Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Methods
3. Results
3.1. Overview of Plastic Recycling Research
3.2. Cluster 1: Plastic Recycling
3.2.1. Subcluster 1-1: Recycling by Pyrolysis
3.2.2. Subcluster 1-2: LCA of Plastic Recycling
3.2.3. Subcluster 1-3: Mechanical Recycling
3.2.4. Subcluster 1-4: Biodegradation of Plastics
3.2.5. Subcluster 1-5: Bioplastics
3.2.6. Subcluster 1-6: Recycling of PVC
3.3. Cluster 2: WEEE and Sorting of Plastic Waste
3.3.1. Subcluster 2-1: Recycling of WEEE
3.3.2. Subcluster 2-2: Spectroscopy Sorting
3.3.3. Subcluster 2-3: Flotation Separation
3.3.4. Subcluster 2-4: Electrostatic Separation
3.4. Cluster 3: Use of Plastic Waste in the Construction Sector
3.4.1. Subcluster 3-1: Use of Recycled Plastics in Concrete
3.4.2. Subcluster 3-2: Use of Recycled Plastics in Asphalt
3.5. Cluster 4: Chemical Recycling of PET
3.6. Cluster 5: Use for Wood-Plastics Composites
3.7. Cluster 6: Recycling of FRP
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. ISO/TC 323; Circular Economy. Available online: https://www.iso.org/committee/7203984.html (accessed on 24 August 2022).
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- ISO 15270:2008; Plastics-Guidelines for the Recovery and Recycling of Plastics Waste. International Organization for Standardization: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/45089.html (accessed on 24 August 2022).
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, e2000415. [Google Scholar] [CrossRef]
- Idemitsu Kosan Co., L. Started Japan’s First Demonstration Study of Waste Plastic Recycling including Mixed waste Plastics at Chiba Complex—Construct a Waste Plastics Recycling System by New Liquefaction Technology and Our Petroleum Refining & Petrochemical Plants. Available online: https://www.idemitsu.com/en/news/2021/0507.html (accessed on 24 August 2022).
- United States Environmental Protection Agency. Plastics: Material-Specific Data. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data#PlasticsTableandGraph (accessed on 24 August 2022).
- Plastics Europe. Plastics—The Facts 2020: An Analysis of European Plastics Production, Demand and Waste Data. Available online: Chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://plasticseurope.org/wp-content/uploads/2021/09/Plastics_the_facts-WEB-2020_versionJun21_final.pdf (accessed on 24 August 2022).
- Wen, Z.G.; Xie, Y.L.; Chen, M.H.; Dinga, C.D. China’s plastic import ban increases prospects of environmental impact mitigation of plastic waste trade flow worldwide. Nat. Commun. 2021, 12, 425. [Google Scholar]
- Shamsuyeva, M.; Endres, H.J. Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Compos. Part C Open Access 2021, 6, 100168. [Google Scholar] [CrossRef]
- Soni, V.K.; Singh, G.; Vijayan, B.K.; Chopra, A.; Kapur, G.S.; Ramakumar, S.S.V. Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review. Energy Fuels 2021, 35, 12763–12808. [Google Scholar] [CrossRef]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 2018, 82, 576–596. [Google Scholar] [CrossRef]
- Moharir, R.V.; Kumar, S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. J. Clean. Prod. 2019, 208, 65–76. [Google Scholar] [CrossRef]
- Hatti-Kaul, R.; Nilsson, L.J.; Zhang, B.Z.; Rehnberg, N.; Lundmark, S. Designing Biobased Recyclable Polymers for Plastics. Trends Biotechnol. 2020, 38, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [Google Scholar] [CrossRef]
- de Sousa, F.D.B. Management of plastic waste: A bibliometric mapping and analysis. Waste Manag. Res. 2021, 39, 664–678. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.M.; Bui, T.D.; Tseng, M.L.; Lim, M.K.; Hu, J.Y. Municipal solid waste management in a circular economy: A data-driven bibliometric analysis. J. Clean. Prod. 2020, 275, 124132. [Google Scholar] [CrossRef]
- Armenise, S.; SyieLuing, W.; Ramirez-Velasquez, J.M.; Launay, F.; Wuebben, D.; Ngadi, N.; Rams, J.; Munoz, M. Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. J. Anal. Appl. Pyrolysis 2021, 158, 105265. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, M.; Li, R.R. The COVID-19 pandemic reshapes the plastic pollution research—A comparative analysis of plastic pollution research before and during the pandemic. Environ. Res. 2022, 208, 112634. [Google Scholar] [CrossRef] [PubMed]
- Sandanayake, M.; Bouras, Y.; Haigh, R.; Vrcelj, Z. Current Sustainable Trends of Using Waste Materials in Concrete-A Decade Review. Sustainability 2020, 12, 9622. [Google Scholar] [CrossRef]
- Shibata, N.; Kajikawa, Y.; Takeda, Y.; Matsushima, K. Comparative Study on Methods of Detecting Research Fronts Using Different Types of Citation. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 571–580. [Google Scholar] [CrossRef]
- Newman, M.E.J. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajikawa, Y.; Yoshikawa, J.; Takeda, Y.; Matsushima, K. Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technol. Forecast. Soc. Chang. 2008, 75, 771–782. [Google Scholar] [CrossRef]
- Shibata, N.; Kajikawa, A.; Sakata, I. Measuring Relatedness Between Communities in a Citation Network. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1360–1369. [Google Scholar] [CrossRef]
- Kajikawa, Y.; Takeda, Y. Structure of research on biomass and bio-fuels: A citation-based approach. Technol. Forecast. Soc. Chang. 2008, 75, 1349–1359. [Google Scholar] [CrossRef]
- Ittipanuvat, V.; Fujita, K.; Sakata, I.; Kajikawa, Y. Finding linkage between technology and social issue: A Literature Based Discovery approach. J. Eng. Technol. Manag. 2014, 32, 160–184. [Google Scholar] [CrossRef]
- Naoki Shibata, Y.K.; Ichiro Sakata. Detecting potential technological fronts by comparing scientific papers and patents. Foresight 2011, 13, 51–60. [Google Scholar] [CrossRef]
- Takeda, Y.; Kajikawa, Y. Tracking modularity in citation networks. Scientometrics 2010, 83, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Salton, G.; Buckley, C. Term-Weighting Approaches in Automatic Text Retrieval. Inf. Process. Manag. 1988, 24, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Singhal, A. Modern Information Retrieval: A Brief Overview. Bull. IEEE Comput. Soc. Technol. Comm. Data Eng. 2001, 24, 35–43. [Google Scholar]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog. Energy Combust. Sci. 2010, 36, 103–129. [Google Scholar] [CrossRef]
- Grand View Research Inc. Plastic to Fuel Market Size, Share & Trends Analysis Report by Technology (Pyrolysis, Gasification, Depolymerization), by End-Fuel (Sulfur, Hydrogen, Crude Oil), by Region, and Segment Forcasts, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/plastic-to-fuel-market (accessed on 24 August 2022).
- Kumar, S.; Singh, E.; Mishra, R.; Kumar, A.; Caucci, S. Utilization of Plastic Wastes for Sustainable Environmental Management: A Review. Chemsuschem 2021, 14, 3985–4006. [Google Scholar] [CrossRef]
- Kumagai, S.; Yoshioka, T. Chemical Feedstock Recovery from Hard-to-Recycle Plastics through Pyrolysis-Based Approaches and Pyrolysis-Gas Chromatography. Bull. Chem. Soc. Jpn. 2021, 94, 2370–2380. [Google Scholar] [CrossRef]
- Kosloski-Oh, S.C.; Wood, Z.A.; Manjarrez, Y.; de los Rios, J.P.; Fieser, M.E. Catalytic methods for chemical recycling or upcycling of commercial polymers. Mater. Horiz. 2021, 8, 1084–1129. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Kunwar, B.; Cheng, H.N.; Chandrashekaran, S.R.; Sharma, B.K. Plastics to fuel: A review. Renew. Sustain. Energy Rev. 2016, 54, 421–428. [Google Scholar] [CrossRef]
- Prajapati, R.; Kohli, K.; Maity, S.K.; Sharma, B.K. Potential Chemicals from Plastic Wastes. Molecules 2021, 26, 3175. [Google Scholar] [CrossRef]
- Chen, H.; Wan, K.; Zhang, Y.Y.; Wang, Y.Q. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. Chemsuschem 2021, 14, 4123–4136. [Google Scholar] [CrossRef] [PubMed]
- Showa Denko, K.K. Showa Denko Got a License to Process Industrial Waste, Aiming to Promote Plastic Chemical Recycling. Available online: https://www.sdk.co.jp/english/news/2020/38930.html (accessed on 24 August 2022).
- Caputto, M.D.D.; Navarro, R.; Valentin, J.L.; Marcos-Fernandez, A. Chemical upcycling of poly(ethylene terephthalate) waste: Moving to a circular model. J. Polym. Sci. 2022. [Google Scholar] [CrossRef]
- Thiyagarajan, S.; Maaskant-Reilink, E.; Ewing, T.A.; Julsing, M.K.; van Haveren, J. Back-to-monomer recycling of polycondensation polymers: Opportunities for chemicals and enzymes. Rsc Adv. 2021, 12, 947–970. [Google Scholar] [CrossRef]
- Zhuo, C.W.; Levendis, Y.A. Upcycling Waste Plastics into Carbon Nanomaterials: A Review. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Jiang, J.; Shi, K.; Zhang, X.N.; Yu, K.; Zhang, H.; He, J.; Ju, Y.; Liu, J.L. From plastic waste to wealth using chemical recycling: A review. J. Environ. Chem. Eng. 2022, 10, 106867. [Google Scholar] [CrossRef]
- Quicker, P.; Seitz, M.; Vogel, J. Chemical recycling: A critical assessment of potential process approaches. Waste Manag. Res. 2022, 40, 1494–1504. [Google Scholar] [CrossRef]
- Lazarevic, D.; Aoustin, E.; Buclet, N.; Brandt, N. Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resour. Conserv. Recycl. 2010, 55, 246–259. [Google Scholar] [CrossRef]
- Antelava, A.; Damilos, S.; Hafeez, S.; Manos, G.; Al-Salem, S.M.; Sharma, B.K.; Kohli, K.; Constantinou, A. Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environ. Manag. 2019, 64, 230–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, F.; Guo, J.F.; Zhang, W.J.; Summers, P.A.; Hall, P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci. Total Environ. 2017, 601, 1192–1207. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.D.; Cui, Z.J.; Cui, X.W.; Liu, W.; Wang, X.L.; Li, X.X.; Li, S.X. Life cycle assessment of end-of-life treatments of waste plastics in China. Resour. Conserv. Recycl. 2019, 146, 348–357. [Google Scholar] [CrossRef]
- Faraca, G.; Martinez-Sanchez, V.; Astrup, T.F. Environmental life cycle cost assessment: Recycling of hard plastic waste collected at Danish recycling centres. Resour. Conserv. Recycl. 2019, 143, 299–309. [Google Scholar] [CrossRef]
- Alhazmi, H.; Almansour, F.H.; Aldhafeeri, Z. Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability 2021, 13, 5340. [Google Scholar] [CrossRef]
- Meys, R.; Frick, F.; Westhues, S.; Sternberg, A.; Klankermayer, J.; Bardow, A. Towards a circular economy for plastic packaging wastes—The environmental potential of chemical recycling. Resour. Conserv. Recycl. 2020, 162, 105010. [Google Scholar] [CrossRef]
- Patel, M.; von Thienen, N.; Jochem, E.; Worrell, E. Recycling of plastics in Germany. Resour. Conserv. Recycl. 2000, 29, 65–90. [Google Scholar] [CrossRef]
- Davidson, M.G.; Furlong, R.A.; McManus, M.C. Developments in the life cycle assessment of chemical recycling of plastic waste e A review. J. Clean. Prod. 2021, 293, 126163. [Google Scholar] [CrossRef]
- Chaudhari, U.S.; Lin, Y.Q.; Thompson, V.S.; Handler, R.M.; Pearce, J.M.; Caneba, G.; Muhuri, P.; Watkins, D.; Shonnard, D.R. Systems Analysis Approach to Polyethylene Terephthalate and Olefin Plastics Supply Chains in the Circular Economy: A Review of Data Sets and Models. Acs Sustain. Chem. Eng. 2021, 9, 7403–7421. [Google Scholar] [CrossRef]
- Bernardo, C.A.; Simoes, C.L.; Pinto, L.M.C. Environmental and Economic Life Cycle Analysis of Plastic Waste Management Options. A Review. In Proceedings of the Regional Conference of the Polymer-Processing-Society (PPS), Graz, Austria, 21–25 September 2015. [Google Scholar]
- Finnveden, G.; Ekvall, T. Life-cycle assessment as a decision-support tool—The case of recycling versus incineration of paper. Resour. Conserv. Recycl. 1998, 24, 235–256. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shi, F.; Shanks, R.A.; Combe, M.; Collister, T. Mechanical Reprocessing of Polyolefin Waste: A Review. Polym. Eng. Sci. 2015, 55, 2899–2909. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N. Use of macro plastic fibres in concrete: A review. Constr. Build. Mater. 2015, 93, 180–188. [Google Scholar] [CrossRef]
- Endres, H.-J. Recycling Ist Nicht Gleich Recycling. pp. 34–39. Available online: https://www.researchgate.net/publication/349694539_Recycling_ist_nicht_gleich_Recycling (accessed on 24 August 2022).
- McDonough, W.; Braungart, M. Cradle to Cradle: Remaking the Way We Make Things, 1st ed.; North Point Press: New York, NY, USA, 2002. [Google Scholar]
- Maris, J.; Bourdon, S.; Brossard, J.M.; Cauret, L.; Fontaine, L.; Montembault, V. Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polym. Degrad. Stab. 2018, 147, 245–266. [Google Scholar] [CrossRef]
- Schwetlick, K.; Habicher, W.D. Antioxidant action mechanisms of hindered amine stabilisers. Polym. Degrad. Stab. 2002, 78, 35–40. [Google Scholar] [CrossRef]
- Maringer, L.; Grabmann, M.; Muik, M.; Nitsche, D.; Romanin, C.; Wallner, G.; Buchberger, W. Investigations on the distribution of polymer additives in polypropylene using confocal fluorescence microscopy. Int. J. Polym. Anal. Charact. 2017, 22, 692–698. [Google Scholar] [CrossRef]
- Braun, D. Recycling of PVC. Prog. Polym. Sci. 2002, 27, 2171–2195. [Google Scholar] [CrossRef]
- Everard, M. Twenty Years of the Polyvinyl Chloride Sustainability Challenges. J. Vinyl Addit. Technol. 2020, 26, 390–402. [Google Scholar] [CrossRef] [Green Version]
- Remili, C.; Kaci, M.; Benhamida, A.; Bruzaud, S.; Grohens, Y. The effects of reprocessing cycles on the structure and properties of polystyrene/Cloisite 15A nanocomposites. Polym. Degrad. Stab. 2011, 96, 1489–1496. [Google Scholar] [CrossRef]
- Rujnic-Sokele, M.; Pilipovic, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag. Res. 2017, 35, 132–140. [Google Scholar] [CrossRef]
- Weber, M.; Makarow, D.; Unger, B.; Mortier, N.; De Wilde, B.; van Eekert, M.; Schuman, E.; Tosin, M.; Pognani, M.; Innocenti, F.D.; et al. Assessing Marine Biodegradability of Plastic-Towards an Environmentally Relevant International Standard Test Scheme. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea, Capri, Italy, 26–29 September 2017. [Google Scholar]
- Ellis, L.D.; Rorrer, N.A.; Sullivan, K.P.; Otto, M.; McGeehan, J.E.; Roman-Leshkov, Y.; Wierckx, N.; Beckham, G.T. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 2021, 4, 539–556. [Google Scholar] [CrossRef]
- Qin, Z.H.; Mou, J.H.; Chao, C.Y.H.; Chopra, S.S.; Daoud, W.; Leu, S.Y.; Ning, Z.; Tso, C.Y.; Chan, C.K.; Tang, S.X.; et al. Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. Chemsuschem 2021, 14, 4103–4114. [Google Scholar] [CrossRef] [PubMed]
- Albertsson, A.C.; Karlsson, S. The Influence of Biotic and Abiotic Environments on the Degradation of Polyethylene. Prog. Polym. Sci. 1990, 15, 177–192. [Google Scholar] [CrossRef]
- Ammala, A.; Bateman, S.; Dean, K.; Petinakis, E.; Sangwan, P.; Wong, S.; Yuan, Q.; Yu, L.; Patrick, C.; Leong, K.H. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 2011, 36, 1015–1049. [Google Scholar] [CrossRef]
- Montazer, Z.; Najafi, M.B.H.; Levin, D.B. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can. J. Microbiol. 2019, 65, 224–234. [Google Scholar] [CrossRef]
- Ru, J.K.; Huo, Y.X.; Yang, Y. Microbial Degradation and Valorization of Plastic Wastes. Front. Microbiol. 2020, 11, 442. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Bollinger, A.; Thies, S.; Knieps-Grunhagen, E.; Gertzen, C.; Kobus, S.; Hoppner, A.; Ferrer, M.; Gohlke, H.; Smits, S.H.J.; Jaeger, K.E. A Novel Polyester Hydrolase From the Marine Bacterium Pseudomonas aestusnigri—Structural and Functional Insights. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, X.X.; Ni, K.F.; Hao, H.L.; Shang, Y.P.; Zhao, B.; Qian, Z. Secretory expression in Bacillus subtilis and biochemical characterization of a highly thermostable polyethylene terephthalate hydrolase from bacterium HR29. Enzym. Microb. Technol. 2021, 143, 109715. [Google Scholar] [CrossRef]
- Moog, D.; Schmitt, J.; Senger, J.; Zarzycki, J.; Rexer, K.H.; Linne, U.; Erb, T.J.; Maier, U.G. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation (vol 18, 171, 2019). Microb. Cell Factories 2020, 19, 1. [Google Scholar] [CrossRef]
- Nakajima-Kambe, T.; Shigeno-Akutsu, Y.; Nomura, N.; Onuma, F.; Nakahara, T. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biotechnol. 1999, 51, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Howard, G.T. Biodegradation of polyurethane: A review. Int. Biodeterior. Biodegrad. 2002, 49, 245–252. [Google Scholar] [CrossRef]
- Lamberti, F.M.; Roman-Ramirez, L.A.; Wood, J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020, 28, 2551–2571. [Google Scholar] [CrossRef]
- Lemmouchi, Y.; Murariu, M.; Dos Santos, A.M.; Amass, A.J.; Schacht, E.; Dubois, P. Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(D,L-lactide)-b-poly(ethylene glycol) copolymers. Eur. Polym. J. 2009, 45, 2839–2848. [Google Scholar] [CrossRef]
- European Bioplastics Association. Bioplastics Facts and Figures; European Bioplastics Association: Berlin, Germany, 2019. [Google Scholar]
- Scaffaro, R.; Dintcheva, N.T.; Marino, R.; La Mantia, F.P. Processing and Properties of Biopolymer/Polyhydroxyalkanoates Blends. J. Polym. Environ. 2012, 20, 267–272. [Google Scholar] [CrossRef]
- Luef, K.P.; Stelzer, F.; Wiesbrock, F. Poly(hydroxy alkanoate)s in Medical Applications. Chem. Biochem. Eng. Q. 2015, 29, 287–297. [Google Scholar] [CrossRef]
- Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 2014, 8, 791–808. [Google Scholar] [CrossRef]
- Sekisui Chemical Co. Ltd.; LanzaTech Inc. Turning “Garbage” into Ethanol Establishing a First-in-the-World Innovative Production Technology. Available online: https://www.sekisuichemical.com/news/2017/1363956_38399.html (accessed on 24 August 2022).
- Sekisui Chemical Co. Ltd.; Sumitomo Chemical Co. Ltd. Sekisui Chemical and Sumitomo Chemical to Cooperate on Circular Economy Initiative Manufacturing Polyolefin Using Waste as Raw Material. Available online: https://www.sumitomo-chem.co.jp/english/news/detail/20200227e.html (accessed on 24 August 2022).
- RameshKumar, S.; Shaiju, P.; O’Connor, K.E.; Babu, P.R. Bio-based and biodegradable polymers—State-of-the-art, challenges and emerging trends. Curr. Opin. Green Sustain. Chem. 2020, 21, 75–81. [Google Scholar] [CrossRef]
- Dilkes-Hoffman, L.; Ashworth, P.; Laycock, B.; Pratt, S.; Lant, P. Public attitudes towards bioplastics—Knowledge, perception and end-of-life management. Resour. Conserv. Recycl. 2019, 151, 104479. [Google Scholar] [CrossRef]
- Wojnowska-Baryla, I.; Kulikowska, D.; Bernat, K. Effect of Bio-Based Products on Waste Management. Sustainability 2020, 12, 2088. [Google Scholar] [CrossRef] [Green Version]
- Barrett, A. PepsiCo Goes for Bioplastic Bottles. Available online: https://bioplasticsnews.com/2018/09/10/pepsico-goes-for-bioplastic-bottles/ (accessed on 24 August 2022).
- Shen, L.; Worrell, E.; Patel, M.K. Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics. Biofuels Bioprod. Biorefining-Biofpr 2012, 6, 625–639. [Google Scholar] [CrossRef]
- Tabone, M.D.; Cregg, J.J.; Beckman, E.J.; Landis, A.E. Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers. Environ. Sci. Technol. 2010, 44, 8264–8269. [Google Scholar] [CrossRef]
- Repo, A.; Kankanen, R.; Tuovinen, J.P.; Antikainen, R.; Tuomi, M.; Vanhala, P.; Liski, J. Forest bioenergy climate impact can be improved by allocating forest residue removal. Glob. Chang. Biol. Bioenergy 2012, 4, 202–212. [Google Scholar] [CrossRef]
- Peters, M.; Taylor, J.D.; Jenni, M.; Manzer, L.E.; Henton, D.E. Integrated Process to Selectively Convert Renewable Isobutanol to p-Xylene. WO2011044243A1, 14 April 2011. [Google Scholar]
- Morschbacker, A.; Campos, C.E.S.; Cassiano, L.C.; Roza, L.; Almada, F.; do Carmo, R.W. Bio-polyethylene. In Handbook of Green Materials, Vol 4: Biobased Composite Materials, Their Processing Properties and Industrial Applications; Oksman, K., Mathew, A.P., Bismarck, A., Rojas, O., Sain, M., Qvintus, P., Eds.; Materials and Energy; World Scientific: Singapore, 2014; Volume 5, pp. 89–104. [Google Scholar]
- Wang, Z.H.; Shen, D.K.; Wu, C.F.; Gu, S. Thermal behavior and kinetics of co-pyrolysis of cellulose and polyethylene with the addition of transition metals. Energy Convers. Manag. 2018, 172, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Eco Entreprises Québec. Fact Sheet Impact of Packaging on Curbside Recycling Collection and Recycling System: PLA Bottle. Available online: http://www.eeq.ca/wp-content/uploads/PLA-bottles.pdf (accessed on 24 August 2022).
- Kržan, A. Biodegradable polymers and plastics. Innov. Value Chain Dev. Sustain. Plast. Cent. Eur. 2012, 12, 12–29. [Google Scholar]
- Niaounakis, M. Recycling of biopolymers—The patent perspective. Eur. Polym. J. 2019, 114, 464–475. [Google Scholar] [CrossRef]
- Dilkes-Hoffman, L.S.; Pratt, S.; Lant, P.A.; Laycock, B. The Role of Biodegradable Plastic in Solving Plastic Solid Waste Accumulation; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 469–505. [Google Scholar]
- Niaounakis, M.; Niaounakis, M. Biopolymers: Processing and Products Introduction; Elisver: Amsterdam, The Netherlands, 2015; pp. 1–77. [Google Scholar]
- Our World in Data. Primary Plastic Production by Polymer Type, 2015. Available online: https://ourworldindata.org/grapher/plastic-production-polymer (accessed on 24 August 2022).
- Garcia, D.; Balart, R.; Crespo, J.E.; Lopez, J. Mechanical properties of recycled PVC blends with styrenic polymers. J. Appl. Polym. Sci. 2006, 101, 2464–2471. [Google Scholar] [CrossRef]
- Yarahmadi, N.; Jakubowicz, I.; Martinsson, L. PVC floorings as post-consumer products for mechanical recycling and energy recovery. Polym. Degrad. Stab. 2003, 79, 439–448. [Google Scholar] [CrossRef]
- Braun, D. PVC—Origin, growth, and future. J. Vinyl Addit. Technol. 2001, 7, 168–176. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Bakhshandeh, G.R. Recycling of PVC wastes. Polym. Degrad. Stab. 2011, 96, 404–415. [Google Scholar] [CrossRef]
- Slapak, M.J.P.; van Kasteren, J.M.N.; Drinkenburg, B. Hydrothermal recycling of PVC in a bubbling fluidized bed reactor: The influence of bed material and temperature. Polym. Adv. Technol. 1999, 10, 596–602. [Google Scholar] [CrossRef]
- Patel, M.K.; Jochem, E.; Radgen, P.; Worrell, E. Plastics streams in Germany—An analysis of production, consumption and waste generation. Resour. Conserv. Recycl. 1998, 24, 191–215. [Google Scholar] [CrossRef]
- Kou, S.C.; Lee, G.; Poon, C.S.; Lai, W.L. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Manag. 2009, 29, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Ditta, A.S.; Wilkinson, A.J.; McNally, G.M.; Murphy, W.R. A study of the processing characteristics and mechanical properties of multiple recycled rigid PVC. J. Vinyl Addit. Technol. 2004, 10, 174–178. [Google Scholar] [CrossRef]
- Lisk, D.J. Environmental-Effects of Landfills. Sci. Total Environ. 1991, 100, 415–468. [Google Scholar] [CrossRef]
- Garcia, D.; Balart, R.; Sanchez, L.; Lopez, J. Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polym. Eng. Sci. 2007, 47, 789–796. [Google Scholar] [CrossRef]
- Zakharyan, E.M.; Petrukhina, N.N.; Maksimov, A.L. Pathways of Chemical Recycling of Polyvinyl Chloride: Part 1. Russ. J. Appl. Chem. 2020, 93, 1271–1313. [Google Scholar] [CrossRef]
- Zakharyan, E.M.; Petrukhina, N.N.; Dzhabarov, E.G.; Maksimov, A.L. Pathways of Chemical Recycling of Polyvinyl Chloride. Part 2. Russ. J. Appl. Chem. 2020, 93, 1445–1490. [Google Scholar] [CrossRef]
- Caparanga, A.R.; Basilia, B.A.; Dagbay, K.B.; Salvacion, J.W.L. Factors affecting degradation of polyethylene terephthalate (PET) during pre-flotation conditioning. Waste Manag. 2009, 29, 2425–2428. [Google Scholar] [CrossRef]
- Lusinchi, J.M.; Pietrasanta, Y.; Robin, J.J.; Boutevin, B. Recycling of PET and PVC wastes. J. Appl. Polym. Sci. 1998, 69, 657–665. [Google Scholar] [CrossRef]
- Anzano, J.; Lasheras, R.J.; Bonilla, B.; Casas, J. Classification of polymers by determining of C-1: C-2: CN: H: N: O ratios by laser-induced plasma spectroscopy (LIPS). Polym. Test. 2008, 27, 705–710. [Google Scholar] [CrossRef]
- Gondal, M.A.; Siddiqu, M.N. Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2007, 42, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Jeon, H.S.; Park, J.K. PVC removal from mixed plastics by triboelectrostatic Separation. J. Hazard. Mater. 2007, 144, 470–476. [Google Scholar] [CrossRef]
- Dodbiba, G.; Sadaki, J.; Okaya, K.; Shibayama, A.; Fujita, T. The use of air tabling and triboelectric Separation for Separating a mixture of three plastics. Miner. Eng. 2005, 18, 1350–1360. [Google Scholar] [CrossRef]
- Hearn, G.L.; Ballard, J.R. The use of electrostatic techniques for the identification and sorting of waste packaging materials. Resour. Conserv. Recycl. 2005, 44, 91–98. [Google Scholar] [CrossRef]
- Singh, R.; Pant, D. Bio-inspired dechlorination of poly vinyl chloride. Chem. Eng. Res. Des. 2018, 132, 505–517. [Google Scholar] [CrossRef]
- Yoshioka, T.; Kameda, T.; Grause, G.; Imai, S.; Okuwaki, A. Effect of compatibility between solvent and poly(vinyl chloride) on dechlorination of poly(vinyl chloride). J. Polym. Res. 2010, 17, 489–493. [Google Scholar] [CrossRef]
- Guo, L.; Shi, G.Q.; Liang, Y.Q. High-quality polyene films prepared by poly (ethylene glycol)s catalyzed dehydrochlorination of poly (vinyl chloride) with potassium hydroxide. Eur. Polym. J. 1999, 35, 215–220. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zhou, Q.; Zhao, T.; Deng, M.L.; Zhang, J.; Wang, Y.Z. Poly(ethylene glycol) enhanced dehydrochlorination of poly(vinyl chloride). J. Hazard. Mater. 2009, 163, 1408–1411. [Google Scholar] [CrossRef] [PubMed]
- Ghaemy, M.; Gharaebi, I. Study of dehydrochlorination of poly(vinyl chloride) in solution and the effect of synthesis conditions on graft copolymerization with styrene. Eur. Polym. J. 2000, 36, 1967–1979. [Google Scholar] [CrossRef]
- Shen, Y.F. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenergy 2020, 134, 105479. [Google Scholar] [CrossRef]
- Nagai, Y.; Smith, R.L.; Inomata, H.; Arai, K. Direct observation of polyvinylchloride degradation in water at temperatures up to 500 degrees C and at pressures up to 700 MPa. J. Appl. Polym. Sci. 2007, 106, 1075–1086. [Google Scholar] [CrossRef]
- Poerschmann, J.; Weiner, B.; Koehler, R.; Kopinke, F.D. Organic breakdown products resulting from hydrothermal carbonization of brewer’s spent grain. Chemosphere 2015, 131, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Soler, A.; Conesa, J.A.; Ortuno, N. Emissions of brominated compounds and polycyclic aromatic hydrocarbons during pyrolysis of E-waste debrominated in subcritical water. Chemosphere 2017, 186, 167–176. [Google Scholar] [CrossRef]
- Kubatova, A.; Lagadec, A.J.M.; Hawthorne, S.B. Dechlorination of lindane, dieldrin, tetrachloroethane, trichloroethene, and PVC in subcritical water. Environ. Sci. Technol. 2002, 36, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.L.; Ma, X.Q. A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis. Energy 2017, 141, 1156–1165. [Google Scholar] [CrossRef]
- Ning, X.J.; Teng, H.P.; Wang, G.W.; Zhang, J.L.; Zhang, N.; Huang, C.C.; Wang, C. Physiochemical, structural and combustion properties of hydrochar obtained by hydrothermal carbonization of waste polyvinyl chloride. Fuel 2020, 270, 117526. [Google Scholar] [CrossRef]
- Takeshita, Y.; Kato, K.; Takahashi, K.; Sato, Y.; Nishi, S. Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions. J. Supercrit. Fluids 2004, 31, 185–193. [Google Scholar] [CrossRef]
- Keane, M.A. Catalytic conversion of waste plastics: Focus on waste PVC. J. Chem. Technol. Biotechnol. 2007, 82, 787–795. [Google Scholar] [CrossRef]
- Ali, M.F.; Siddiqui, M.N. Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue. J. Anal. Appl. Pyrolysis 2005, 74, 282–289. [Google Scholar] [CrossRef]
- Karayildirim, T.; Yanik, J.; Ucar, S.; Saglam, M.; Yuksel, M. Conversion of plastics/HVGO mixtures to fuels by two-step processing. Fuel Process. Technol. 2001, 73, 23–35. [Google Scholar] [CrossRef]
- Karagoz, S.; Karayildirim, T.; Ucar, S.; Yuksel, M.; Yanik, J. Liquefaction of municipal waste plastics in VGO over acidic and non-acidic catalysts. Fuel 2003, 82, 415–423. [Google Scholar] [CrossRef]
- Borgianni, C.; De Filippis, P.; Pochetti, F.; Paolucci, M. Gasification process of wastes containing PVC. Fuel 2002, 81, 1827–1833. [Google Scholar] [CrossRef]
- Kamo, T.; Takaoka, K.; Otomo, J.; Takahashi, H. Effect of steam and sodium hydroxide for the production of hydrogen on gasification of dehydrochlorinated poly(vinyl chloride). Fuel 2006, 85, 1052–1059. [Google Scholar] [CrossRef]
- Lin, S.Y.; Suzuki, Y.; Hatano, H.; Harada, M. Hydrogen production from hydrocarbon by integration of water-carbon reaction and carbon dioxide removal (HyPr-RING method). Energy Fuels 2001, 15, 339–343. [Google Scholar] [CrossRef]
- Sivakumar, P.; Jung, H.; Tierney, J.W.; Wender, I. Liquefaction of lignocellulosic and plastic wastes with coal using carbon monoxide and aqueous alkali. Fuel Process. Technol. 1996, 49, 219–232. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Yu, Y. Dechlorination behavior on the recovery of useful resources from WEEE by the steam gasification in the molten carbonates. In Proceedings of the 10th International Conference on Waste Management and Technology (ICWMT), Mianyang, China, 28–30 October 2015; pp. 903–910. [Google Scholar]
- Chen, S.; Meng, A.H.; Long, Y.Q.; Zhou, H.; Li, Q.H.; Zhang, Y.G. TGA pyrolysis and gasification of combustible municipal solid waste. J. Energy Inst. 2015, 88, 332–343. [Google Scholar] [CrossRef]
- Cho, M.H.; Choi, Y.K.; Kim, J.S. Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas. Energy 2015, 87, 586–593. [Google Scholar] [CrossRef]
- Kim, J.W.; Mun, T.Y.; Kim, J.O.; Kim, J.S. Air gasification of mixed plastic wastes using a two-stage gasifier for the production of producer gas with low tar and a high caloric value. Fuel 2011, 90, 2266–2272. [Google Scholar] [CrossRef]
- Cho, M.H.; Mun, T.Y.; Kim, J.S. Air gasification of mixed plastic wastes using calcined dolomite and activated carbon in a two-stage gasifier to reduce tar. Energy 2013, 53, 299–305. [Google Scholar] [CrossRef]
- Cho, M.H.; Mun, T.Y.; Kim, J.S. Production of low-tar producer gas from air gasification of mixed plastic waste in a two-stage gasifier using olivine combined with activated carbon. Energy 2013, 58, 688–694. [Google Scholar] [CrossRef]
- Cho, M.H.; Mun, T.Y.; Choi, Y.K.; Kim, J.S. Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal. Energy 2014, 70, 128–134. [Google Scholar] [CrossRef]
- Zhou, C.G.; Stuermer, T.; Gunarathne, R.; Yang, W.H.; Blasiak, W. Effect of calcium oxide on high-temperature steam gasification of municipal solid waste. Fuel 2014, 122, 36–46. [Google Scholar] [CrossRef]
- Baloch, H.A.; Yang, T.H.; Li, R.D.; Nizamuddin, S.; Kai, X.P.; Bhutto, A.W. Parametric study of co-gasification of ternary blends of rice straw, polyethylene and polyvinylchloride. Clean Technol. Environ. Policy 2016, 18, 1031–1042. [Google Scholar] [CrossRef]
- Wilk, V.; Hofbauer, H. Co-gasification of Plastics and Biomass in a Dual Fluidized-Bed Steam Gasifier: Possible Interactions of Fuels. Energy Fuels 2013, 27, 3261–3273. [Google Scholar] [CrossRef]
- Lee, J.W.; Yu, T.U.; Lee, J.W.; Moon, J.H.; Jeong, H.J.; Park, S.S.; Yang, W.; Do Lee, U. Gasification of Mixed Plastic Wastes in a Moving-Grate Gasifier and Application of the Producer Gas to a Power Generation Engine. Energy Fuels 2013, 27, 2092–2098. [Google Scholar] [CrossRef]
- da Silva Müller Teixeira, F.; de Carvalho Peres, A.C.; Gomes, T.S.; Visconte, L.L.Y.; Pacheco, E.B.A.V. A Review on the Applicability of Life Cycle Assessment to Evaluate the Technical and Environmental Properties of Waste Electrical and Electronic Equipment. J. Polym. Environ. 2020, 29, 1333–1349. [Google Scholar] [CrossRef]
- Covaci, A.; Harrad, S.; Abdallah, M.A.E.; Ali, N.; Law, R.J.; Herzke, D.; de Wit, C.A. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour. Environ. Int. 2011, 37, 532–556. [Google Scholar] [CrossRef]
- Schreder, E.D.; Uding, N.; La Guardia, M.J. Inhalation a significant exposure route for chlorinated organophosphate flame retardants. Chemosphere 2016, 150, 499–504. [Google Scholar] [CrossRef]
- Peeters, J.R.; Vanegas, P.; Tange, L.; Van Houwelingen, J.; Duflou, J.R. Closed loop recycling of plastics containing Flame Retardants. Resour. Conserv. Recycl. 2014, 84, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Suresh, S.S.; Bonda, S.; Mohanty, S.; Nayak, S.K. A review on computer waste with its special insight to toxic elements, segregation and recycling techniques. Process Saf. Environ. Prot. 2018, 116, 477–493. [Google Scholar] [CrossRef]
- Buekens, A.; Yang, J. Recycling of WEEE plastics: A review. J. Mater. Cycles Waste Manag. 2014, 16, 415–434. [Google Scholar] [CrossRef]
- Wagner, S.; Schlummer, M. Legacy additives in a circular economy of plastics: Current dilemma, policy analysis, and emerging countermeasures. Resour. Conserv. Recycl. 2020, 158, 104800. [Google Scholar] [CrossRef]
- UNEP. Guidance for the Inventory of Polybrominated Diphenyl Ethers (Pbdes) Listed under the Stockholm Convention on Persistent Organic Pollutants; 2017. Available online: http://chm.pops.int/Implementation/NIPs/Guidance/GuidancefortheinventoryofPBDEs/tabid/3171/Default.aspx (accessed on 24 August 2022).
- Sun, B.B.; Hu, Y.N.; Cheng, H.F.; Tao, S. Kinetics of Brominated Flame Retardant (BFR) Releases from Granules of Waste Plastics. Environ. Sci. Technol. 2016, 50, 13419–13427. [Google Scholar] [CrossRef]
- Jaidev, K.; Biswal, M.; Mohanty, S.; Nayak, S.K. Sustainable Waste Management of Engineering Plastics Generated from E-Waste: A Critical Evaluation of Mechanical, Thermal and Morphological Properties. J. Polym. Environ. 2021, 29, 1763–1776. [Google Scholar] [CrossRef]
- Turner, A.; Filella, M. Bromine in plastic consumer products—Evidence for the widespread recycling of electronic waste. Sci. Total Environ. 2017, 601, 374–379. [Google Scholar] [CrossRef]
- The International Bromine Council. Impact of BrominatedFlame Retardants on theRecycling of WEEE Plastics. Available online: https://www.bsef.com/ (accessed on 24 August 2022).
- Taurino, R.; Pozzi, P.; Zanasi, T. Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling. Waste Manag. 2010, 30, 2601–2607. [Google Scholar] [CrossRef]
- de Souza, A.M.C.; Cucchiara, M.G.; Ereio, A.V. ABS/HIPS blends obtained from WEEE: Influence of processing conditions and composition. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Hirayama, D.; Saron, C. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil. Waste Manag. Res. 2015, 33, 543–549. [Google Scholar] [CrossRef]
- Menad, N.; Guignot, S.; van Houwelingen, J.A. New characterisation method of electrical and electronic equipment wastes (WEEE). Waste Manag. 2013, 33, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Arends, D.; Schlummer, M.; Maurer, A.; Markowski, J.; Wagenknecht, U. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres. Waste Manag. Res. 2015, 33, 775–784. [Google Scholar] [CrossRef]
- Brennan, L.B.; Isaac, D.H.; Arnold, J.C. Recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. J. Appl. Polym. Sci. 2002, 86, 572–578. [Google Scholar] [CrossRef]
- Hirayama, D.; Saron, C. Morphologic and mechanical properties of blends from recycled acrylonitrile-butadiene-styrene and high-impact polystyrene. Polymer 2018, 135, 271–278. [Google Scholar] [CrossRef]
- Vazquez, Y.V.; Barbosa, S.E. Process Window for Direct Recycling of Acrylonitrile-Butadiene-Styrene and High-Impact Polystyrene from Electrical and Electronic Equipment Waste. Waste Manag. 2017, 59, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.N.; Sun, L.S.; Xiang, J.; Hu, S.; Su, S. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): A review. Waste Manag. 2013, 33, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Bockhorn, H.; Hornung, A.; Hornung, U.; Jakobstroer, P. New mechanistic aspects of the dehydrochlorination of PVC—Application of dehydrochlorination to plastic mixtures and electronic scrap. Combust. Sci. Technol. 1998, 134, 7–30. [Google Scholar] [CrossRef]
- Bhaskar, T.; Hall, W.J.; Mitan, N.M.M.; Muto, A.; Williams, P.T.; Sakata, Y. Controlled pyrolysis of polyethylene/polypropylene/polystyrene mixed plastics with high impact polystyrene containing flame retardant: Effect of decabromo diphenylethane (DDE). Polym. Degrad. Stab. 2007, 92, 211–221. [Google Scholar] [CrossRef]
- Miskolczi, N.; Hall, W.J.; Angyal, A.; Bartha, L.; Williams, P.T. Production of oil with low organobromine content from the pyrolysis of flame retarded HIPS and ABS plastics. J. Anal. Appl. Pyrolysis 2008, 83, 115–123. [Google Scholar] [CrossRef]
- Hall, W.J.; Williams, P.T. Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalysts. J. Anal. Appl. Pyrolysis 2008, 81, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Sun, W.H. Hydrodebromination of bromoarenes using Grignard reagents catalyzed by metal ions. Appl. Organomet. Chem. 2009, 23, 51–54. [Google Scholar] [CrossRef]
- Wu, W.H.; Xu, J.; Ohnishi, R. Complete hydrodechlorination of chlorobenzene and its derivatives over supported nickel catalysts under liquid phase conditions (vol 60, pg 131, 2005). Appl. Catal. B-Environ. 2005, 61, 352. [Google Scholar] [CrossRef]
- Gundupalli, S.P.; Hait, S.; Thakur, A. A review on automated sorting of source-Separated municipal solid waste for recycling. Waste Manag. 2017, 60, 56–74. [Google Scholar] [CrossRef] [PubMed]
- Picon, A.; Ghita, O.; Whelan, P.F.; Iriondo, P.M. Fuzzy Spectral and Spatial Feature Integration for Classification of Nonferrous Materials in Hyperspectral Data. IEEE Trans. Ind. Inform. 2009, 5, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Safavi, S.M.; Masoumi, H.; Mirian, S.; Tabrizchi, M. Sorting of polypropylene resins by color in MSW using visible reflectance spectroscopy. Waste Manag. 2010, 30, 2216–2222. [Google Scholar] [CrossRef] [PubMed]
- Serranti, S.; Gargiulo, A.; Bonifazi, G. Characterization of post-consumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes. Waste Manag. 2011, 31, 2217–2227. [Google Scholar] [CrossRef]
- Kassouf, A.; Maalouly, J.; Rutledge, D.N.; Chebib, H.; Ducruet, V. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA). Waste Manag. 2014, 34, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.; Fomin, P.; Kargel, C. Automated sorting of polymer flakes: Fluorescence labeling and development of a measurement system prototype. Waste Manag. 2015, 38, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Bezati, F.; Froelich, D.; Massardier, V.; Maris, E. Addition of tracers into the polypropylene in view of automatic sorting of plastic wastes using X-ray fluorescence spectrometry. Waste Manag. 2010, 30, 591–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Tian, D.; Li, C.; Li, Y.C.; Yang, G.; Ding, Y. A review of laser-induced breakdown spectroscopy for plastic analysis. Trac-Trends Anal. Chem. 2019, 110, 327–334. [Google Scholar] [CrossRef]
- Zeng, Q.; Sirven, J.B.; Gabriel, J.C.P.; Tay, C.Y.; Lee, J.M. Laser induced breakdown spectroscopy for plastic analysis. Trac-Trends Anal. Chem. 2021, 140, 116280. [Google Scholar] [CrossRef]
- Adarsh, U.K.; Kartha, V.B.; Santhosh, C.; Unnikrishnan, V.K. Spectroscopy: A promising tool for plastic waste management. Trac-Trends Anal. Chem. 2022, 149, 116534. [Google Scholar] [CrossRef]
- Anzano, J.; Casanova, M.E.; Bermudez, M.S.; Lasheras, R.J. Rapid characterization of plastics using laser-induced plasma spectroscopy (LIPS). Polym. Test. 2006, 25, 623–627. [Google Scholar] [CrossRef]
- Wang, C.Q.; Wang, H.; Fu, J.G.; Liu, Y.N. Flotation Separation of waste plastics for recycling-A review. Waste Manag. 2015, 41, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Fraunholcz, N. Separation of waste plastics by froth flotation—A review, part I. Miner. Eng. 2004, 17, 261–268. [Google Scholar] [CrossRef]
- Alter, H. The recovery of plastics from waste with reference to froth flotation. Resour. Conserv. Recycl. 2005, 43, 119–132. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.S.; Wang, C.Q. Surface modification and selective flotation of waste plastics for effective recycling-a review. Sept. Purif. Technol. 2019, 226, 75–94. [Google Scholar] [CrossRef]
- Guo, J.; Li, X.; Guo, Y.W.; Ruan, J.L.; Qiao, Q.; Zhang, J.Q.; Bi, Y.Y.; Li, F. Research on Flotation Technique of Separating PET from plastic packaging wastes. In Proceedings of the 10th International Conference on Waste Management and Technology (ICWMT), Mianyang, China, 28–30 October 2015; pp. 178–184. [Google Scholar]
- Abbasi, M.; Salarirad, M.M.; Ghasemi, I. Selective Separation of PVC from PET/PVC Mixture Using Floatation by Tannic Acid Depressant. Iran. Polym. J. 2010, 19, 483–489. [Google Scholar]
- Shen, H.T.; Forssberg, E.; Pugh, R.J. Selective flotation Separation of plastics by chemical conditioning with methyl cellulose. Resour. Conserv. Recycl. 2002, 35, 229–241. [Google Scholar] [CrossRef]
- Pascoe, R.D.; O’Connell, B. Development of a method for Separation of PVC and PET using flame treatment and flotation. Miner. Eng. 2003, 16, 1205–1212. [Google Scholar] [CrossRef]
- Reddy, M.S.; Kurose, K.; Okuda, T.; Nishijima, W.; Okada, M. Selective recovery of PVC-free polymers from ASR polymers by ozonation and froth flotation. Resour. Conserv. Recycl. 2008, 52, 941–946. [Google Scholar] [CrossRef]
- Okuda, T.; Kurose, K.; Nishijima, W.; Okada, M. Separation of polyvinyl chloride from plastic mixture by froth flotation after surface modification with ozone. Ozone-Sci. Eng. 2007, 29, 373–377. [Google Scholar] [CrossRef]
- Wang, C.Q.; Wang, H.; Liu, Q.; Fu, J.G.; Liu, Y.N. Separation of polycarbonate and acrylonitrile-butadiene-styrene waste plastics by froth flotation combined with ammonia pretreatment. Waste Manag. 2014, 34, 2656–2661. [Google Scholar] [CrossRef]
- Wang, C.Q.; Wang, H.; Wu, B.X.; Liu, Q. Boiling treatment of ABS and PS plastics for flotation Separation. Waste Manag. 2014, 34, 1206–1210. [Google Scholar] [CrossRef]
- Reddy, M.S.; Yamaguchi, T.; Okuda, T.; Tsai, T.Y.; Nakai, S.; Nishijima, W.; Okada, M. Feasibility study of the Separation of chlorinated films from plastic packaging wastes. Waste Manag. 2010, 30, 597–601. [Google Scholar] [CrossRef]
- Lowell, J.; Roseinnes, A.C. Contact Electrification. Adv. Phys. 1980, 29, 947–1023. [Google Scholar] [CrossRef]
- Wu, G.Q.; Li, J.; Xu, Z.M. Triboelectrostatic Separation for granular plastic waste recycling: A review. Waste Manag. 2013, 33, 585–597. [Google Scholar] [CrossRef]
- Park, C.H.; Park, J.K.; Jeon, H.S.; Chun, B.C. Triboelectric series and charging properties of plastics using the designed vertical-reciprocation charger. J. Electrost. 2008, 66, 578–583. [Google Scholar] [CrossRef]
- Jeon, H.S.; Park, C.H.; Cho, B.G.; Park, J.K. Separation of PVC and Rubber from Covering Plastics in Communication Cable Scrap by Tribo-Charging. Sept. Sci. Technol. 2009, 44, 190–202. [Google Scholar] [CrossRef]
- Calin, L.; Caliap, L.; Neamtu, V.; Morar, R.; Iuga, A.; Samuila, A.; Dascalescu, L. Tribocharging of granular plastic mixtures in view of electrostatic Separation. IEEE Trans. Ind. Appl. 2008, 44, 1045–1051. [Google Scholar] [CrossRef]
- Watson, P.K.; Yu, Z.Z. The contact electrification of polymers and the depth of charge penetration. J. Electrost. 1997, 40–41, 67–72. [Google Scholar] [CrossRef]
- Park, C.H.; Jeon, H.S.; Cho, B.G.; Park, J.K. Triboelectrostatic Separation of covering plastics in chopped waste electric wire. Polym. Eng. Sci. 2007, 47, 1975–1982. [Google Scholar] [CrossRef]
- Almeshal, I.; Tayeh, B.A.; Alyousef, R.; Alabduljabbar, H.; Mohamed, A.M.; Alaskar, A. Use of recycled plastic as fine aggregate in cementitious composites: A review. Constr. Build. Mater. 2020, 253, 119146. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Savija, B.; Paul, S.C.; Anggraini, V. Engineering Properties of Concrete with Waste Recycled Plastic: A Review. Sustainability 2018, 10, 3875. [Google Scholar] [CrossRef] [Green Version]
- Faraj, R.H.; Ali, H.F.H.; Sherwani, A.F.H.; Hassan, B.R.; Karim, H. Use of recycled plastic in self-compacting concrete: A comprehensive review on fresh and mechanical properties. J. Build. Eng. 2020, 30, 101283. [Google Scholar] [CrossRef]
- Batayneh, M.; Marie, I.; Asi, I. Use of selected waste materials in concrete mixes. Waste Manag. 2007, 27, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Saikia, N.; de Brito, J. Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater. 2014, 52, 236–244. [Google Scholar] [CrossRef]
- Akinyele, J.O.; Ajede, A. The use of granulated plastic waste in structural concrete. Afr. J. Sci. Technol. Innov. Dev. 2018, 10, 169–175. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Mohammed, I.I.; Mohammed, S.A. Some properties of concrete with plastic aggregate derived from shredded PVC sheets. Constr. Build. Mater. 2019, 201, 232–245. [Google Scholar] [CrossRef]
- Mustafa, M.A.T.; Hanafi, I.; Mahmoud, R.; Tayeh, B.A. Effect of partial replacement of sand by plastic waste on impact resistance of concrete: Experiment and simulation. Structures 2019, 20, 519–526. [Google Scholar] [CrossRef]
- Kalantar, Z.N.; Karim, M.R.; Mahrez, A. A review of using waste and virgin polymer in pavement. Constr. Build. Mater. 2012, 33, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Ameri, M.; Mansourian, A.; Sheikhmotevali, A.H. Laboratory evaluation of ethylene vinyl acetate modified bitumens and mixtures based upon performance related parameters. Constr. Build. Mater. 2013, 40, 438–447. [Google Scholar] [CrossRef]
- Li, J.; Xiao, F.P.; Zhang, L.F.; Amirkhanian, S.N. Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review. J. Clean. Prod. 2019, 233, 1182–1206. [Google Scholar] [CrossRef]
- Vasudevan, R.; Sekar, A.R.C.; Sundarakannan, B.; Velkennedy, R. A technique to dispose waste plastics in an ecofriendly way—Application in construction of flexible pavements. Constr. Build. Mater. 2012, 28, 311–320. [Google Scholar] [CrossRef]
- Wu, S.H.; Montalvo, L. Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review. J. Clean. Prod. 2021, 280, 124355. [Google Scholar] [CrossRef]
- Moghaddam, T.B.; Soltani, M.; Karim, M.R. Stiffness modulus of Polyethylene Terephthalate modified asphalt mixture: A statistical analysis of the laboratory testing results. Mater. Des. 2015, 68, 88–96. [Google Scholar] [CrossRef]
- Movilla-Quesada, D.; Raposeiras, A.C.; Silva-Klein, L.T.; Lastra-Gonzalez, P.; Castro-Fresno, D. Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen. Waste Manag. 2019, 87, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.; Damen, P. Viability of Using Recycled Plastics in Asphalt and Sprayed Sealing Applications; Austroads Publication: Sydney, Australia, 2019. [Google Scholar]
- Jafar, J.J. Utilisation of waste plastic in bituminous mix for improved performance of roads. Ksce J. Civ. Eng. 2016, 20, 243–249. [Google Scholar] [CrossRef]
- Fang, C.Q.; Jiao, L.N.; Hu, J.B.; Yu, Q.; Guo, D.G.; Zhou, X.; Yu, R.E. Viscoelasticity of Asphalt Modified With Packaging Waste Expended Polystyrene. J. Mater. Sci. Technol. 2014, 30, 939–943. [Google Scholar] [CrossRef]
- Otuoze, H.S.; Ejeh, S.P.; Amartey, Y.D.; Joel, M.; Shuaibu, A.A.; Yusuf, K.O. Rheology and Simple Performance Test (SPT) Evaluation of High-Density Polypropylene (HDPP) Waste-Modified Bituminous Mix. Jordan J. Civ. Eng. 2018, 12, 35–44. [Google Scholar]
- Shojaei, B.; Abtahi, M.; Najafi, M. Chemical recycling ofPET: A stepping-stone toward sustainability. Polym. Adv. Technol. 2020, 31, 2912–2938. [Google Scholar] [CrossRef]
- Damayanti; Wu, H.S. Strategic Possibility Routes of Recycled PET. Polymers 2021, 13, 1475. [Google Scholar] [CrossRef]
- Stanica-Ezeanu, D.; Matei, D. Natural depolymerization of waste poly(ethylene terephthalate) by neutral hydrolysis in marine water. Sci. Rep. 2021, 11, 4431. [Google Scholar] [CrossRef] [PubMed]
- Sinha, V.; Patel, M.R.; Patel, J.V. Pet Waste Management by Chemical Recycling: A Review. J. Polym. Environ. 2010, 18, 8–25. [Google Scholar] [CrossRef]
- Paszun, D.; Spychaj, T. Chemical recycling of poly(ethylene terephthalate). Ind. Eng. Chem. Res. 1997, 36, 1373–1383. [Google Scholar] [CrossRef]
- Ubeda, S.; Aznar, M.; Nerin, C. Determination of oligomers in virgin and recycled polyethylene terephthalate (PET) samples by UPLC-MS-QTOF. Anal. Bioanal. Chem. 2018, 410, 2377–2384. [Google Scholar] [CrossRef]
- Najafi, S.K. Use of recycled plastics in wood plastic composites—A review. Waste Manag. 2013, 33, 1898–1905. [Google Scholar] [CrossRef]
- Ghahri, S.; Najafi, S.K.; Mohebby, B.; Tajvidi, M. Impact strength improvement of wood flour-recycled polypropylene composites. J. Appl. Polym. Sci. 2012, 124, 1074–1080. [Google Scholar] [CrossRef]
- Adhikary, K.B.; Pang, S.S.; Staiger, M.P. Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinus radiata sawdust. Chem. Eng. J. 2008, 142, 190–198. [Google Scholar] [CrossRef]
- Najafi, S.K.; Tajvidi, M.; Hamidina, E. Effect of temperature, plastic type and virginity on the water uptake of sawdust/plastic composites. Holz Als Roh-Und Werkst. 2007, 65, 377–382. [Google Scholar] [CrossRef]
- Adhikary, K.B.; Pang, S.S.; Staiger, M.P. Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. Part B-Eng. 2008, 39, 807–815. [Google Scholar] [CrossRef]
- Morin, C.; Loppinet-Serani, A.; Cansell, F.; Aymonier, C. Near- and supercritical solvolysis of carbon fibre reinforced polymers (CFRPs) for recycling carbon fibers as a valuable resource: State of the art. J. Supercrit. Fluids 2012, 66, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Gharde, S.; Kandasubramanian, B. Mechanothermal and chemical recycling methodologies for the Fibre Reinforced Plastic (FRP). Environ. Technol. Innov. 2019, 14, 100311. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnan, S. Recycling of carbon fiber with epoxy composites by chemical recycling for future perspective: A review. Chem. Pap. 2020, 74, 3785–3807. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, M.; Guo, X.L.; Liu, C.Y.; Liu, T.; Xin, J.N.; Zhang, J.W. Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin. Polym. Degrad. Stab. 2017, 139, 20–27. [Google Scholar] [CrossRef]
- Dang, W.R.; Kubouchi, M.; Yamamoto, S.; Sembokuya, H.; Tsuda, K. An approach to chemical recycling of epoxy resin cured with amine using nitric acid. Polymer 2002, 43, 2953–2958. [Google Scholar] [CrossRef]
- Plastic Waste Management Institute (PWMI). PWMI Newsletter: Plastic Products, Plastic Waste and Resource Recovery [2020]. Available online: Chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.pwmi.or.jp/ei/siryo/ei/ei_pdf/ei51.pdf (accessed on 24 August 2022).
- Luan, X.Y.; Cui, X.W.; Zhang, L.; Chen, X.Y.; Li, X.X.; Feng, X.W.; Chen, L.; Liu, W.; Cui, Z.J. Dynamic material flow analysis of plastics in China from 1950 to 2050. J. Clean. Prod. 2021, 327, 129492. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Tan, Q.Y.; Song, Q.B.; Li, J.H. An analysis of the plastic waste trade and management in Asia. Waste Manag. 2021, 119, 242–253. [Google Scholar] [CrossRef]
- Siddiqui, J.; Pandey, G. A Review of Plastic Waste Management Strategies. Int. Res. J. Environ. Sci. 2013, 2, 84–88. [Google Scholar]
- Mancini, S.D.; de Medeiros, G.A.; Paes, M.X.; de Oliveira, B.O.S.; Antunes, M.L.P.; de Souza, R.G.; Ferraz, J.L.; Bortoleto, A.P.; de Oliveira, J.A.P. Circular Economy and Solid Waste Management: Challenges and Opportunities in Brazil. Circ. Econ. Sustain. 2021, 1, 261–282. [Google Scholar] [CrossRef]
- IPSOS. Attitudes towards Single-Use Plastics. Available online: https://www.ipsos.com/sites/default/files/ct/news/documents/2022-02/Attitudes-towards-single-use-plastics-Feb-2022.pdf (accessed on 24 August 2022).
- Japan External Trade Organization (JETRO). Yunyukisei ha Genkakumo, Kokunaikisei no Unyou Niha Kadai. Available online: https://www.jetro.go.jp/biz/areareports/special/2019/0101/4e336b896cde689c.html (accessed on 24 August 2022). (In Japanese).
- Shi, J.J.; Zhang, C.; Chen, W.Q. The expansion and shrinkage of the international trade network of plastic wastes affected by China’s waste management policies. Sustain. Prod. Consum. 2021, 25, 187–197. [Google Scholar] [CrossRef]
- Kumamaru, H.; Takeuchi, K. The impact of China’s import ban: An economic surplus analysis of markets for recyclable plastics. Waste Manag. 2021, 126, 360–366. [Google Scholar] [CrossRef]
- Li, C.; Wang, L.; Zhao, J.S.; Deng, L.C.; Yu, S.X.; Shi, Z.H.; Wang, Z. The collapse of global plastic waste trade: Structural change, cascading failure process and potential solutions. J. Clean. Prod. 2021, 314, 127935. [Google Scholar] [CrossRef]
- Xu, W.; Chen, W.Q.; Jiang, D.Q.; Zhang, C.; Ma, Z.J.; Ren, Y.; Shi, L. Evolution of the global polyethylene waste trade system. Ecosyst. Health Sustain. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Japan External Trade Organization (JETRO). Haipurasutikku no Bouekifuro ni Henka (Japanese). Available online: https://www.jetro.go.jp/biz/areareports/2020/2a54b9255db84d8d.html (accessed on 24 August 2022).
- Huang, Q.; Chen, G.W.; Wang, Y.F.; Chen, S.Q.; Xu, L.X.; Wang, R. Modelling the global impact of China’s ban on plastic waste imports. Resour. Conserv. Recycl. 2020, 154, 104607. [Google Scholar] [CrossRef]
- Jun, T. Umino Pulasutikku Gomi Mondai. Available online: https://jsil.jp/archives/expert/2020-4 (accessed on 20 October 2022).
Cluster # | Cluster Name | Average Publication Year | # Papers | # Citation | Citation/Paper Ratio | Keywords |
---|---|---|---|---|---|---|
1 | Plastic recycling | 2015.2 | 4442 | 20,342 | 4.6 | Plastic, pyrolysis, packaging, polyethylene, PET |
2 | Waste electrical and electronic equipment (WEEE) and sorting of plastic waste | 2014.6 | 2287 | 10,771 | 4.7 | PBDEs, plastic, WEEE, electronic, polybrominated |
3 | Use of plastic waste in the construction sector | 2016.8 | 2023 | 7075 | 3.5 | concrete, asphalt, aggregate, mortar, cement |
4 | Chemical recycling of polyethylene terephthalate (PET) | 2013.9 | 1393 | 7455 | 5.4 | PET, terephthalate, ethylene terephthalate, glycolysis, depolymerization |
5 | Use for wood-plastic composites | 2013.9 | 1266 | 3458 | 2.7 | composite, wood, fiber, plastic composite, wood plastic composite |
6 | Recycling of fiber reinforced plastic (FRP) | 2017.0 | 1072 | 5627 | 5.2 | vitrimers, epoxy, carbon fiber, CFRP, fiber |
Cluster # | Research Topic | Average Publication Year | # Papers | # Citation | Citation/Paper Ratio |
---|---|---|---|---|---|
1-1 | Recycling by pyrolysis | 2013.5 | 772 | 3736 | 4.8 |
1-2 | life cycle assessment (LCA) of plastic recycling | 2015.7 | 568 | 1839 | 3.2 |
1-3 | Mechanical recycling | 2009.9 | 547 | 1593 | 2.9 |
1-4 | Biodegradation of plastics | 2018.7 | 521 | 2028 | 3.9 |
1-5 | Bioplastics | 2017.9 | 396 | 885 | 2.2 |
1-6 | Recycling of polyvinyl chloride (PVC) | 2012.3 | 190 | 501 | 2.6 |
Cluster # | Research Topic | Average Publication Year | # Papers | # Citation | Citation/Paper Ratio |
---|---|---|---|---|---|
2-1 | Recycling of WEEE | 2014.8 | 340 | 1283 | 3.8 |
2-2 | Spectroscopy sorting | 2014.1 | 260 | 977 | 3.8 |
2-3 | Flotation separation | 2014.3 | 187 | 1292 | 6.9 |
2-4 | Electrostatic separation | 2011.2 | 141 | 546 | 3.9 |
Cluster # | Name of Cluster | Average Publication Year | # Papers | # Citation | Citation/Paper Ratio |
---|---|---|---|---|---|
3-1 | Use of recycled plastics in concrete | 2017.1 | 316 | 2028 | 6.4 |
3-2 | Use of recycled plastics in asphalt | 2017.5 | 236 | 734 | 3.1 |
Cluster # | Research Topic | Average Publication Year | # Papers | # Citation | Citation/Paper Ratio |
---|---|---|---|---|---|
1-4 | Biodegradation of plastics | 2018.7 | 521 | 2028 | 3.9 |
1-5 | Bioplastics | 2017.9 | 396 | 885 | 2.2 |
3-1 | Use of recycled plastics in concrete | 2017.1 | 316 | 2028 | 6.4 |
3-2 | Use of recycled plastics in asphalt | 2017.5 | 236 | 734 | 3.1 |
Rank | Country | Share of Papers | Year | Waste Amount (mt) | Recycling | Energy Recovery | Incineration | Landfill | Untreated | Environmental Awareness | Population (m person) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | China | 12.4% | 2020 | 130.30 | 28.0% | N.A. | 32.0% | 34.0% | 6.0% | 92% | 1410.9 |
2 | USA | 11.1% | 2018 | 35.68 | 8.7% | 15.8% | 0.0% | 75.6% | <1.0% | 71% | 331.5 |
3 | Italy | 7.5% | 2018 | 3.64 | 31.4% | 32.8% | 0.0% | 35.8% | <1.0% | 86% | 59.4 |
4 | Germany | 6.9% | 2018 | 5.32 | 38.6% | 60.7% | 0.0% | 0.7% | <1.0% | 81% | 83.2 |
5 | England | 6.7% | 2018 | 3.95 | 32.0% | 45.7% | 0.0% | 22.4% | <1.0% | 86% | 67.2 |
6 | Spain | 6.2% | 2018 | 2.57 | 41.9% | 19.3% | 0.0% | 38.8% | <1.0% | 85% | 47.4 |
7 | India | 5.9% | 2016 | 8.54 | 5–25% | N.A. | N.A. | N.A. | N.A. | 82% | 1380.0 |
8 | Japan | 5.2% | 2020 | 4.10 | 23.2% | 62.2% | 12.0% | 2.9% | <1.0% | 56% | 125.8 |
9 | Brazil | 4.7% | 2018 | 7.90 | 2.2% | N.A. | N.A. | 59.5% | 24.4% | 86% | 212.6 |
10 | Netherlands | 3.2% | 2018 | 0.94 | 33.7% | 65.8% | 0.0% | 0.4% | <1.0% | 73% | 17.4 |
Cluster # | Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Research Topic | ||||||||||||
1 | Plastic recycling | China | USA | Italy | Germany | UK | Spain | India | Japan | Brazil | Netherlands | |
12.4% | 11.1% | 7.5% | 6.9% | 6.7% | 6.2% | 5.9% | 5.2% | 4.7% | 3.2% | |||
1-1 | Recycling by pyrolysis | China | Spain | India | USA | UK | Japan | Italy | Porland | Germany | Malaysia | |
11.0% | 10.0% | 9.5% | 8.0% | 6.0% | 5.3% | 4.1% | 3.8% | 3.5% | 3.5% | |||
1-2 | LCA of plastic recycling | USA | China | Italy | Germany | UK | Spain | Japan | Netherlands | Denmark | Switzerland | |
16.4% | 14.6% | 9.0% | 7.0% | 6.5% | 6.5% | 6.3% | 4.4% | 3.7% | 3.3% | |||
1-3 | Mechanical recycling | Brazil | USA | China | Italy | Spain | Germany | India | France | Japan | Sweden | |
9.7% | 8.2% | 8.0% | 6.9% | 5.7% | 4.6% | 4.2% | 4.2% | 4.0% | 3.7% | |||
1-4 | Biodegradation of plastic | USA | China | Germany | India | UK | Italy | Brazil | Japan | Sweden | Canada | |
17.7% | 17.1% | 13.8% | 6.7% | 6.5% | 4.6% | 4.4% | 3.8% | 3.6% | 3.6% | |||
1-5 | Bioplastic | USA | Italy | UK | Spain | China | Germany | Netherlands | Poland | India | Portugal | |
13.6% | 12.4% | 9.3% | 8.3% | 8.1% | 7.8% | 5.8% | 5.6% | 5.1% | 3.8% | |||
1-6 | Recycling of PVC | Japan | China | India | Korea | USA | Jordan | Germany | Russia | Australia | Italy | |
29.5% | 17.9% | 8.4% | 5.3% | 4.2% | 3.2% | 3.2% | 2.6% | 2.1% | 2.1% | |||
2 | WEEE and sorting of plastic waste | China | USA | Germany | India | Japan | France | Italy | Korea | UK | Australia | |
25.8% | 11.0% | 6.5% | 6.4% | 6.4% | 6.2% | 6.1% | 4.5% | 4.2% | 3.7% | |||
2-1 | Recycling of WEEE | China | Germany | UK | USA | Belgium | France | India | Italy | Switzerland | Brazil | |
13.2% | 12.6% | 9.4% | 7.9% | 7.4% | 7.4% | 6.8% | 6.5% | 5.0% | 4.7% | |||
2-2 | Spectroscopy sorting | Italy | Germany | France | China | USA | Spain | Brazil | Malaysia | Korea | Japan | |
17.3% | 13.8% | 10.4% | 10.0% | 9.6% | 5.0% | 4.6% | 4.6% | 3.8% | 3.8% | |||
2-3 | Flotation separation | China | Japan | Korea | Italy | Australia | USA | Portugal | UK | Turkey | Spain | |
31.0% | 15.0% | 7.5% | 6.4% | 4.8% | 4.8% | 4.3% | 4.3% | 4.3% | 3.2% | |||
2-4 | Electrostatic separation | France | Algeria | USA | Romania | China | Korea | Poland | Japan | Italy | Canada | |
39.0% | 26.2% | 15.6% | 15.6% | 9.2% | 6.4% | 4.3% | 3.5% | 2.8% | 2.8% | |||
3 | Use of plastic waste in the construction sector | China | USA | Australia | India | Spain | Italy | Brazil | Malaysia | UK | Portugal | |
17.5% | 13.1% | 8.4% | 7.2% | 7.0% | 6.0% | 4.7% | 4.0% | 4.0% | 3.3% | |||
3-1 | Use of recycled plastics in concrete | India | USA | IRAQ | China | Malaysia | Saudi Arabia | UK | Italy | Australia | Algeria | |
12.7% | 7.0% | 6.3% | 5.7% | 5.4% | 5.4% | 5.1% | 4.7% | 4.7% | 4.4% | |||
3-2 | Use of recycled plastics in asphalt | China | USA | Spain | Australia | India | Italy | Malaysia | Saudi Arabia | Turkey | Portugal | |
14.0% | 11.4% | 10.6% | 10.6% | 8.1% | 7.6% | 5.9% | 4.2% | 4.2% | 3.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchimoto, I.; Kajikawa, Y. Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis. Sustainability 2022, 14, 16340. https://doi.org/10.3390/su142416340
Tsuchimoto I, Kajikawa Y. Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis. Sustainability. 2022; 14(24):16340. https://doi.org/10.3390/su142416340
Chicago/Turabian StyleTsuchimoto, Ichiro, and Yuya Kajikawa. 2022. "Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis" Sustainability 14, no. 24: 16340. https://doi.org/10.3390/su142416340
APA StyleTsuchimoto, I., & Kajikawa, Y. (2022). Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis. Sustainability, 14(24), 16340. https://doi.org/10.3390/su142416340