Screening of Raw and Modified Biochars from Food Processing Wastes for the Removal of Phosphates, Nitrates, and Ammonia from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biochar
2.2. Sorption Experiments
2.2.1. Kinetic Experiment
2.2.2. Isotherm Experiment
2.3. Sorption Models
2.3.1. Kinetic Model
2.3.2. Isotherm Model
2.4. Biochar Characterization
2.5. Analytical Methods
3. Results and Discussion
3.1. Βiochar Characterization
3.2. Effect of Contact Time on Sorption Process
3.3. Sorption Isotherm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sirajo, L.; Zaini, M.A.A. Existing and Emerging Technologies for the Removal of Orthophosphate from Wastewater by Agricultural Waste Adsorbents: A Review. Biomass. Convers. Biorefinery 2022, 1–17. [Google Scholar] [CrossRef]
- Zamparas, M.; Zacharias, I. Restoration of Eutrophic Freshwater by Managing Internal Nutrient Loads. A Review. Sci. Total Environ. 2014, 496, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. [Google Scholar] [CrossRef]
- Tang, M.; Deng, Q.; Li, X.; Cao, X.; Zhang, Z.; Zhou, Y.; Sun, Q.; Song, C. The Effect of Natural Materials Used as Sediment Remediation on Phosphorus and Nitrogen Control in a Mesocosm. Environ. Sci. Eur. 2020, 32, 90. [Google Scholar] [CrossRef]
- Reddy, K.R.; Xie, T.; Dastgheibi, S. Nutrients Removal from Urban Stormwater by Different Filter Materials. Water Air Soil Pollut. 2014, 225, 1778. [Google Scholar] [CrossRef]
- Miao, Q.; Li, G. Potassium Phosphate/Magnesium Oxide Modified Biochars: Interfacial Chemical Behaviours and Pb Binding Performance. Sci. Total Environ. 2021, 759, 143452. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, R.; Hezarjaribi, M.; Ramasamy, D.L.; Sillanpää, M.; Pihlajamäki, A. Application of a Novel Biochar Adsorbent and Membrane to the Selective Separation of Phosphate from Phosphate-Rich Wastewaters. Chem. Eng. J. 2021, 407, 126494. [Google Scholar] [CrossRef]
- Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P. Environmental Impacts, Pollution Sources and Pathways of Spent Lithium-Ion Batteries. Energy Environ. Sci. 2021, 14, 6099–6121. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Pang, S. Advances in Thermochemical Conversion of Woody Biomass to Energy, Fuels and Chemicals. Biotechnol. Adv. 2019, 37, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ma, X.; Peng, X.; Yu, Z.; Fang, S.; Lin, Y.; Fan, Y. Combustion, Pyrolysis and Char CO2-Gasification Characteristics of Hydrothermal Carbonization Solid Fuel from Municipal Solid Wastes. Fuel 2016, 181, 905–915. [Google Scholar] [CrossRef]
- Liu, X.; Shen, F.; Qi, X. Adsorption Recovery of Phosphate from Aqueous Solution by CaO-Biochar Composites Prepared from Eggshell and Rice Straw. Sci. Total Environ. 2019, 666, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Sun, Y.; Fan, B.; Zhang, S.; Bolan, N.S.; Chen, Q.; Tsang, D.C.W. Fe/Al (Hydr)Oxides Engineered Biochar for Reducing Phosphorus Leaching from a Fertile Calcareous Soil. J. Clean. Prod. 2021, 279, 123877. [Google Scholar] [CrossRef]
- Roy, A.; Chaturvedi, S.; Singh, S.V.; Kasivelu, G.; Dhyani, V.C.; Pyne, S. Preparation and Evaluation of Two Enriched Biochar-Based Fertilizers for Nutrient Release Kinetics and Agronomic Effectiveness in Direct-Seeded Rice. Biomass Convers. Biorefinery 2022, 1–12. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Choudhury, B.U.; Hazarika, S.; Mishra, V.K. Developing Biochar and Organic Nutrient Packages/Technology as Soil Policy for Enhancing Yield and Nutrient Uptake in Maize-Black Gram Cropping System to Maintain Soil Health. Biomass Convers. Biorefinery 2022, 1–13. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R. Valorizing Biomass to Engineered Biochar and Its Impact on Soil, Plant, Water, and Microbial Dynamics: A Review. Biomass Convers. Biorefinery 2020, 12, 4183–4199. [Google Scholar] [CrossRef]
- Orfanos, A.G.; Manariotis, I.D.; Karapanagioti, H.K. Removal of Methylene Blue from Water by Food Industry By-Products and Biochars. Desalin. Water Treat. 2018, 103, 113–121. [Google Scholar] [CrossRef]
- Lykoudi, A.; Frontistis, Z.; Vakros, J.; Manariotis, I.D.; Mantzavinos, D. Degradation of Sulfamethoxazole with Persulfate Using Spent Coffee Grounds Biochar as Activator. J. Environ. Manag. 2020, 271, 111022. [Google Scholar] [CrossRef] [PubMed]
- Tombarkiewicz, B.; Antonkiewicz, J.; Lis, M.W.; Pawlak, K.; Trela, M.; Witkowicz, R.; Gorczyca, O. Chemical Properties of the Coffee Grounds and Poultry Eggshells Mixture in Terms of Soil Improver. Sci. Rep. 2022, 12, 2592. [Google Scholar] [CrossRef] [PubMed]
- Avramiotis, E.; Frontistis, Z.; Manariotis, I.D.; Vakros, J.; Mantzavinos, D. Oxidation of Sulfamethoxazole by Rice Husk Biochar-Activated Persulfate. Catalysts 2021, 11, 850. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K. Recovery of Silica from Rice Straw and Hus. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–490. ISBN 978-0-444-64321-6. [Google Scholar]
- Avramiotis, E.; Frontistis, Z.; Manariotis, I.D.; Vakros, J.; Mantzavinos, D. On the Performance of a Sustainable Rice Husk Biochar for the Activation of Persulfate and the Degradation of Antibiotics. Catalysts 2021, 11, 1303. [Google Scholar] [CrossRef]
- Waheed, M.; Yousaf, M.; Shehzad, A.; Inam-Ur-Raheem, M.; Khan, M.K.I.; Khan, M.R.; Ahmad, N.; Abdullah, R.M.A. Channelling Eggshell Waste to Valuable and Utilizable Products: A Comprehensive Review. Trends Food Sci. Technol. 2020, 106, 78–90. [Google Scholar] [CrossRef]
- Ajala, E.; Eletta, O.A.A.; Ajala, M.A.; Oyeniy, K. Characterization and Evaluation of Chicken Eggshell for Use as a Bio-Resource. Chem. Environ. Eng. 2018, 14, 26–40. [Google Scholar]
- Liu, H.; Liu, Y.; Tang, L.; Wang, J.; Yu, J.; Zhang, H.; Yu, M.; Zou, J.; Xie, Q. Egg Shell Biochar-Based Green Catalysts for the Removal of Organic Pollutants by Activating Persulfate. Sci. Total Environ. 2020, 745, 141095. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, E.; Kafa, N.; Koutsokeras, L.; Kouis, P.; Nikolaou, P.; Constantinides, G.; Vyrides, I. Turning Calcined Waste Egg Shells and Wastewater to Brushite: Phosphorus Adsorption from Aqua Media and Anaerobic Sludge Leach Water. J. Clean. Prod. 2018, 178, 419–428. [Google Scholar] [CrossRef]
- Yirong, C.; Vaurs, L.P. Wasted Salted Duck Eggshells as an Alternative Adsorbent for Phosphorus Removal. J. Environ. Chem. Eng. 2019, 7, 103443. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Yao, Y.; Xue, Y.; Inyang, M. Synthesis of Porous MgO-Biochar Nanocomposites for Removal of Phosphate and Nitrate from Aqueous Solutions. Chem. Eng. J. 2012, 210, 26–32. [Google Scholar] [CrossRef]
- Yang, F.; Chen, Y.; Nan, H.; Pei, L.; Huang, Y.; Cao, X.; Xu, X.; Zhao, L. Metal Chloride-Loaded Biochar for Phosphorus Recovery: Noteworthy Roles of Inherent Minerals in Precursor. Chemosphere 2021, 266, 128991. [Google Scholar] [CrossRef]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Okwuosa, U.C.; Ross, A.B. Recovery of Phosphate with Chemically Modified Biochars. J. Environ. Chem. Eng. 2016, 4, 1156–1165. [Google Scholar] [CrossRef]
- Thant Zin, M.M.; Kim, D.J. Simultaneous Recovery of Phosphorus and Nitrogen from Sewage Sludge Ash and Food Wastewater as Struvite by Mg-Biochar. J. Hazard. Mater. 2021, 403, 123704. [Google Scholar] [CrossRef]
- Weber, W.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Boyd, G.E.; Schubert, J.; Adamson, A.W. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. Ion-Exchange Equilibria. J. Am. Chem. Soc. 1947, 69, 2818–2829. [Google Scholar] [CrossRef] [PubMed]
- Reichenberg, D. Properties of Ion-Exchange Resins in Relation to Their Structure. Part I. Titration Curves. J. Chem. Soc. 1952, 2836, 3299–3303. [Google Scholar] [CrossRef]
- Tsavatopoulou, V.D.; Manariotis, I.D. The Effect of Surface Properties on the Formation of Scenedesmus Rubescens Biofilm. Algal Res. 2020, 52, 102095. [Google Scholar] [CrossRef]
- APHA; WEF; AWWA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; Clesceri, L.S., Greenberg, A.E., Eaton, A.D.A., Eds.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- Fresenius, W.; Quentin, K.E.; Schneider, W.; Bibo, F.-J.; Birke, H.; Böhm, H.; Czysz, W.; Gorbauch, H.; Hoffmann, H.J.; Rump, H.-H.; et al. Water Analysis; a Practical Guide to Physico-Chemical, Chemical and Microbiological Water Examination and Quality Assurance; Fresenius, W., Quentin, K.E., Schneider, W., Eds.; Deutsche Gesellschaft fur Technische Zusammenarbe: Bonn, Germany, 1988; ISBN 9788578110796. [Google Scholar]
- Akhtar, L.; Ahmad, M.; Iqbal, S.; Abdelhafez, A.A.; Mehran, M.T. Biochars’ Adsorption Performance towards Moxifloxacin and Ofloxacin in Aqueous Solution: Role of Pyrolysis Temperature and Biomass Type. Environ. Technol. Innov. 2021, 24, 101912. [Google Scholar] [CrossRef]
- Albalasmeh, A.; Gharaibeh, M.A.; Mohawesh, O.; Alajlouni, M.; Quzaih, M.; Masad, M.; El Hanandeh, A. Characterization and Artificial Neural Networks Modelling of Methylene Blue Adsorption of Biochar Derived from Agricultural Residues: Effect of Biomass Type, Pyrolysis Temperature, Particle Size. J. Saudi Chem. Soc. 2020, 24, 811–823. [Google Scholar] [CrossRef]
- Manariotis, I.D.; Fotopoulou, K.N.; Karapanagioti, H.K. Preparation and Characterization of Biochar Sorbents Produced from Malt Spent Rootlets. Ind. Eng. Chem. Res. 2015, 54, 9577–9584. [Google Scholar] [CrossRef]
- Stanienda-Pilecki, K.J. The Importance of Fourier-Transform Infrared Spectroscopy in the Identification of Carbonate Phases Differentiated in Magnesium Content. Spectroscopy 2019, 34, 32–42. [Google Scholar]
- Qian, L.; Guo, F.; Jia, X.; Zhan, Y.; Zhou, H.; Jiang, X.; Tao, C. Recent Development in the Synthesis of Agricultural and Forestry Biomass-Derived Porous Carbons for Supercapacitor Applications: A Review. Ionics 2020, 26, 3705–3723. [Google Scholar] [CrossRef]
- Andrade, T.S.; Vakros, J.; Mantzavinos, D.; Lianos, P. Biochar Obtained by Carbonization of Spent Coffee Grounds and Its Application in the Construction of an Energy Storage Device. Chem. Eng. J. Adv. 2020, 4, 100061. [Google Scholar] [CrossRef]
- Zhang, B.; Lens, P.N.L.; Shi, W.; Zhang, R.; Zhang, Z.; Guo, Y.; Bao, X.; Cui, F. Enhancement of Aerobic Granulation and Nutrient Removal by an Algal–Bacterial Consortium in a Lab-Scale Photobioreactor. Chem. Eng. J. 2018, 334, 2373–2382. [Google Scholar] [CrossRef]
- Cui, X.; Lu, M.; Khan, M.B.; Lai, C.; Yang, X.; He, Z.; Chen, G.; Yan, B. Hydrothermal Carbonization of Different Wetland Biomass Wastes: Phosphorus Reclamation and Hydrochar Production. Waste Manag. 2020, 102, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lou, X. Removal of Phosphorus Using Biochar Derived from Fenton Sludge: Mechanism and Performance Insights. Water Environ. Res. 2022, 94, e10763. [Google Scholar] [CrossRef]
- Sadeghi Afjeh, M.; Bagheri Marandi, G.; Zohuriaan-Mehr, M.J. Nitrate Removal from Aqueous Solutions by Adsorption onto Hydrogel-Rice Husk Biochar Composite. Water Environ. Res. 2020, 92, 934–947. [Google Scholar] [CrossRef]
- Campos, N.; Barbosa, C.; Rodrıguez-Dıaz, J.; Duarte, M. Removal of Naphthenic Acids Using Activated Charcoal: Kinetic and Equilibrium Studies. Adsorpt. Sci. Technol. 2018, 36, 1405–1421. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Labanya, R.; Srivastava, P.C.; Pachauri, S.P.; Shukla, A.K.; Shrivastava, M.; Srivastava, P. Kinetics of Micronutrients and S Adsorption onto Phyto-Biochars: Influence of Pyrolysis Temperatures and Properties of Phyto-Biochars. Biomass Convers. Biorefinery 2022, 1–15. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Chao, H.P. Effect of Pyrolysis Temperatures and Times on the Adsorption of Cadmium onto Orange Peel Derived Biochar. Waste Manag. Res. 2016, 34, 129–138. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Y.; Lee, X.; Wu, P.; Liu, F.; Zhang, X.; Li, L.; Chen, M. Environmental-Friendly Coal Gangue-Biochar Composites Reclaiming Phosphate from Water as a Slow-Release Fertilizer. Sci. Total Environ. 2021, 758, 143664. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating Biochar and Its Modifications for the Removal of Ammonium, Nitrate, and Phosphate in Water. Water Res. 2020, 186, 3321–3328. [Google Scholar] [CrossRef]
- Karunanithi, R.; Ok, Y.S.; Dharmarajan, R.; Ahmad, M.; Seshadri, B.; Bolan, N.; Naidu, R. Sorption, Kinetics and Thermodynamics of Phosphate Sorption onto Soybean Stover Derived Biochar. Environ. Technol. Innov. 2017, 8, 113–125. [Google Scholar] [CrossRef]
- Xue, S.; Zhang, X.; Ngo, H.H.; Guo, W.; Wen, H.; Li, C.; Zhang, Y.; Ma, C. Food Waste Based Biochars for Ammonia Nitrogen Removal from Aqueous Solutions. Bioresour. Technol. 2019, 292, 121927. [Google Scholar] [CrossRef] [PubMed]
- Ntzoufra, P.; Vakros, J.; Frontistis, Z.; Tsatsos, S.; Kyriakou, G.; Kennou, S.; Manariotis, I.D.; Mantzavinos, D. Effect of Sodium Persulfate Treatment on the Physicochemical Properties and Catalytic Activity of Biochar Prepared from Spent Malt Rootlets. J. Environ. Chem. Eng. 2021, 9, 105071. [Google Scholar] [CrossRef]
Material | Pzc | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) | Pore Width (Å) | Yield (%) |
---|---|---|---|---|---|---|
EGS | 9.0 | 96.9 | ||||
EGS400 | 10.0 | 0.95 | 0.0027 | 11.3 | 113.2 | 92.8 |
EGS800 | 10.3 | 0.51 | 0.0066 | 11.7 | 117.3 | 97.7 |
EGS400Mg | 11.4 | 0.56 | 0.0011 | 8.7 | 86.7 | 94.3 |
EGS800Mg | 11.3 | 0.14 | 0.0012 | 0.85 | 8.5 | |
RH | 7.0 | 44.3 | ||||
RH400 | 6.4 | 0.60 | 0.1032 | 1.2 | 11.5 | 30.7 |
RH800 | 10.0 | 253 | 0.1333 | 2.1 | 21.1 | 54.6 |
RH400Mg | 11.0 | 15.1 | 0.0363 | 9.6 | 96.1 | 33.3 |
RH800Mg | 11.8 | 115 | 0.0645 | 13.1 | 131.2 | |
Coffee | 6.1 | 34.5 | ||||
Coffee400 | 7.5 | 0.32 | 0.0061 | 11.7 | 117.2 | 24.6 |
Coffee800 | 6.2 | 109 | 0.0481 | 1.8 | 17.8 | 41.4 |
Coffee400Mg | 11.1 | 25.8 | 0.0879 | 13.6 | 136.4 | 36.9 |
Coffee800Mg | 11.6 | 37.2 | 0.1102 | 11.8 | 118.5 | 96.9 |
Material | Element (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | P | S | Si | Cl | K | Ca | |
EGS | 48.5 | 50.3 | 0.35 | 0.32 | 0.06 | 0.64 | ||||
EGS400 | 50.4 | 48.76 | 0.31 | 0.53 | ||||||
EGS800 | 52.21 | 47.2 | 0.33 | 0.26 | ||||||
EGS400Mg | 48.8 | 4.16 | 4.44 | 42.6 | ||||||
EGS800Mg | 50.1 | 0.23 | 5.14 | 3.35 | 2.68 | 38.50 | ||||
RH | 67.6 | 31.5 | 0.81 | |||||||
RH400 | 53.14 | 44.64 | 1.8 | 0.42 | ||||||
RH800 | 51.8 | 46.2 | 2.0 | |||||||
RH400Mg | 50.08 | 9.89 | 27.03 | 13.0 | ||||||
RH800Mg | 36.84 | 37.13 | 15.91 | 6.74 | 3.38 | |||||
Coffee | 60.8 | 38.74 | 0.12 | |||||||
Coffee400 | 62.6 | 37.13 | 0.12 | 0.15 | ||||||
Coffee800 | 63.25 | 36.48 | 0.12 | 0.15 | ||||||
Coffee400Mg | 42.4 | 20 | 37.6 | |||||||
Coffee800Mg | 44.7 | 35.3 | 20.0 |
Material | Kinetic Model | |||||||
---|---|---|---|---|---|---|---|---|
Pseudo First-Order | Pseudo Second-Order | |||||||
-k1p | qe | R2 | RSS | qe | k2p | R2 | RSS | |
(h−1) | (mg/g) | (mg/g) | (g/mg·h) | |||||
PO4−3-P | ||||||||
EGS400 | 0.041 | 8.39 | 0.790 | 3.1 | 8.67 | 0.008 | 0.997 | 24 |
EGS800 | 0.036 | 6.10 | 0.975 | 0.98 | 10.42 | 0.007 | 0.994 | 50 |
EGS400Mg | 0.030 | 26.64 | 0.979 | 70 | 35.71 | 0.001 | 0.989 | 16 |
EGS800Mg | 0.024 | 13.78 | 0.773 | 20 | 25.32 | 0.002 | 0.982 | 15 |
RH400 | 0.040 | 11.26 | 0.944 | 2.3 | 7.18 | 0.006 | 0.969 | 7.4 |
RH800 | 0.040 | 7.60 | 0.825 | 0.58 | 13.81 | 0.005 | 0.998 | 12 |
RH400Mg | 0.021 | 6.21 | 0.991 | 1.2 | 29.16 | 0.002 | 0.993 | 25 |
RH800Mg | 0.017 | 16.69 | 0.938 | 21 | 27.62 | 0.002 | 0.974 | 34 |
Coffee400 | 0.036 | 6.51 | 0.926 | 126 | 9.15 | 0.013 | 0.977 | 76 |
Coffee800 | 0.046 | 1.20 | 0.606 | 2.0 | 11.19 | 0.007 | 0.993 | 14 |
Coffee400Mg | 0.025 | 7.22 | 0.593 | 5.4 | 30.77 | 0.001 | 0.924 | 31 |
Coffee800Mg | 0.012 | 6.01 | 0.704 | 4.1 | 27.62 | 0.002 | 0.974 | 28 |
NO3−-N | ||||||||
EGS400 | 0.007 | 1.14 | 0.790 | 270 | 4.05 | 0.006 | 0.983 | 15 |
EGS800 | 0.033 | 3.74 | 0.968 | 302 | 2.58 | 0.024 | 0.984 | 5 |
EGS400Mg | 0.030 | 5.71 | 0.928 | 371 | 5.95 | 0.003 | 0.943 | 10 |
EGS800Mg | 0.030 | 2.15 | 0.956 | 229 | 2.20 | 0.008 | 0.960 | 28 |
RH400 | 0.034 | 9.56 | 0.939 | 205 | 4.25 | 0.012 | 0.995 | 1.2 |
RH800 | 0.031 | 5.13 | 0.893 | 149 | 8.60 | 0.003 | 0.988 | 17 |
RH400Mg | 0.022 | 1.56 | 0.944 | 222 | 2.71 | 0.026 | 0.999 | 50 |
RH800Mg | 0.022 | 4.49 | 0.982 | 352 | 6.31 | 0.002 | 0.999 | 3.4 |
Coffee400 | 0.017 | 1.67 | 0.923 | 347 | 4.25 | 0.012 | 0.995 | 6.8 |
Coffee800 | 0.041 | 4.27 | 0.860 | 318 | 2.62 | 0.007 | 0.957 | 3 |
Coffee400Mg | 0.021 | 2.03 | 0.956 | 249 | 3.04 | 0.021 | 0.991 | 11 |
Coffee800Mg | 0.032 | 5.20 | 0.864 | 308 | 7.08 | 0.001 | 0.913 | 34 |
NH3-N | ||||||||
EGS400 | 0.046 | 36.41 | 0.951 | 5.8 | 37.74 | 0.001 | 0.973 | 11 |
EGS800 | 0.053 | 32.83 | 0.937 | 1.8 | 37.74 | 0.001 | 0.987 | 12 |
EGS400Mg | 0.041 | 13.32 | 0.999 | 26 | 15.68 | 0.004 | 0.998 | 15 |
EGS800Mg | 0.025 | 13.91 | 0.978 | 61 | 19.92 | 0.001 | 0.957 | 12 |
RH400 | 0.035 | 42.39 | 0.987 | 7.5 | 19.23 | 0.001 | 0.987 | 13 |
RH800 | 0.035 | 47.21 | 0.964 | 4.5 | 40.32 | 0.001 | 0.971 | 3.4 |
RH400Mg | 0.030 | 13.91 | 0.836 | 136 | 21.19 | 0.002 | 0.980 | 2.1 |
RH800Mg | 0.098 | 11.14 | 0.971 | 37 | 10.00 | 0.012 | 0.993 | 6.3 |
Coffee400 | 0.036 | 29.91 | 0.967 | 9.7 | 47.39 | 0.001 | 0.757 | 1.9 |
Coffee800 | 0.035 | 36.80 | 0.879 | 96 | 40.32 | 0.001 | 0.971 | 2.21 |
Coffee400Mg | 0.033 | 12.10 | 0.984 | 19 | 21.19 | 0.002 | 0.980 | 9.1 |
Coffee800Mg | 0.019 | 14.74 | 0.858 | 49 | 10.00 | 0.012 | 0.993 | 3.2 |
Material | Isotherm Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Linear | Langmuir | Freundlich | |||||||||
KH | R2 | RSS | qmax | KL | R2 | RSS | KF | N | R2 | RSS | |
(L/g) | (mg/g) | (L/mg) | (mg/g)(L/mg)N | ||||||||
PO4−3-P | |||||||||||
EGS800 | 0.73 | 0.465 | 13 | 11.45 | 0.41 | 0.927 | 6.9 | 1.21 | 0.78 | 0.850 | 2.8 |
EGS800Mg | 0.29 | 0.206 | 16 | 4.63 | 0.66 | 0.974 | 62 | 1.10 | 0.49 | 0.850 | 1.1 |
RH800 | 0.3 | 0.365 | 16 | 4.37 | 1.73 | 0.995 | 52 | 1.23 | 0.40 | 0.632 | 0.22 |
RH800Mg | 0.41 | 0.438 | 15 | 6.62 | 0.43 | 0.941 | 33 | 1.09 | 0.43 | 0.908 | 0.01 |
NO3−-N | |||||||||||
EGS800 | 0.26 | 0.39 | 12 | 3.04 | 2.48 | 0.998 | 7.6 | 1.19 | 0.31 | 0.604 | 2.3 |
EGS800Mg | 0.13 | 0.148 | 13 | 1.71 | 0.93 | 0.983 | 3.5 | 0.96 | 0.21 | 0.857 | 1.9 |
RH800 | 0.41 | 0.96 | 10 | 4.79 | 6.63 | 1 | 1.8 | 1.47 | 0.29 | 0.292 | 0.23 |
RH800Mg | 0.41 | 0.427 | 11 | 5.24 | 0.63 | 0.965 | 3.2 | 1.47 | 0.29 | 0.877 | 0.3 |
NH3-N | |||||||||||
EGS800 | 1.06 | 0.164 | 7 | 11.59 | 1.14 | 0.982 | 1.8 | 1.47 | 0.72 | 0.634 | 8.0 |
EGS800Mg | 0.79 | 0.413 | 9 | 9.54 | 0.69 | 0.97 | 4.9 | 1.32 | 0.69 | 0.737 | 2.6 |
RH800 | 0.28 | 0.669 | 12 | 4.01 | 0.4 | 0.929 | 82 | 0.99 | 0.51 | 0.974 | 4.9 |
RH800Mg | 0.86 | 0.355 | 8.5 | 10.34 | 0.62 | 0.941 | 4.4 | 0.99 | 0.51 | 0.753 | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biliani, S.E.; Vakros, J.; Manariotis, I.D. Screening of Raw and Modified Biochars from Food Processing Wastes for the Removal of Phosphates, Nitrates, and Ammonia from Water. Sustainability 2022, 14, 16483. https://doi.org/10.3390/su142416483
Biliani SE, Vakros J, Manariotis ID. Screening of Raw and Modified Biochars from Food Processing Wastes for the Removal of Phosphates, Nitrates, and Ammonia from Water. Sustainability. 2022; 14(24):16483. https://doi.org/10.3390/su142416483
Chicago/Turabian StyleBiliani, Styliani E., John Vakros, and Ioannis D. Manariotis. 2022. "Screening of Raw and Modified Biochars from Food Processing Wastes for the Removal of Phosphates, Nitrates, and Ammonia from Water" Sustainability 14, no. 24: 16483. https://doi.org/10.3390/su142416483
APA StyleBiliani, S. E., Vakros, J., & Manariotis, I. D. (2022). Screening of Raw and Modified Biochars from Food Processing Wastes for the Removal of Phosphates, Nitrates, and Ammonia from Water. Sustainability, 14(24), 16483. https://doi.org/10.3390/su142416483