 | 107.66521 | −6.94464 | 107.66587 | 1.04 | 0.16 | 0.44 | 7.68 | 13.5% | 2.1% | 5.8% |
6 | −6.94124 | 107.62593 | −6.93467 | 107.62568 | −6.93929 | 107.62906 | −6.93698 | 107.62737 | 0.73 | 0.41 | 0.50 | 7.41 | 9.9% | 5.5% | 6.7% |
7 | −6.91944 | 107.60930 | −6.91564 | 107.61008 | −6.92061 | 107.60601 | −6.91812 | 107.60805 | 0.43 | 0.39 | 0.20 | 5.83 | 7.4% | 6.6% | 3.5% |
8 | −6.90318 | 107.58376 | −6.90624 | 107.58313 | −6.90289 | 107.57408 | −6.90456 | 107.57860 | 0.35 | 1.07 | 0.59 | 7.00 | 5.0% | 15.3% | 8.4% |
9 | −6.93994 | 107.58116 | −6.94036 | 107.58974 | −6.94042 | 107.59059 | −6.94039 | 107.59017 | 0.95 | 1.04 | 1.00 | 4.58 | 20.7% | 22.8% | 21.8% |
Mean | 0.68 | 0.61 | 0.49 | 6.93 | 10.3% | 9.7% | 7.7% | ||||||||
SD | 0.28 | 0.30 | 0.24 | 1.61 |
Cluster | Address | Candidate Locations for PMHs | Selected Location | |||||
---|---|---|---|---|---|---|---|---|
Candidate#1 | Candidate#2 | Candidate#3 | ||||||
Lang/Lot | Flow (pce/Hour) | Lang/Lot | Flow (pce/Hour) | Lang/Lot | Flow (pce/Hour) | |||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
1 | Tendean St. no. 38 Hegarmanah | −6.873126 107.598116 | 71 | −6.871941 107.600321 | 305 | −6.874613 107.599835 | 213 | Tendean St. no. 39 Hegarmahah (#1) |
2 | Melania St. no. 15 Cihaur Geulis | −6.900489 107.626696 | 925 | −6.899461 107.625825 | 3.314 | −6.8991169 107.6267182 | 3314 | Suropati St. no. 104 (#2) |
3 | Kalijati Indah Baru St. 14-8 Antapani Kulon | −6.908864 107.654203 | 252 | −6.908531 107.65458 | 252 | −6.908398 107.65396 | 252 | Kalijati Indah Baru St. no. 14 (#3) |
4 | Pasanggrahan III St. no. 10 Cipadung Kulon | −6.923303 107.705483 | 203 | −6.922679 107.704337 | 203 | −6.922415 107.704537 | 203 | Pasanggrahan Raya St. (#2) |
5 | Wastukencana St. no. 3 Babakan Ciamis | −6.907315 107.58482 | 2950 | −6.907102 107.585931 | 318 | −6.905962 107.579648 | 3022 | Nurtanio Utara St. (#2) |
6 | Pungkur St. no. 231 Balonggede Regol | −6.928016 107.609071 | 1730 | −6.926118 107.608782 | 517 | −6.925912 107.608782 | 517 | Pasundan St. no. 66 (#2) |
7 | Amd 9 St. no. 141 Babakan Tarogong Bojongloa Kaler | −6.941117 107.583671 | 825 | −6.940188 107.581647 | 3.822 | −6.938662 107.5828548 | 825 | Babakan Ciparay St. no. 223 (#3) |
8 | Karapitan St. no. 57A | −6.942467 107.631486 | 46 | −6.941988 107.631775 | 46 | −6.941727 107.631831 | 46 | Rajamantri Kulon St. no. 17 (#1) |
9 | Babakan Jati St. no. 128 Gumuruh | −6.9461882 107.6663679 | 235 | −6.9477699 107.6659526 | 462 | −6.9469625 107.6651699 | 154 | Mars Raya St. no. 1 (#3) |
Alternative | Number of Clusters | Method | Number of PMH Fleets | Average Load Factor |
---|---|---|---|---|
0 | Existing | - | Two fleets (2 G 1.5 Ls) | 94% |
1 | 6 | Saving Algorithm | Three fleets (2 GBs, 1 G 1.3 L) | 86% |
2 | 6 | Saving Algorithm | Two fleets (2 G 1.5 Ls) | 94% |
3 | 6 | Optimization | Three fleets (2 GBs, 1 G 1.3 L) | 94% |
4 | 9 | Saving Algorithm | Five fleets (5 GBs) | 86% |
5 | 9 | Saving Algorithm | Three fleets (2 GBs, 1 G 1.3 L) | 58% |
6 | 9 | Optimization | Three fleets (3 GBs) | 86% |
Scenarios and Alternatives | Economy (IDR/Item) | Environment/CO2 (kg/Year) | |
---|---|---|---|
Delivery | SPD | ||
(1) | (2) | (3) | (4) |
Scenario A | 3392 | 3084 | 413.95 |
Scenario B Alt-1 | 3216 | 2392 | 222.69 |
Scenario B Alt-2 | 3188 | 2512 | 223.18 |
Scenario B Alt-3 | 3201 | 2462 | 202.51 |
Scenario B Alt-4 | 3295 | 2602 | 235.42 |
Scenario B Alt-5 | 3221 | 2478 | 229.04 |
Scenario B Alt-6 | 3218 | 2475 | 227.88 |
Scenario C | 4604 | 3542 | 19.31 |
Scenario D | 3613 | 2779 | 19.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prastyantoro, R.; Putro, H.P.H.; Yudoko, G.; Dirgahayani, P. E-Commerce Parcel Distribution in Urban Areas with Sustainable Performance Indicators. Sustainability 2022, 14, 16229. https://doi.org/10.3390/su142316229
Prastyantoro R, Putro HPH, Yudoko G, Dirgahayani P. E-Commerce Parcel Distribution in Urban Areas with Sustainable Performance Indicators. Sustainability. 2022; 14(23):16229. https://doi.org/10.3390/su142316229
Chicago/Turabian StylePrastyantoro, Riharsono, Heru Purboyo Hidayat Putro, Gatot Yudoko, and Puspita Dirgahayani. 2022. "E-Commerce Parcel Distribution in Urban Areas with Sustainable Performance Indicators" Sustainability 14, no. 23: 16229. https://doi.org/10.3390/su142316229
APA StylePrastyantoro, R., Putro, H. P. H., Yudoko, G., & Dirgahayani, P. (2022). E-Commerce Parcel Distribution in Urban Areas with Sustainable Performance Indicators. Sustainability, 14(23), 16229. https://doi.org/10.3390/su142316229