Multifunctional Design of Vibrational Energy Harvesters in a Bridge Structure
Abstract
:1. Introduction
2. Problem Formulation
Optimization
3. Example: Cable-Stayed Bridge
3.1. Model Description
3.2. Input Load
4. Results and Discussion
4.1. Optimization Design
4.2. Multifunctional Concept Design
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhimi, M.; Lajnef, N. Tunable Energy Harvesting from Ambient Vibrations in Civil Structures. J. Energy Eng. 2012, 138, 185–193. [Google Scholar] [CrossRef]
- Baldwin, J.D.; Roswurm, S.; Nolan, J.; Holliday, L. Energy Harvesting on Highway Bridges; Department of Transportation: Oklahoma City, OK, USA, 2011. [Google Scholar]
- Cahill, P.; Nuallain, N.A.N.; Jackson, N.; Mathewson, A. Energy Harvesting from Train-Induced Response in Bridges. J. Bridge Eng. 2014, 19, 1–11. [Google Scholar] [CrossRef]
- Sazonov, E.; Li, H.; Curry, D.; Pillay, P. Self-Powered Sensors for Monitoring of Highway Bridges. IEEE Sens. J. 2009, 9, 1422–1429. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, T.; Dierks, E.; Weaver, J. Developing innovative energy harvesting approaches for infrastructure health monitoring systems. In Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, DC, USA, 28–31 August 2011; pp. 325–339. [Google Scholar]
- Jo, B.; Lee, Y.; Yun, G.; Park, C.; Kim, J. Vibration-induced energy harvesting for green technology. In Proceedings of the International Conference on Chemical, Environmental and Civil Engineering, Dubai, United Arab Emirates, 24–25 March 2012; pp. 167–170. [Google Scholar]
- Galchev, T.; Kim, H.; Najafi, K. Micro Power Generator for Harvesting Low-Frequency and Nonperiodic Vibrations. J. Microelectromech. Syst. 2011, 20, 852–866. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, C.S. A retrofitted energy harvester for low frequency vibrations. Smart Mater. Struct. 2012, 21, 075007. [Google Scholar] [CrossRef]
- Ali, S.F.; Friswell, M.I.; Adhikari, S. Analysis of energy harvesters for highway bridges. J. Intell. Mater. Syst. Struct. 2011, 22, 1929–1938. [Google Scholar] [CrossRef]
- Kwon, S.D.; Park, J.; Law, K. Electromagnetic energy harvester with repulsively stacked multilayer magnets for low frequency vibrations. Smart Mater. Struct. 2013, 22, 055007. [Google Scholar] [CrossRef] [Green Version]
- Elvin, N.G.; Lajnef, N.; Elvin, A.A. Feasibility of structural monitoring with vibration powered sensors. Smart Mater. Struct. 2006, 15, 977–986. [Google Scholar] [CrossRef]
- Ali, M.; Armstrong, P.J. Sustainability and the tall building: Recent developments and future trends. In Sustainability and the Tall Building; AIA Illinois Central Symposium: Springfield, IL, USA, 2010; pp. 1–12. [Google Scholar] [CrossRef]
- Farrar, C.R.; Lieven, N.A.J. Damage prognosis: The future of structural health monitoring. Philos. Trans. R. Soc. A 2007, 365, 623–632. [Google Scholar] [CrossRef]
- Shen, W.; Zhu, S.; Zhu, H. Experimental study on using electromagnetic devices on bridge stay cables for simultaneous energy harvesting and vibration damping. Smart Mater. Struct. 2016, 25, 1–17. [Google Scholar] [CrossRef]
- Wang, H.; Jasim, A.; Chen, X. Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- Khan, F.; Ahmad, I. Review of energy harvesters utilizing bridge vibrations. Shock. Vib. 2016, 2016, 1340402. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Iqbal, M. Electromagnetic bridge energy harvester utilizing bridge’s vibrations and ambient wind for wireless sensor node application. J. Sens. 2018, 2018, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.U. Review of non-resonant vibration based energy harvesters for wireless sensor nodes. J. Renew. Sustain. Energy 2016, 8, 044702. [Google Scholar] [CrossRef]
- Beeby, S.P.; Torah, R.N.; Tudor, M.J.; Glynne-Jones, P.; O’Donnell, T.; Saha, C.R.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Michromechanics Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
- Khan, F.; Sassani, F.; Stoeber, B. Copper foil-type vibration-based electromagnetic energy harvester. J. Michromechanics Microeng. 2010, 20, 125006. [Google Scholar] [CrossRef]
- Shen, W.; Zhu, S. Harvesting energy via electromagnetic damper: Application to bridge stay cables. J. Intell. Mater. Syst. Struct. 2015, 26, 3–19. [Google Scholar] [CrossRef]
- Saadon, S.; Sidek, O. A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers. Manag. 2011, 52, 500–504. [Google Scholar] [CrossRef]
- Alsaadi, A.; Shi, Y.; Pan, L.; Tao, J.; Jia, Y. Vibration energy harvesting of multifunctional carbon fibre composite laminate structures. Compos. Sci. Technol. 2019, 178, 1–10. [Google Scholar] [CrossRef]
- Peigny, M.; Siegert, D. Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Mater. Struct. 2013, 22, 095019. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, L.; Wotjkiewicz, S.F. Computationally efficient analysis and design optimization of vibrational energy harvesters at the infrastructure scale. Mech. Syst. Signal Process. 2021, 170, 108780. [Google Scholar] [CrossRef]
- Green Vehicle Guide. Available online: https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle (accessed on 1 November 2021).
- SkyGarden Green Solutions. Available online: https://www.sky-garden.co.uk (accessed on 1 November 2021).
- Bridge Health Monitoring System. Available online: https://www.signaguard.com/bridge-health-monitoring-system/ (accessed on 1 June 2021).
- Gaurav; Wojtkiewicz, S.F.; Johnson, E.A. Efficient uncertainty quantification of dynamical systems with local nonlinearities and uncertainties. Probabilistic Eng. Mech. 2011, 26, 561–569. [Google Scholar] [CrossRef]
- Fu, Q.; Jiang, B.; Wang, C.; Zhou, X. A novel deblocking quantization table for luminance component in baseline JPEG. J. Commun. 2015, 10, 629–637. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Wotjkiewicz, S.F.; Johnson, E.A. Efficient optimal design and design-under-uncertainty of passive control devices with application t a cable-stayed bridge. Struct Control. Health Monit. 2017, 24, e1846. [Google Scholar] [CrossRef]
- Dyke, S.J.; Caicedo, J.M.; Turan, G.; Bergmn, L.A.; Hague, S. Phase I benchmark control problem for seismic response of cable-stayed bridges. J. Struct. Eng. 2003, 129, 857–872. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Wang, W.; Chen, G.; Hartnagel, B.A. Condition assessment of bill emerson memorial cable-stayed bridge under postulated design earthquake. Transp. Res. Rec. 2010, 2172, 159–167. [Google Scholar] [CrossRef]
- Chen, G.; Yan, D.; Wang, W.; Zheng, M.; Ge, L.; Liu, F. Assessment of the Bill Emerson Memorial Cable-Stayed Bridge Based on Seismic Instrumentation Data; Missouri University of Science and Technology: Jefferson, MO, USA, 2007. [Google Scholar]
- Fernandez, L. Computationally Efficient Analysis, Optimization and Holistic Design of Vibrational Energy Harvesters at the Infrastructure Scale; Clarkson University: Potsdam, Germany, 2021. [Google Scholar]
- Roof Garden Systems. 2010. Available online: https://www.carlislesyntec.com/en/Roofing-Products/Specialty/Roof-Garden (accessed on 1 June 2021).
- ODS Outdoor Design Source. Available online: https://www.outdoordesign.com.au/news-info/innovative-spinning-bridge-design/3407.htm (accessed on 1 June 2021).
- Available online: https://www.flickr.com/photos/mtefft/27730943583 (accessed on 20 November 2021).
- Zhang, Z.; Xiang, H.; Shi, Z.; Zhan, J. Experimental investigation on piezoelectric energy harvesting from vehicle-bridge coupling vibration. Energy Convers. Manag. 2018, 163, 169–179. [Google Scholar] [CrossRef]
Scenario 1 | Scenario 2 | |
---|---|---|
Number of harvesters | 2 | |
Location | Symmetric joints | Symmetric joints |
Mass of harvester | 259,938.835 kg | 519,877.67/ kg |
Total harvester mass | 519,877.67 kg | 519,877.67 kg |
Mass ratio | 0.01 | 0.01 |
System DOFs | 421 |
Harvester Electrical Properties | (kg) | (N/A) | (H) | |
---|---|---|---|---|
Base harvester | 2.4 | 4118 | 452 | 0.04 |
Scaled harvester | 4118 | 452 | 0.04 | |
where / |
8 Harvesters | |||||||
---|---|---|---|---|---|---|---|
Location | Frequencies [rad/s] | Power [kW] | Energy [W-h] | ||||
1 | (117 184 204 209 459 461 525 527) | 9.13 | 9.13 | 13.18 | 12.86 | 1253.1 | 348.10 |
9.17 | 9.17 | 9.17 | 9.17 | ||||
2 | (117 184 205 210 318 323 459 525) | 12.24 | 11.71 | 13.09 | 12.87 | 1368.6 | 380.16 |
13.47 | 13.47 | 9.21 | 9.21 | ||||
3 | (119 186 206 211 319 324 459 525) | 12.26 | 11.70 | 21.47 | 12.79 | 1442 | 400.57 |
13.39 | 13.39 | 9.20 | 9.20 | ||||
4 | (117 184 206 211 319 324 461 527) | 11.66 | 11.67 | 12.39 | 12.91 | 1623.8 | 451.05 |
13.46 | 13.46 | 9.20 | 9.20 | ||||
5 | (119 186 205 210 318 323 461 527) | 11.71 | 12.25 | 12.87 | 13.09 | 1370.2 | 380.61 |
13.47 | 13.47 | 9.20 | 9.20 | ||||
6 | (83 119 150 186 461 494 527 560) | 9.15 | 12.28 | 9.15 | 9.13 | 1564.2 | 434.50 |
9.15 | 9.12 | 9.15 | 9.13 |
8 Harvesters | |||||||
---|---|---|---|---|---|---|---|
Location | Frequencies [rad/s] | Power [mW] | Energy [W-h] | ||||
1 | (117 184 204 209 459 461 525 527) | 9.13 | 9.13 | 13.18 | 12.86 | 4.135 | 1.149 |
9.17 | 9.17 | 9.17 | 9.17 | ||||
2 | (117 184 205 210 318 323 459 525) | 12.24 | 11.71 | 13.09 | 12.87 | 4.516 | 1.255 |
13.47 | 13.47 | 9.21 | 9.21 | ||||
3 | (119 186 206 211 319 324 459 525) | 12.26 | 11.70 | 21.47 | 12.79 | 4.759 | 1.322 |
13.39 | 13.39 | 9.20 | 9.20 | ||||
4 | (117 184 206 211 319 324 461 527) | 11.66 | 11.67 | 12.39 | 12.91 | 5.359 | 1.488 |
13.46 | 13.46 | 9.20 | 9.20 | ||||
5 | (119 186 205 210 318 323 461 527) | 11.71 | 12.25 | 12.87 | 13.09 | 4.522 | 1.256 |
13.47 | 13.47 | 9.20 | 9.20 | ||||
6 | (83 119 150 186 461 494 527 560) | 9.15 | 12.28 | 9.15 | 9.13 | 5.162 | 1.434 |
9.15 | 9.12 | 9.15 | 9.13 |
Cable-Stayed Bridge Model, El Centro Input | ||||||
---|---|---|---|---|---|---|
h | Joint | DOF | ||||
2 | 0.3703 | 0.3395 | 9 | 49 | 17.4 | 17.08 |
4 | 0.3383 | 17.03 | ||||
8 | 0.3544 | 16.99 |
Number of Harvesters | Function Evaluations | Conventional Method (Projected) | Proposed Method (Actual) | Computational Speed Up |
---|---|---|---|---|
2 | 239 | 10,870 s | 164 s | 66.3 |
4 | 903 | 54,687 s | 324 s | 168.8 |
8 | 3703 | 231,290 s | 684 s | 338.1 |
System Components | Specifications | Weight | Total |
---|---|---|---|
Number of harvesters | 8 | ||
Area of each h | |||
Growth media depth | |||
Volume of each h | |||
Drainage Composite | roll | each | (44 rolls) |
Protection Fabric | each | (6) | |
Growth Media | Saturated Weight | ||
Plants, Sedum Mats | each | (852) | |
Total harvester mass |
Optimized Frequencies in rad/s for the Cable-Stayed Bridge Garden Application | |||||||
---|---|---|---|---|---|---|---|
Load | Location | Frequencies [rad/s] | Power [W] | Energy [W-h] | |||
El Centro | (466 474 482 490 532 540 548 556) | 9.14 | 9.14 | 9.14 | 12.25 | 1,574,902.46 | 437.47 |
9.14 | 9.14 | 9.14 | 9.14 | ||||
Scaled | (466 474 482 490 532 540 548 556) | 9.14 | 9.14 | 9.14 | 12.25 | 0.0052 | 1.44 × 10−6 |
9.14 | 9.14 | 9.14 | 9.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, L.; Wojtkiewicz, S.F. Multifunctional Design of Vibrational Energy Harvesters in a Bridge Structure. Sustainability 2022, 14, 16540. https://doi.org/10.3390/su142416540
Fernandez L, Wojtkiewicz SF. Multifunctional Design of Vibrational Energy Harvesters in a Bridge Structure. Sustainability. 2022; 14(24):16540. https://doi.org/10.3390/su142416540
Chicago/Turabian StyleFernandez, Lissette, and Steven F. Wojtkiewicz. 2022. "Multifunctional Design of Vibrational Energy Harvesters in a Bridge Structure" Sustainability 14, no. 24: 16540. https://doi.org/10.3390/su142416540
APA StyleFernandez, L., & Wojtkiewicz, S. F. (2022). Multifunctional Design of Vibrational Energy Harvesters in a Bridge Structure. Sustainability, 14(24), 16540. https://doi.org/10.3390/su142416540