The Vagueness of COLREG versus Collision Avoidance Techniques—A Discussion on the Current State and Future Challenges Concerning the Operation of Autonomous Ships
Abstract
:1. Introduction
2. Information Sources
2.1. Grey Literature
- General COLREG compliance;
- The role and responsibilities of the master;
- Terminology within COLREG;
- Lack of clarity;
- Detection of signals (i.e., remote sensing);
- The role and responsibilities of the remote operator.
2.2. Scientific Sources
3. Autonomous COLREG
3.1. Steering and Sailing Rules
3.1.1. Vagueness of Rules
3.1.2. Safe Passing Distance and Wheel-Over Point
3.1.3. Giving Way
3.1.4. Restricted Visibility
3.2. Look-Out
3.2.1. Sources of Information about Other Ships
3.2.2. Lights, Shapes, and Signals
3.3. Collision Avoidance Methods Considering COLREG
3.3.1. Method—Literature Review
- COLREG has been applied to design the penalty of different actions in the deep reinforcement learning framework [91].
- TS = ((autonomous OR unmanned) AND (COLREG$ OR “collision regulations” OR “international regulations for preventing collisions at sea”)).
3.3.2. Results and Analysis
3.4. Limitations
4. Discussion
4.1. Current State
4.2. Future Challenges
- Correctness of the algorithms, meaning that these are properly designed in a pre-operational phase of the system;
- Feasibility of the algorithms (i.e., their applicability to the given situation) and the ability of the system to implement their output;
- The ability of the system to observe the surroundings, as well as to collect input data required by the algorithms to properly calculate and execute the maneuver [113].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, C.; Wróbel, K.; Montewka, J.; Gil, M.; Wan, C.; Zhang, D. A framework to identify factors influencing navigational risk for Maritime Autonomous Surface Ships. Ocean Eng. 2020, 202, 107188. [Google Scholar] [CrossRef]
- Wróbel, K.; Gil, M.; Krata, P.; Olszewski, K.; Montewka, J. On the use of leading safety indicators in maritime and their feasibility for Maritime Autonomous Surface Ships. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2021, 1748006X2110276. [Google Scholar] [CrossRef]
- Ziajka-Poznańska, E.; Montewka, J. Costs and Benefits of Autonomous Shipping—A Literature Review. Appl. Sci. 2021, 11, 4553. [Google Scholar] [CrossRef]
- Kooij, C.; Colling, A.P.; Benson, C.L. When will autonomous ships arrive? A technological forecasting perspective. In Proceedings of the International Naval Engineering Conference and Exhibition (INEC), Muscat, Oman, 5–7 November 2019; Volume 14. [Google Scholar]
- Burmeister, H.-C.; Bruhn, W.C.; Walther, L. Interaction of Harsh Weather Operation and Collision Avoidance in Autonomous Navigation. TransNav. Int. J. Mar. Navig. Saf. Sea Transp. 2015, 9, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Gelder, P.H.A.J.M. Van Collision risk measure for triggering evasive actions of maritime autonomous surface ships. Saf. Sci. 2020, 127, 104708. [Google Scholar] [CrossRef]
- Perera, L.P.; Carvalho, J.P.; Guedes Soares, C. Autonomous guidance and navigation based on the COLREGs rules and regulations of collision avoidance. In Proceedings of the PInternational Workshop “Advanced Ship Design for Pollution Prevention”, Split, Croatia, 23–24 November 2009; Guedes Soares, C., Parunov, J., Eds.; Taylor & Francis Group: Oxfordshire, UK, 2009; pp. 205–216. [Google Scholar]
- Boviatsis, M.; Vlachos, G. Sustainable Operation of Unmanned Ships under Current International Maritime Law. Sustainability 2022, 14, 7369. [Google Scholar] [CrossRef]
- EMSA. Annual Overview of Marine Casualties and Incidents 2020; EMSA: Lisbon, Portugal, 2020. [Google Scholar]
- Zhao, X.; Yuan, H.; Yu, Q. Autonomous vessels in the Yangtze river: A study on the maritime accidents using data-driven bayesian networks. Sustainability 2021, 13, 9985. [Google Scholar] [CrossRef]
- Ozturk, U.; Cicek, K. Individual collision risk assessment in ship navigation: A systematic literature review. Ocean Eng. 2019, 180, 130–143. [Google Scholar] [CrossRef]
- Chauvin, C.; Lardjane, S. Decision making and strategies in an interaction situation: Collision avoidance at sea. Transp. Res. Part F Traffic Psychol. Behav. 2008, 11, 259–269. [Google Scholar] [CrossRef]
- Gil, M. A concept of critical safety area applicable for an obstacle-avoidance process for manned and autonomous ships. Reliab. Eng. Syst. Saf. 2021, 214, 107806. [Google Scholar] [CrossRef]
- Szlapczynski, R.; Szlapczynska, J. On evolutionary computing in multi-ship trajectory planning. Appl. Intell. 2012, 37, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Szłapczyński, R.; Szłapczyńska, J. Review of ship safety domains: Models and applications. Ocean Eng. 2017, 145, 277–289. [Google Scholar] [CrossRef]
- Szłapczyński, R.; Szłapczyńska, J. A ship domain-based model of collision risk for near-miss detection and Collision Alert Systems. Reliab. Eng. Syst. Saf. 2021, 214, 107766. [Google Scholar] [CrossRef]
- Wróbel, K.; Gil, M.; Chae, C.-J. On the Influence of Human Factors on Safety of Remotely-Controlled Merchant Vessels. Appl. Sci. 2021, 11, 1145. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, D.; Yao, H.; Zhang, K. A probabilistic model of human error assessment for autonomous cargo ships focusing on human–autonomy collaboration. Saf. Sci. 2020, 130, 104838. [Google Scholar] [CrossRef]
- Gil, M.; Wróbel, K.; Montewka, J. Toward a Method Evaluating Control Actions in STPA-Based Model of Ship-Ship Collision Avoidance Process. J. Offshore Mech. Arct. Eng. 2019, 141, 051105. [Google Scholar] [CrossRef]
- Sotiralis, P.; Ventikos, N.P.; Hamann, R.; Golyshev, P.; Teixeira, A.P. Incorporation of human factors into ship collision risk models focusing on human centred design aspects. Reliab. Eng. Syst. Saf. 2016, 156, 210–227. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Jiang, L.; An, L.; Yang, R. Collision-avoidance navigation systems for Maritime Autonomous Surface Ships: A state of the art survey. Ocean Eng. 2021, 235, 109380. [Google Scholar] [CrossRef]
- Porathe, T.; Hoem, Å.; Johnsen, S. At least as safe as manned shipping? Autonomous shipping, safety and “human error”. In Proceedings of the Safety and Reliability–Safe Societies in a Changing World, Proceedings of ESREL, Trondheim, Norway, 17–21 June 2018; Haugen, S., Ed.; aylor & Francis Group: Oxfordshire, UK, 2018; pp. 417–425. [Google Scholar]
- International Maritime Organization Maritime Safety Committee. Summary of Results of the Second Step and Conclusion of the RSE for the International Regulations for Preventing Collisions at Sea 1972 (COLREG); International Maritime Organization Maritime Safety Committee: London, UK, 2020. [Google Scholar]
- Li, M.; Mou, J.; He, Y.; Zhang, X.; Xie, Q.; Chen, P. Dynamic trajectory planning for unmanned ship under multi-object environment. J. Mar. Sci. Technol. 2022, 27, 173–185. [Google Scholar] [CrossRef]
- Perera, L.P.; Batalden, B.-M. Possible COLREGs Failures under Digital Helmsman of Autonomous Ships. In Proceedings of the OCEANS 2019-MTS/IEEE, Marseille, France, 17–20 June 2019; pp. 1–7. [Google Scholar]
- Danish Maritime Authority. Analysis of Regulatory Barriers to the Use of Autonomous Ships; Danish Maritime Authority: Copenhagen, Denmark, 2017. [Google Scholar]
- Bureau Veritas. Guidelines for Autonomous Shipping; Bureau Veritas: Paris, Frane, 2019; Volume NI 641 DT. [Google Scholar]
- DNV-GL. Autonomous and Remotely Operated Ships-Class Guideline; DNV-GL: Høvik, Norway, 2018. [Google Scholar]
- Wróbel, K.; Gil, M.; Montewka, J. Identifying research directions of a remotely-controlled merchant ship by revisiting her system-theoretic safety control structure. Saf. Sci. 2020, 129, 104797. [Google Scholar] [CrossRef]
- Thieme, C.A.; Utne, I.B.; Haugen, S. Assessing ship risk model applicability to Marine Autonomous Surface Ships. Ocean Eng. 2018, 165, 140–154. [Google Scholar] [CrossRef]
- Wróbel, K.; Montewka, J.; Kujala, P. System-theoretic approach to safety of remotely-controlled merchant vessel. Ocean Eng. 2018, 152, 334–345. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Z.; Wang, F.; Wu, Z. A system-theoretic approach to safety and security co-analysis of autonomous ships. Ocean Eng. 2021, 222, 108569. [Google Scholar] [CrossRef]
- Baldauf, M.; Kitada, M.; Mehdi, R.; Dalaklis, D. E-navigation, digitalization and unmanned ships: Challenges for future maritime education and training. In Proceedings of the INTED2018 Conference, Valencia, Spain, 5–7 March 2018; pp. 9525–9530. [Google Scholar]
- Endsley, M.R. Toward a Theory of Situation Awareness in Dynamic Systems. Hum. Factors J. Hum. Factors Ergon. Soc. 1995, 37, 32–64. [Google Scholar] [CrossRef]
- Wright, R.G. Intelligent Autonomous Ship Navigation using Multi-Sensor Modalities. TransNav. Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 503–510. [Google Scholar] [CrossRef]
- Man, Y.; Lundh, M.; Porathe, T.; Mackinnon, S. From desk to field—Human factor issues in remote monitoring and controlling of autonomous unmanned vessels. Procedia Manuf. 2015, 3, 2674–2681. [Google Scholar] [CrossRef]
- Ramos, M.A.; Utne, I.B.; Mosleh, A. On factors affecting autonomous ships operators performance in a Shore Control Center. In Proceedings of the PSAM14, Los Angeles, CA, USA, 16–21 September 2018. [Google Scholar]
- Veitch, E.; Hynnekleiv, A.; Lützhöft, M. The operator’s stake in shore control centre design: A stakeholder analysis for autonomous ships. In Proceedings of the RINA, Royal Institution of Naval Architects—International Conference on Human Factors, London, UK, 19–20 February 2020; pp. 23–30. [Google Scholar]
- Yoshida, M.; Shimizu, E.; Sugomori, M.; Umeda, A. Regulatory Requirements on the Competence of Remote Operator in Maritime Autonomous Surface Ship: Situation Awareness, Ship Sense and Goal-Based Gap Analysis. Appl. Sci. 2020, 10, 8751. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Liu, Z.J.; Wu, Z.L.; Wang, F.W. Quantitative Processing of Situation Awareness for Autonomous Ships Navigation. TransNav. Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Dybvik, H.; Veitch, E.; Steinert, M. Exploring challenges with designing and developing Shore Control Centers (SCC) for autonomous ships. In Proceedings of the DESIGN 2020 16th International Design Conference, Manizales Colombia, 15–20 June 2020; Volume 1, pp. 847–856. [Google Scholar]
- Porathe, T. Maritime Autonomous Surface Ships (MASS) and the COLREGS: Do We Need Quantified Rules Or Is “the Ordinary Practice of Seamen” Specific Enough? TransNav. Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 511–517. [Google Scholar] [CrossRef]
- Miyoshi, T.; Fujimoto, S.; Rooks, M. Study of Principles in COLREGs and Interpretations and Amendments COLREGs for Maritime Autonomous Surface Ships (MASS). Trans. Navig. 2021, 6, 11–18. [Google Scholar]
- Allen, C.H. The seabots are coming here: Should they be treated as vessels? J. Navig. 2012, 65, 749–752. [Google Scholar] [CrossRef]
- IMO MASS-JWG. Report of MSC-LEG-FAL Joint Working Group on Maritime Autonomous Surface Ships on Its First Session; IMO: London, UK, 2022. [Google Scholar]
- Akdağ, M.; Solnør, P.; Johansen, T.A. Collaborative collision avoidance for Maritime Autonomous Surface Ships: A review. Ocean Eng. 2022, 250, 110920. [Google Scholar] [CrossRef]
- Bakdi, A.; Vanem, E. Fullest COLREGs Evaluation Using Fuzzy Logic for Collaborative Decision-Making Analysis of Autonomous Ships in Complex Situations. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18433–18445. [Google Scholar] [CrossRef]
- He, Y.; Jin, Y.; Huang, L.; Xiong, Y.; Chen, P.; Mou, J. Quantitative analysis of COLREG rules and seamanship for autonomous collision avoidance at open sea. Ocean Eng. 2017, 140, 281–291. [Google Scholar] [CrossRef]
- Pedersen, T.A.; Glomsrud, J.A.; Ruud, E.-L.; Simonsen, A.; Sandrib, J.; Eriksen, B.-O.H. Towards simulation-based verification of autonomous navigation systems. Saf. Sci. 2020, 129, 104799. [Google Scholar] [CrossRef]
- Hilgert, H.; Baldauf, M. A common risk model for the assessment of encounter situations on board ships. Dtsch. Hydrogr. Zeitschrift 1997, 49, 531–542. [Google Scholar] [CrossRef]
- Hilgert, H. Defining the Close-Quarters Situation at Sea. J. Navig. 1983, 36, 454–461. [Google Scholar] [CrossRef]
- García Maza, J.A.; Argüelles, R.P. COLREGs and their application in collision avoidance algorithms: A critical analysis. Ocean Eng. 2022, 261, 112029. [Google Scholar] [CrossRef]
- Woerner, K.; Benjamin, M.R.; Novitzky, M.; Leonard, J.J. Quantifying protocol evaluation for autonomous collision avoidance: Toward establishing COLREGS compliance metrics. Auton. Robot. 2019, 43, 967–991. [Google Scholar] [CrossRef] [Green Version]
- Wróbel, K.; Montewka, J. Comments to the article by Ramos et al. ‘Collision avoidance on maritime autonomous surface ships: Operators’ tasks and human failure events’ (Safety Science Vol. 116, July 2019, pp. 33–44). Saf. Sci. 2020, 121, 603–605. [Google Scholar] [CrossRef]
- Glomsrud, J.A.; Ødegårdstuen, A.; St. Clair, A.L.; Smogeli, Ø. Trustworthy versus Explainable AI in Autonomous Vessels. In Proceedings of the International Seminar on Safety and Security of Autonomous Vessels (ISSAV) and European STAMP Workshop and Conference (ESWC) 2019, Helsinki, Finland, 17–20 September 2019; De Gruyter: Berlin, Germany, 2020; pp. 37–47. [Google Scholar] [CrossRef]
- Johnson, C.W. The increasing risks of risk assessment: On the rise of artificial intelligence and non-determinism in safety-critical systems. In Proceedings of the 26th Safety-Critical Systems Symposium, Online, 8 February 2018; Safety-Critical Systems Club: York, UK, 2018. [Google Scholar]
- Grossmann, M. Collision Risk Assessment in Coastal Waters; TU Delft: Delft, The Netherlands, 2019. [Google Scholar]
- Veerappa, M.; Anneken, M.; Burkart, N.; Huber, M.F. Validation of XAI explanations for multivariate time series classification in the maritime domain. J. Comput. Sci. 2022, 58, 101539. [Google Scholar] [CrossRef]
- Salter, I. Codifying Good Seamanship into Machine Executable Rules. TransNav. Int. J. Mar. Navig. Saf. Sea Transp. 2018, 12, 329–334. [Google Scholar] [CrossRef]
- ICAO. Procedures for Air Navigation Services: Air Traffic Management, 16th ed.; International Civil Aviation Organization: Montréal, QC, Canada, 2016; ISBN 978-92-9258-081-0. [Google Scholar]
- Gil, M.; Montewka, J.; Krata, P.; Hinz, T.; Hirdaris, S. Determination of the dynamic critical maneuvering area in an encounter between two vessels: Operation with negligible environmental disruption. Ocean Eng. 2020, 213, 107709. [Google Scholar] [CrossRef]
- Cockroft, A.N.; Lameijer, J.N.F. Guide to the Collision Avoidance Rules-International Regulations for Preventing Collisions at Sea, 7th ed.; Elsevier: Oxford, UK, 2012; ISBN 0750661798. [Google Scholar]
- IMO. SOLAS Consolidated Edition 2014, 6th ed.; International Maritime Organization: London, UK, 2014. [Google Scholar]
- Specht, M. Determination of Navigation System Positioning Accuracy Using the Reliability Method Based on Real Measurements. Remote Sens. 2021, 13, 4424. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, H.; Tian, Y.; Huang, W.; Shen, W. Improving Ship Detection in Clutter-Edge and Multi-Target Scenarios for High-Frequency Radar. Remote Sens. 2021, 13, 4305. [Google Scholar] [CrossRef]
- Iphar, C.; Napoli, A.; Ray, C. An expert-based method for the risk assessment of anomalous maritime transportation data. Appl. Ocean Res. 2020, 104, 102337. [Google Scholar] [CrossRef]
- Wawruch, R. Study Reliability of the Information About the CPA and TCPA Indicated by the Ship’s AIS. TransNav. Int. J. Mar. Navig. Saf. Sea Transp. 2016, 10, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Wawruch, R.; Stupak, T. The possibility of use of the AIS data transmissions for safety and security monitoring in the Polish maritime areas. IFAC Proc. Vol. 2010, 43, 58–63. [Google Scholar] [CrossRef]
- Boström, M. Mind the Gap! A quantitative comparison between ship-to-ship communication and intended communication protocol. Saf. Sci. 2020, 123, 104567. [Google Scholar] [CrossRef]
- Stitt, I.P.A. The use of VHF in collision avoidance at sea. J. Navig. 2003, 56, 67–78. [Google Scholar] [CrossRef]
- Hatlas-Sowinska, P.; Wielgosz, M. Ontology based approach in solving collision situations at sea. Ocean Eng. 2022, 260, 111941. [Google Scholar] [CrossRef]
- MPA. Caution on the Use of VHF Radio in Collision Avoidance; MPA: Singapore, 2005. [Google Scholar]
- Huang, Y.; Chen, L.; Chen, P.; Negenborn, R.R.; van Gelder, P.H.A.J.M. Ship collision avoidance methods: State-of-the-art. Saf. Sci. 2020, 121, 451–473. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, J.; Kim, J. Intent Inference-Based Ship Collision Avoidance in Encounters With Rule-Violating Vessels. IEEE Robot. Autom. Lett. 2022, 7, 518–525. [Google Scholar] [CrossRef]
- Sawada, R.; Sato, K.; Majima, T. Automatic ship collision avoidance using deep reinforcement learning with LSTM in continuous action spaces. J. Mar. Sci. Technol. 2021, 26, 509–524. [Google Scholar] [CrossRef]
- Xie, S.; Garofano, V.; Chu, X.; Negenborn, R.R. Model predictive ship collision avoidance based on Q-learning beetle swarm antenna search and neural networks. Ocean Eng. 2019, 193, 106609. [Google Scholar] [CrossRef]
- Abdelaal, M.; Hahn, A. Predictive Path Following and Collision Avoidance of Autonomous Vessels in Narrow Channels. IFAC-PapersOnLine 2021, 54, 245–251. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Y.; Zheng, H.; Hopman, H.; Negenborn, R. Cooperative Multi-Vessel Systems in Urban Waterway Networks. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3294–3307. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liu, J.; Negenborn, R.R. Distributed coordination for collision avoidance of multiple ships considering ship maneuverability. Ocean Eng. 2019, 181, 212–226. [Google Scholar] [CrossRef]
- Tam, C.K.; Bucknall, R.; Greig, A. Review of collision avoidance and path planning methods for ships in close range encounters. J. Navig. 2009, 62, 455–476. [Google Scholar] [CrossRef]
- Vagale, A.; Bye, R.T.; Oucheikh, R.; Osen, O.L.; Fossen, T.I. Path planning and collision avoidance for autonomous surface vehicles II: A comparative study of algorithms. J. Mar. Sci. Technol. 2021, 26, 1307–1323. [Google Scholar] [CrossRef]
- Chen, L.; Hopman, H.; Negenborn, R.R. Distributed model predictive control for vessel train formations of cooperative multi-vessel systems. Transp. Res. Part C Emerg. Technol. 2018, 92, 101–118. [Google Scholar] [CrossRef]
- Eriksen, B.H.; Breivik, M.; Wilthil, E.F.; Flåten, A.L.; Brekke, E.F. The branching-course model predictive control algorithm for maritime collision avoidance. J. Field Robot. 2019, 36, 1222–1249. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Negenborn, R.R.; Lodewijks, G. Robust Distributed Predictive Control of Waterborne AGVs—A Cooperative and Cost-Effective Approach. IEEE Trans. Cybern. 2018, 48, 2449–2461. [Google Scholar] [CrossRef]
- Szłapczyński, R.; Krata, P. Determining and visualizing safe motion parameters of a ship navigating in severe weather conditions. Ocean Eng. 2018, 158, 263–274. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, L.; van Gelder, P.H.A.J.M. Generalized velocity obstacle algorithm for preventing ship collisions at sea. Ocean Eng. 2019, 173, 142–156. [Google Scholar] [CrossRef]
- Lee, S.-M.; Kwon, K.-Y.; Joh, J. A fuzzy logic for autonomous navigation of marine vehicle satisfying COLREG guidelines. Int. J. Control Autom. Syst. 2004, 2, 171–181. [Google Scholar]
- Perera, L.P.; Carvalho, J.P.; Guedes Soares, C. Fuzzy logic based decision making system for collision avoidance of ocean navigation under critical collision conditions. J. Mar. Sci. Technol. 2011, 16, 84–99. [Google Scholar] [CrossRef]
- Tam, C.; Bucknall, R. Collision risk assessment for ships. J. Mar. Sci. Technol. 2010, 15, 257–270. [Google Scholar] [CrossRef]
- Hagen, I.B.; Kufoalor, D.K.M.; Brekke, E.F.; Johansen, T.A. MPC-based Collision Avoidance Strategy for Existing Marine Vessel Guidance Systems. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA) IEEE, Brisbane, Australia, 21–25 May 2018; pp. 7618–7623. [Google Scholar]
- Meyer, E.; Heiberg, A.; Rasheed, A.; San, O. COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle Using Deep Reinforcement Learning. IEEE Access 2020, 8, 165344–165364. [Google Scholar] [CrossRef]
- Gil, M.; Wróbel, K.; Montewka, J.; Goerlandt, F. A bibliometric analysis and systematic review of shipboard Decision Support Systems for accident prevention. Saf. Sci. 2020, 128, 104717. [Google Scholar] [CrossRef]
- Kołakowski, P.; Gil, M.; Wróbel, K.; Ho, Y. State of play in technology and legal framework of alternative marine fuels and renewable energy systems: A bibliometric analysis. Marit. Policy Manag. 2022, 49, 236–260. [Google Scholar] [CrossRef]
- Öztürk, Ü.; Akdağ, M.; Ayabakan, T. A review of path planning algorithms in maritime autonomous surface ships: Navigation safety perspective. Ocean Eng. 2022, 251, 111010. [Google Scholar] [CrossRef]
- Lazarowska, A. Review of Collision Avoidance and Path Planning Methods for Ships Utilizing Radar Remote Sensing. Remote Sens. 2021, 13, 3265. [Google Scholar] [CrossRef]
- Kuwata, Y.; Wolf, M.T.; Zarzhitsky, D.; Huntsberger, T.L. Safe Maritime Autonomous Navigation With COLREGS, Using Velocity Obstacles. IEEE J. Ocean. Eng. 2014, 39, 110–119. [Google Scholar] [CrossRef]
- Huang, Y.; van Gelder, P.H.A.J.M.; Wen, Y. Velocity obstacle algorithms for collision prevention at sea. Ocean Eng. 2018, 151, 308–321. [Google Scholar] [CrossRef]
- Shaobo, W.; Yingjun, Z.; Lianbo, L. A collision avoidance decision-making system for autonomous ship based on modified velocity obstacle method. Ocean Eng. 2020, 215, 107910. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, Y.; Zhang, C.; Zhang, L. Deep Convolutional Neural Network-Based Autonomous Marine Vehicle Maneuver. Int. J. Fuzzy Syst. 2018, 20, 687–699. [Google Scholar] [CrossRef]
- Chen, C.; Ma, F.; Xu, X.; Chen, Y.; Wang, J. A Novel Ship Collision Avoidance Awareness Approach for Cooperating Ships Using Multi-Agent Deep Reinforcement Learning. J. Mar. Sci. Eng. 2021, 9, 1056. [Google Scholar] [CrossRef]
- Szłapczyński, R.; Krata, P.; Szłapczyńska, J. Ship domain applied to determining distances for collision avoidance manoeuvres in give-way situations. Ocean Eng. 2018, 165, 43–54. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, C.; Zhang, A. A COLREGs-Based Dynamic Navigation Safety Domain for Unmanned Surface Vehicles: A Case Study of Dolphin-I. J. Mar. Sci. Eng. 2020, 8, 264. [Google Scholar] [CrossRef] [Green Version]
- Tan, G.; Zhuang, J.; Zou, J.; Wan, L.; Sun, Z. Artificial potential field-based swarm finding of the unmanned surface vehicles in the dynamic ocean environment. Int. J. Adv. Robot. Syst. 2020, 17, 172988142092530. [Google Scholar] [CrossRef]
- Li, L.; Wu, D.; Huang, Y.; Yuan, Z.-M. A path planning strategy unified with a COLREGS collision avoidance function based on deep reinforcement learning and artificial potential field. Appl. Ocean Res. 2021, 113, 102759. [Google Scholar] [CrossRef]
- Lazarowska, A. A new deterministic approach in a decision support system for ship’s trajectory planning. Expert Syst. Appl. 2017, 71, 469–478. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, X.; Wang, G.; Mu, D. Collision Avoidance Controller for Unmanned Surface Vehicle Based on Improved Cuckoo Search Algorithm. Appl. Sci. 2021, 11, 9741. [Google Scholar] [CrossRef]
- Tan, G.; Zou, J.; Zhuang, J.; Wan, L.; Sun, H.; Sun, Z. Fast marching square method based intelligent navigation of the unmanned surface vehicle swarm in restricted waters. Appl. Ocean Res. 2020, 95, 102018. [Google Scholar] [CrossRef]
- Tan, G.; Zhuang, J.; Zou, J.; Wan, L. Coordination control for multiple unmanned surface vehicles using hybrid behavior-based method. Ocean Eng. 2021, 232, 109147. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, L.; Negenborn, R.R.; van Gelder, P.H.A.J.M. A ship collision avoidance system for human-machine cooperation during collision avoidance. Ocean Eng. 2020, 217, 107913. [Google Scholar] [CrossRef]
- Yang, X.; Utne, I.B.; Sandøy, S.S.; Ramos, M.A.; Rokseth, B. A systems-theoretic approach to hazard identification of marine systems with dynamic autonomy. Ocean Eng. 2020, 217, 107930. [Google Scholar] [CrossRef]
- International Chamber of Shipping. Bridge Procedures Guide, 5th ed.; Marisec Publications: London, UK, 2016. [Google Scholar]
- Vlakveld, W.; van Nes, N.; de Bruin, J.; Vissers, L.; van der Kroft, M. Situation awareness increases when drivers have more time to take over the wheel in a Level 3 automated car: A simulator study. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 917–929. [Google Scholar] [CrossRef]
- Namgung, H. Local route planning for collision avoidance of maritime autonomous surface ships in compliance with colregs rules. Sustainability 2022, 14, 198. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, K.; Gil, M.; Huang, Y.; Wawruch, R. The Vagueness of COLREG versus Collision Avoidance Techniques—A Discussion on the Current State and Future Challenges Concerning the Operation of Autonomous Ships. Sustainability 2022, 14, 16516. https://doi.org/10.3390/su142416516
Wróbel K, Gil M, Huang Y, Wawruch R. The Vagueness of COLREG versus Collision Avoidance Techniques—A Discussion on the Current State and Future Challenges Concerning the Operation of Autonomous Ships. Sustainability. 2022; 14(24):16516. https://doi.org/10.3390/su142416516
Chicago/Turabian StyleWróbel, Krzysztof, Mateusz Gil, Yamin Huang, and Ryszard Wawruch. 2022. "The Vagueness of COLREG versus Collision Avoidance Techniques—A Discussion on the Current State and Future Challenges Concerning the Operation of Autonomous Ships" Sustainability 14, no. 24: 16516. https://doi.org/10.3390/su142416516
APA StyleWróbel, K., Gil, M., Huang, Y., & Wawruch, R. (2022). The Vagueness of COLREG versus Collision Avoidance Techniques—A Discussion on the Current State and Future Challenges Concerning the Operation of Autonomous Ships. Sustainability, 14(24), 16516. https://doi.org/10.3390/su142416516