Spatial Distribution Characteristics of Soil Salt Ions in Tumushuke City, Xinjiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Methodology
3. Results and Discussion
3.1. Salinization Types
3.2. Descriptive Statistical Analysis of SO42− and Cl−
3.3. Geostatistical Analysis
3.4. Pearson Correlation Analysis
3.5. Spatial Distribution Characteristics Analysis of SO42− and Cl−
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Deng, C.; Liu, Y.; Niu, Z. Identifying change in spatial accumulation of soil salinity in an inland river watershed, China. Sci. Total Environ. 2018, 621, 177–185. [Google Scholar] [CrossRef]
- Sun, G.; Zhu, Y.; Ye, M.; Yang, Y.; Yang, J.; Mao, W.; Wu, J. Regional soil salinity spatiotemporal dynamics and improved temporal stability analysis in arid agricultural areas. J. Soils Sediments 2021, 22, 272–292. [Google Scholar] [CrossRef]
- Hamzehpour, N.; Bogaert, P. Improved spatiotemporal monitoring of soil salinity using filtered kriging with measurement errors: An application to the West Urmia Lake, Iran. Geoderma 2017, 295, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Peng, J.; Biswas, A.; Hu, J.; Zhao, R.; He, K.; Shi, Z. Characterising dryland salinity in three dimensions. Sci. Total Environ. 2019, 682, 190–199. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, F.; Wang, C.; Wu, S.; Liu, J.; Xu, A.; Pan, K.; Pan, X. Estimating the soil salinity over partially vegetated surfaces from multispectral remote sensing image using non-negative matrix factorization. Geoderma 2019, 354, 113887. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Wang, S.; Liu, H.; Fu, G.; Xiong, Y. Spatial distribution of soil salinity and potential implications for soil management in the Manas River watershed, China. Soil Use Manag. 2019, 36, 93–103. [Google Scholar] [CrossRef]
- Yang, D.; Yan, C.; Zhang, J.; Liu, S.; Li, J. Chloride threshold value and initial corrosion time of steel bars in concrete exposed to saline soil environments. Constr. Build. Mater. 2021, 267, 120979. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Deng, D.; Xie, Y.; Long, G.; Tang, X. Physical sulfate attack on concrete lining–A field case analysis. Case Stud. Constr. Mater. 2017, 6, 206–212. [Google Scholar] [CrossRef]
- Yu, D.; Feng, C.; Fu, T.; Shen, A. Effect of Sulfate Concentration on Chloride Diffusion of Concrete under Cyclic Load. Materials 2022, 15, 2036. [Google Scholar] [CrossRef]
- Wang, B.; Pan, J.; Fang, R.; Wang, Q. Damage model of concrete subjected to coupling chemical attacks and freeze-thaw cycles in saline soil area. Constr. Build. Mater. 2020, 242, 118205. [Google Scholar] [CrossRef]
- Liao, K.-X.; Zhang, Y.-P.; Zhang, W.-P.; Wang, Y.; Zhang, R.-L. Modeling constitutive relationship of sulfate-attacked concrete. Constr. Build. Mater. 2020, 260, 119902. [Google Scholar] [CrossRef]
- Maes, M.; De Belie, N. Influence of chlorides on magnesium sulphate attack for mortars with Portland cement and slag based binders. Constr. Build. Mater. 2017, 155, 630–642. [Google Scholar] [CrossRef]
- Du, J.; Tang, Z.; Li, G.; Yang, H.; Li, L. Key inhibitory mechanism of external chloride ions on concrete sulfate attack. Constr. Build. Mater. 2019, 225, 611–619. [Google Scholar] [CrossRef]
- Li, J.; Pu, L.; Han, M.; Zhu, M.; Zhang, R.; Xiang, Y. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 2014, 24, 943–960. [Google Scholar] [CrossRef]
- Wang, R.; Wan, S.; Sun, J.; Xiao, H. Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation. Agric. Water Manag. 2018, 209, 20–31. [Google Scholar] [CrossRef]
- Butcher, K.; Wick, A.F.; DeSutter, T.; Chatterjee, A.; Harmon, J. Soil Salinity: A Threat to Global Food Security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil science. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Hu, Z.; Wei, F.; Wen, X.; Li, X.; Dai, L.; Liu, L. Study on Concrete Deterioration in Different NaCl-Na2SO4 Solutions and the Mechanism of Cl− Diffusion. Materials 2021, 14, 5054. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Shao, W. Effect of mixed chlorides on the degradation and sulfate diffusion of cast-in-situ concrete due to sulfate attack. Constr. Build. Mater. 2018, 181, 49–58. [Google Scholar] [CrossRef]
- Yang, D.; Yan, C.; Liu, S.; Jia, Z.; Wang, C. Prediction of Concrete Compressive Strength in Saline Soil Environments. Materials 2022, 15, 4663. [Google Scholar] [CrossRef]
- Institute of Agricultural Resources and Regional Planning, CAAS. Soil Testing Part 17: Method for Determination of Soil Chloride Iron Content; NY/T1121.17-2006; Chinese Agricultural Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Institute of Agricultural Resources and Regional Planning, CAAS. Soil Testing Part 18: Method for Determination of Soil Sulfate Content; NY/T1121.18-2006; Chinese Agricultural Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Hojati, S. Use of spatial statistics to identify hotspots of lead and copper in selected soils from north of Khuzestan Province, southwestern Iran. Arch. Agron. Soil Sci. 2018, 65, 654–669. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J. Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method. Agric. Water Manag. 2010, 97, 1961–1970. [Google Scholar] [CrossRef]
- Liu, Q.; Hanati, G.; Danierhan, S.; Liu, G.; Zhang, Y.; Zhang, Z. Identifying Seasonal Accumulation of Soil Salinity with Three-Dimensional Mapping—A Case Study in Cold and Semiarid Irrigated Fields. Sustainability 2020, 12, 6645. [Google Scholar] [CrossRef]
- Wang, K. Climate and Evaluation of Crystallizable Erosion of Concrete by Sulfates in Water and Soil. Site Investig. Sci. Technol. 2007, 1, 34–38. (In Chinese) [Google Scholar]
- Behera, S.K.; Shukla, A.K. Spatial Distribution of Surface Soil Acidity, Electrical Conductivity, Soil Organic Carbon Content and Exchangeable Potassium, Calcium and Magnesium in Some Cropped Acid Soils of India. Land Degrad. Dev. 2014, 26, 71–79. [Google Scholar] [CrossRef]
- Aghasi, B.; Jalalian, A.; Khademi, H.; Toomanian, N. Sub-basin scale spatial variability of soil properties in Central Iran. Arab. J. Geosci. 2017, 10, 136. [Google Scholar] [CrossRef]
- De Caires, S.A.; Wuddivira, M.N.; Bramble, D.S.E.; Atwell, M.; Roopnarine, R.; Farrick, K.K. Soil Sampling Strategies for the Characterization of Spatial Variability Under Two Distinct Land Uses. Commun. Soil Sci. Plant Anal. 2021, 52, 2217–2240. [Google Scholar] [CrossRef]
- Li, S.; Lu, L.; Gao, Y.; Zhang, Y.; Shen, D. An Analysis on the Characteristics and Influence Factors of Soil Salinity in the Wasteland of the Kashgar River Basin. Sustainability 2022, 14, 3500. [Google Scholar] [CrossRef]
- Li, H.Y.; Shi, Z.; Webster, R.; Triantafilis, J. Mapping the three-dimensional variation of soil salinity in a rice-paddy soil. Geoderma 2013, 195–196, 31–41. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, K.; Shao, C.; Wang, C.; Ente, M.; Wang, Z.; Zhang, D.; Li, K. Spatial distribution of Gasterophilus pecorum (Diptera) eggs in the desert steppe of the Kalamaili Nature Reserve (Xinjiang, China). BMC Ecol. Evol. 2021, 21, 169. [Google Scholar] [CrossRef]
- Pang, S.; Li, T.-X.; Zhang, X.-F.; Wang, Y.-D.; Yu, H.-Y. Spatial variability of cropland lead and its influencing factors: A case study in Shuangliu county, Sichuan province, China. Geoderma 2011, 162, 223–230. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Lu, F.; Cao, J.; Li, P.; Fu, T.; Chen, G.; Su, Q. Three-dimensional mapping of soil salinity in the southern coastal area of Laizhou Bay, China. Land Degrad. Dev. 2018, 29, 3772–3782. [Google Scholar] [CrossRef]
- Xu, L.; Du, H.; Zhang, X. Spatial Distribution Characteristics of Soil Salinity and Moisture and Its Influence on Agricultural Irrigation in the Ili River Valley, China. Sustainability 2019, 11, 7142. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Yang, B.; Li, J.; Wang, R.; Liu, T.; Xiao, H. Characteristics of soil water and salt associated with Tamarix ramosissima communities during normal and dry periods in a semi-arid saline environment. Catena 2020, 193, 104661. [Google Scholar] [CrossRef]
- Li, X.-M.; Yang, J.-S.; Liu, M.-X.; Liu, G.-M.; Yu, M. Spatio-Temporal Changes of Soil Salinity in Arid Areas of South Xinjiang Using Electromagnetic Induction. J. Integr. Agric. 2012, 11, 1365–1376. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Wang, B.; Sun, Y.; Cui, G.; Liang, Z. Analysis of spatial-temporal variation of the saline-sodic soil in the west of Jilin Province from 1989 to 2019 and influencing factors. Catena 2022, 217, 106492. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Zhang, P.; Zhang, G. Spatial Distribution Characteristics and Analysis of Saline-alkali Land in Northern Xinjiang. J. Agric. Sci. Technol. 2020, 22, 141–148. (In Chinese) [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
Soil Depth/cm | Cl−/SO42− | Salinization Type |
---|---|---|
0–30 | 0.87 | Chloride-sulfate type |
30–60 | 0.77 | Chloride-sulfate type |
60–100 | 0.82 | Chloride-sulfate type |
Soil Depth/cm | Average (mg/kg) | Standard Deviation (mg/kg) | Min. (mg/kg) | Max. (mg/kg) | Coefficient of Variation (CV) | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|
SO42− | 0–30 | 7037.08 | 5457.64 | 96 | 29,380 | 1.14 | 1.468 | 3.002 |
30–60 | 4431.15 | 3994.37 | 192 | 25,570 | 0.78 | 1.585 | 3.375 | |
60–100 | 3212.81 | 3674.58 | 96 | 21,570 | 0.90 | 1.844 | 3.902 | |
Cl− | 0–30 | 6018.94 | 7606.24 | 359 | 69,154 | 1.34 | 3.608 | 18.934 |
30–60 | 3449.14 | 4618.32 | 285 | 59,782 | 1.22 | 6.470 | 64.821 | |
60–100 | 2639.83 | 3246.40 | 107 | 27,442 | 1.26 | 4.183 | 21.534 |
Soil Depth/cm | Model | C0 | C0 + C | C0/(C0 + C) | A/km | R2 | |
---|---|---|---|---|---|---|---|
SO42− | 0–30 | Exponential | 136 | 1040 | 0.131 | 0.063 | 0.619 |
30–60 | Exponential | 225 | 1607 | 0.140 | 0.054 | 0.422 | |
60–100 | Exponential | 167 | 1361 | 0.123 | 0.048 | 0.705 | |
Cl− | 0–30 | Spherical | 320 | 5780 | 0.055 | 0.031 | 0.052 |
30–60 | Gaussian | 414 | 2123 | 0.195 | 0.023 | 0.009 | |
60–100 | Exponential | 117 | 1047 | 0.112 | 0.039 | 0.298 |
SO42− | Cl− | Soil Depth | Longitude | Latitude | |
---|---|---|---|---|---|
SO42− | 1 | ||||
Cl− | 0.574 ** | 1 | |||
Soil depth | –0.331 ** | –0.244 ** | 1 | ||
Longitude | 0.140 ** | 0.092 ** | - | 1 | |
Latitude | 0.255 ** | 0.130 ** | - | - | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Ma, Y.; Li, G.; Huang, W.; Zhao, H.; Cao, G.; Wang, A. Spatial Distribution Characteristics of Soil Salt Ions in Tumushuke City, Xinjiang. Sustainability 2022, 14, 16486. https://doi.org/10.3390/su142416486
Jiang X, Ma Y, Li G, Huang W, Zhao H, Cao G, Wang A. Spatial Distribution Characteristics of Soil Salt Ions in Tumushuke City, Xinjiang. Sustainability. 2022; 14(24):16486. https://doi.org/10.3390/su142416486
Chicago/Turabian StyleJiang, Xuemei, Yuwei Ma, Gang Li, Wei Huang, Hongyan Zhao, Guangming Cao, and Aiqin Wang. 2022. "Spatial Distribution Characteristics of Soil Salt Ions in Tumushuke City, Xinjiang" Sustainability 14, no. 24: 16486. https://doi.org/10.3390/su142416486
APA StyleJiang, X., Ma, Y., Li, G., Huang, W., Zhao, H., Cao, G., & Wang, A. (2022). Spatial Distribution Characteristics of Soil Salt Ions in Tumushuke City, Xinjiang. Sustainability, 14(24), 16486. https://doi.org/10.3390/su142416486