Location Selection for Regional Logistics Center Based on Particle Swarm Optimization
Abstract
:1. Introduction
2. Problem Modeling
- is the number of demand points;
- is the number of candidate locations for the logistics center;
- is the number of logistics centers planned to be built;
- is the annual demand of the jth demand point;
- x is the volume of goods transported from logistics center i to demand point j;
- is the rate of transportation from the ith logistics center to the jth demand point;
- is the annual fixed cost of the logistics center at the ith candidate location;
- is the unit storage cost rate at the ith logistics center;
- is the volume of goods storage;
- .
3. Case Analysis
4. Result Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ouyang, R.; Beacher, M.R.; Ma, D.; Alam, N.E. Navigating concave regions in continuous facility location problems. Comput. Ind. Eng. 2020, 143, 106385. [Google Scholar] [CrossRef]
- Pakravan, P.; Behnamian, J. Undesirable facility location under uncertainty: Modeling and algorithm. Prod. Oper. Manag. 2019, 10, 1–23. [Google Scholar] [CrossRef]
- Fernández, P.; Lančinskas, A.; Pelegrín, B.; Žilinskas, J. A discrete competitive facility location model with minimal market share constraints and equity-based ties breaking rule. Informatica 2020, 31, 205–224. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Keum, H.-J.; Han, K.-Y.; Hong, W.-H. A hierarchical flood shelter location model for walking evacuation planning. Environ. Hazards 2021, 20, 432–455. [Google Scholar] [CrossRef]
- Rehman, A.U.; Abidi, M.H.; Umer, U.; Usmani, Y.S. Multi-criteria decision-making approach for selecting wind energy power plant locations. Sustainability 2019, 11, 6112. [Google Scholar] [CrossRef] [Green Version]
- Sennaroglu, B.; Varlik Celebi, G. A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transp. Res. Part D Transp. Environ. 2018, 59, 160–173. [Google Scholar] [CrossRef]
- Carrasco Heine, O.F.; Demleitner, A.; Matuschke, J. Bifactor approximation for location routing with vehicle and facility capacities. Eur. J. Oper. Res. 2023, 304, 429–442. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.-H.; Lei, H.; Wang, G.-G. Solving logistics distribution center location with improved cuckoo search algorithm. Int. J. Comput. Intell. Syst. 2020, 14, 676. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, K.; Liu, S.; Huang, B. A multi-objective optimization approach for health-care facility location-allocation problems in highly developed cities such as Hong Kong. Comput. Environ. Urban Syst. 2016, 59, 220–230. [Google Scholar] [CrossRef]
- Wang, W.; Yang, K.; Yang, L.; Gao, Z. Tractable Approximations for the distributionally robust conditional vertex p-center problem: Application to the location of high-speed railway emergency rescue stations. J. Oper. Res. Soc. 2022, 73, 525–539. [Google Scholar] [CrossRef]
- Fei, T.; Zhang, L.; Zhang, X.; Chen, Q.; Liang, J. Location Selection strategy of distribution centers based on artificial fish swarm algorithm improved by bacterial colony chemotaxis. J. Internet Technol. 2021, 22, 685–695. [Google Scholar]
- Chi, R.; Su, Y.; Qu, Z.; Chi, X. A Hybridization of cuckoo search and differential evolution for the logistics distribution center location problem. Math. Probl. Eng. 2019, 2019, e7051248. [Google Scholar] [CrossRef]
- Wang, F. Research on location selecting for logistics distribution center based on ant colony algorithm. J. Converg. Inf. Technol. 2012, 7, 255–262. [Google Scholar] [CrossRef]
- Wu, T.; Huang, L.; Liang, Z.; Zhang, X.; Zhang, C. A Supervised learning-driven heuristic for solving the facility location and production planning problem. Eur. J. Oper. Res. 2022, 301, 785–796. [Google Scholar] [CrossRef]
- Murray, A.T.; Church, R.L.; Feng, X. Single facility siting involving allocation decisions. Eur. J. Oper. Res. 2020, 284, 834–846. [Google Scholar] [CrossRef]
- Cheng, C.; Adulyasak, Y.; Rousseau, L.-M. Robust facility location under demand uncertainty and facility disruptions. Omega 2021, 103, 102429. [Google Scholar] [CrossRef]
- Hwang, K.; Asif, T.B.; Lee, T. Choice-driven location-allocation model for healthcare facility location problem. Flex. Serv. Manuf. J. 2022, 1, 1–26. [Google Scholar] [CrossRef]
- Aziz, H.; Chan, H.; Lee, B.E.; Parkes, D.C. The capacity constrained facility location problem. Games Econ. Behav. 2020, 124, 478–490. [Google Scholar] [CrossRef]
- Corberán, Á.; Landete, M.; Peiró, J.; Saldanha-da-Gama, F. The facility location problem with capacity transfers. Transp. Res. Part E Logist. Transp. Rev. 2020, 138, 101943. [Google Scholar] [CrossRef]
- Parragh, S.N.; Tricoire, F.; Gutjahr, W.J. A branch-and-benders-cut algorithm for a bi-objective stochastic facility location problem. OR Spectr. 2022, 44, 419–459. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Shen, J.; Gao, W. Emergency response facility location in transportation networks: A literature review. J. Traffic Transp. Eng. 2021, 8, 153–169. [Google Scholar] [CrossRef]
- Ge, H.; Goetz, S.J.; Cleary, R.; Yi, J.; Gómez, M.I. Facility locations in the fresh produce supply chain: An integration of optimization and empirical methods. Int. J. Prod. Econ. 2022, 249, 108534. [Google Scholar] [CrossRef]
- Blanco, V.; Gázquez, R.; Saldanha-da-Gama, F. Multi-type maximal covering location problems: Hybridizing discrete and continuous problems. Eur. J. Oper. Res. 2022; in press. [Google Scholar] [CrossRef]
- Wang, H.; Ran, H.; Dang, X. Location optimization of fresh agricultural products cold chain distribution center under carbon emission constraints. Sustainability 2022, 14, 6726. [Google Scholar] [CrossRef]
- Jalal, A.M.; Toso, E.A.V.; Tautenhain, C.P.S.; Nascimento, M.C.V. An integrated location—Transportation problem under value-added tax issues in pharmaceutical distribution planning. Expert Syst. Appl. 2022, 206, 117780. [Google Scholar] [CrossRef]
Number | Site (Km) | Demand (tons) | Fixed Costs (CNY Million) | Number | Site (Km) | Demand (tons) | Fixed Costs (CNY Million) |
---|---|---|---|---|---|---|---|
A01 | (01, 18) | 23 | 14 | A21 | (04, 07) | 5 | 18 |
A02 | (24, 20) | 23 | 19 | A22 | (19, 16) | 19 | 20 |
A03 | (21, 21) | 22 | 20 | A23 | (19, 21) | 23 | 11 |
A04 | (14, 03) | 23 | 12 | A24 | (04, 08) | 12 | 11 |
A05 | (16, 23) | 19 | 19 | A25 | (13, 08) | 23 | 20 |
A06 | (05, 10) | 10 | 12 | A26 | (24, 12) | 3 | 15 |
A07 | (20, 21) | 15 | 10 | A27 | (14, 15) | 15 | 11 |
A08 | (20, 05) | 16 | 14 | A28 | (02, 07) | 25 | 12 |
A09 | (06, 04) | 2 | 13 | A29 | (05, 01) | 4 | 12 |
A10 | (05, 23) | 25 | 12 | A30 | (23, 17) | 3 | 14 |
A11 | (11, 22) | 14 | 14 | A31 | (03, 12) | 25 | 17 |
A12 | (10, 24) | 4 | 10 | A32 | (03, 18) | 24 | 15 |
A13 | (05, 03) | 5 | 20 | A33 | (23, 22) | 23 | 17 |
A14 | (10, 03) | 15 | 18 | A34 | (18, 02) | 6 | 13 |
A15 | (25, 19) | 13 | 14 | A35 | (06, 21) | 24 | 20 |
A16 | (21, 13) | 16 | 12 | A36 | (12, 12) | 19 | 13 |
A17 | (22, 15) | 3 | 14 | A37 | (18, 09) | 8 | 19 |
A18 | (03, 22) | 14 | 18 | A38 | (03, 23) | 15 | 11 |
A19 | (07, 14) | 4 | 17 | A39 | (06, 01) | 12 | 20 |
A20 | (03, 19) | 8 | 19 | A40 | (25, 18) | 24 | 14 |
Users | Optimum Points by IGA | Users | Optimum Points by PSO | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A06 | A07 | A08 | A14 | A17 | A20 | A36 | A06 | A03 | A20 | A09 | A36 | A34 | A16 | ||
A01 | 23 | A01 | 23 | ||||||||||||
A02 | 23 | A02 | 23 | ||||||||||||
A03 | 22 | A04 | 23 | ||||||||||||
A04 | 23 | A05 | 19 | ||||||||||||
A05 | 19 | A07 | 15 | ||||||||||||
A09 | 2 | A08 | 16 | ||||||||||||
A10 | 25 | A10 | 25 | ||||||||||||
A11 | 14 | A11 | 14 | ||||||||||||
A12 | 4 | A12 | 4 | ||||||||||||
A13 | 5 | A13 | 5 | ||||||||||||
A15 | 13 | A14 | 15 | ||||||||||||
A16 | 16 | A15 | 13 | ||||||||||||
A18 | 14 | A17 | 3 | ||||||||||||
A19 | 4 | A18 | 14 | ||||||||||||
A21 | 5 | A19 | 4 | ||||||||||||
A22 | 19 | A21 | 5 | ||||||||||||
A23 | 23 | A22 | 19 | ||||||||||||
A24 | 12 | A23 | 23 | ||||||||||||
A25 | 23 | A24 | 12 | ||||||||||||
A26 | 3 | A25 | 23 | ||||||||||||
A27 | 15 | A26 | 3 | ||||||||||||
A28 | 25 | A27 | 15 | ||||||||||||
A29 | 4 | A28 | 25 | ||||||||||||
A30 | 3 | A29 | 4 | ||||||||||||
A31 | 25 | A30 | 3 | ||||||||||||
A32 | 24 | A31 | 25 | ||||||||||||
A33 | 23 | A32 | 24 | ||||||||||||
A34 | 6 | A33 | 23 | ||||||||||||
A35 | 24 | A35 | 24 | ||||||||||||
A37 | 8 | A37 | 8 | ||||||||||||
A38 | 15 | A38 | 15 | ||||||||||||
A39 | 12 | A39 | 12 | ||||||||||||
A40 | 24 | A40 | 24 | ||||||||||||
Total | 81 | 125 | 30 | 61 | 81 | 151 | 57 | Total | 81 | 162 | 151 | 38 | 57 | 45 | 52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Wang, X.; Chen, H. Location Selection for Regional Logistics Center Based on Particle Swarm Optimization. Sustainability 2022, 14, 16409. https://doi.org/10.3390/su142416409
Huang Y, Wang X, Chen H. Location Selection for Regional Logistics Center Based on Particle Swarm Optimization. Sustainability. 2022; 14(24):16409. https://doi.org/10.3390/su142416409
Chicago/Turabian StyleHuang, Yingyi, Xinyu Wang, and Hongyan Chen. 2022. "Location Selection for Regional Logistics Center Based on Particle Swarm Optimization" Sustainability 14, no. 24: 16409. https://doi.org/10.3390/su142416409
APA StyleHuang, Y., Wang, X., & Chen, H. (2022). Location Selection for Regional Logistics Center Based on Particle Swarm Optimization. Sustainability, 14(24), 16409. https://doi.org/10.3390/su142416409