Suitability of Fast-Growing Tree Species (Salix spp., Populus spp., Alnus spp.) for the Establishment of Economic Agroforestry Zones for Biomass Energy in the Baltic Sea Region
Abstract
:1. Introduction
2. Scope of Short Rotation Tree Species in Agroforestry
3. Tree, Shrub and Crop Components in Short Rotation Agroforestry
4. Model of Economic Agroforestry Zone vis-a-vis Shelter Belt Agroforestry
5. Economic Viability of the Economic Agroforestry Zones
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Don, A.; Osborne, B.; Hastings, A.; Skiba, U.; Carter, M.S.; Drewer, J.; Flessa, H.; Freibauer, A.; Hyvönen, N.; Jones, M.B.; et al. Land-use change to bioenergy production in Europe: Implications for the greenhouse gas balance and soil carbon. Glob. Chang. Biol. Bioenergy 2012, 4, 372–391. [Google Scholar] [CrossRef] [Green Version]
- Holzmueller, E.J.; Jose, S. Biomass production for biofuels using agroforestry: Potential for North Central Region of the United States. Agrofor. Syst. 2012, 85, 305–314. [Google Scholar] [CrossRef]
- Christen, B.; Dalgaard, T. Buffers for biomass production in temperate European agriculture: A review and synthesis on function, ecosystem services and implementation. Biomass. Bioenergy 2013, 55, 53–67. [Google Scholar] [CrossRef]
- Herder, M.; Moreno, G.; Mosquera-Losada, R.M.; Palma, J.H.N.; Sidiropoulou, A.; Freijanes, J.; Crous-Duran, J.; Paulo, J.A.; Tomé, M.; Pantera, A.; et al. Current extend and stratification of agroforestry in the European Union. Agric. Ecosyst. Environ. 2017, 241, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Englund, O.; Börjesson, P.; Mola-Yudego, B.; Berndes, G.; Dimitriou, I.; Cederberg, C.; Scarla, N. Strategic deployment of riparian buffers and windbreaks in Europe can co-deliver biomass and environmental benefits. Commun. Earth Environ. 2021, 2, 176. [Google Scholar] [CrossRef]
- European Commission. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018L2001 (accessed on 31 October 2022).
- D’Adamo, I.; Gastaldi, M.; Morone, P.; Rosa, P.; Sassanelli, C.; Settembre-Blundo, D.; Shen, Y. Bioeconomy of Sustainability: Drivers, Opportunities and Policy Implications. Sustainability 2022, 14, 200. [Google Scholar] [CrossRef]
- A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 31 October 2022).
- Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Available online: https://www.ipcc.ch/sr15/ (accessed on 9 November 2022).
- Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Available online: https://www.ipcc.ch/srccl/ (accessed on 9 November 2022).
- EU Biodiversity Strategy for 2030. Available online: https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en (accessed on 31 October 2022).
- Regulation Rules on Support for Strategic Plans to be Drawn Up by Member States under the Common Agricultural Policy (CAP Strategic Plans) and Financed by the EAGF and by the EAFRD. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52018PC0392 (accessed on 31 October 2022).
- EU Strategy for the Baltic Sea Region. EUSBSR. 2009. Available online: https://www.balticsea-region-strategy.eu/policy-areas/pa-bioeconomy (accessed on 31 October 2022).
- National Development Plan of Latvia for 2021–2027. Available online: https://pkc.gov.lv/sites/default/files/inline-files/NAP2027__ENG.pdf (accessed on 31 October 2022).
- National Energy and Climate Plan 2021–2050. Available online: https://www.climate-laws.org/geographies/latvia/policies/latvia-s-strategy-to-achieve-climate-neutrality-by-2050 (accessed on 31 October 2022).
- National Energy and Climate Plans. Available online: https://windeurope.org/2030plans/ (accessed on 31 October 2022).
- Augere-Granier, M.L. Agroforestry in the European Union. European Parliament. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/651982/EPRS_BRI(2020)651982_EN.pdf (accessed on 31 October 2022).
- Raskin, B.; Osborn, S. The Agroforestry Handbook; Soil Association Limited: Bristol, UK, 2019; p. 151. [Google Scholar]
- European Commission. Sustainable and Optimal Use of Biomass for Energy in the EU beyond 2020; Annexes of the Final Report; Ec Directorat General for Energy Directorat C1-Renewables and CCS Policy; European Commission: Brussels, Luxembourg, 2017; p. 404.
- Rytter, L.; Andreassen, K.; Bergh, J.; Eko, P.-M.; Kilpelainen, A.; Lazdina, D.; Muiste, P.; Nord-Larsen, T. Land areas and biomass production for current and future use in the Nordic and Baltic countries. Sustainable Energy Systems 2050 Research Programme from Nordic Energy Res. 2014, 50, 5. Available online: https://www.nordicenergy.org/wp-content/uploads/2015/02/Land-areas-and-biomass-production-for-current-and-future-use-in-the-Nordic-and-Baltic-countries.pdf (accessed on 31 October 2022).
- d’Arge, R.C. The energy squeeze and agricultural growth. In Economics, Ethics, Ecology: Roots of Productive Conservation; Jeske, W.E., Ed.; Soil Conservation Society of America: Rougemont, NC, USA, 1981; pp. 99–105. [Google Scholar]
- Peterjohn, W.T.; Correll, D.L. Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology 1984, 65, 1466–1475. [Google Scholar] [CrossRef]
- Mayer, P.M.; Reynolds, S.K.; McCutchen, M.D.; Canfield, T.J. Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual. 2007, 36, 1172–1180. [Google Scholar] [CrossRef] [Green Version]
- Bardule, A.; Lazdins, A. Carbon and nitrogen fixation in mineral soils in grey alder (Alnus incana (L.) Moench) stands in forested agricultural land. Mežzinātne 2021, 21, 95–109, (In Latvian with English Abstract). [Google Scholar]
- Dorioz, J.M.; Wang, D.; Poulenard, J.; Trevisan, D. The effect of grass buffer strips on phosphorus dynamics e a critical review and synthesis as a basis for application in agricultural landscapes in France 2006. Agr. Ecosyst. Environ. 2006, 117, 4–21. [Google Scholar] [CrossRef]
- Hoffmann, C.C.; Kjaergaard, C.; Uusi-Kammpa, J.; Hansen, H.C.B.; Kronvang, B. Phosphorus retention in riparian buffers: Review of their efficiency. J. Environ. Qual. 2009, 38, 1942–1955. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X.; Zhang, M. Major factors influencing the efficacy of vegetated buffers on sediment trapping: A review and analysis. J. Environ. Qual. 2009, 37, 1667–1674. [Google Scholar] [CrossRef]
- Jørgensen, U.; Dalgaarda, T.; Kristensen, E.S. Biomass energy in organic farming—The potential role of short rotation coppice. Biomass Bioenergy 2005, 28, 237–248. [Google Scholar] [CrossRef]
- Dalgaard, T.; Olesen, J.E.; Petersen, S.O.; Petersen, B.M.; Jørgensen, U.; Kristensen, T.; Hutchings, N.J.; Gyldenkaerne, S.; Hermansen, J.E. Developments in greenhouse gas emissions and net energy use in Danish agriculture—How to achieve substantial CO2 reductions. Environ. Pollut. 2011, 159, 3193–3203. [Google Scholar] [CrossRef]
- Rytter, L.; Ingerslev, M.; Kilpeläinen, A.; Torssonen, P.; Lazdina, D.; Löf, M.; Madsen, P.; Muiste, P.; Stener, L.-G. Increased forest biomass production in the Nordic and Baltic countries—A review on current and future opportunities. Silva Fenn. 2016, 50, 1660. Available online: https://www.nordicenergy.org/wordpress/wp-content/uploads/2015/02/Land-areas-and-biomass-production-for-current-and-future-use-in-the-Nordic-and-Baltic-countries.pdf (accessed on 31 October 2022). [CrossRef] [Green Version]
- Makovskis, K. Fast-Growing Woody Crop Evaluation for Biomass Production on Unused Agricultural Lands in Latvia. Doctoral Thesis, Latvia University of Life Sciences and Technologies, Jelgava, Latvia, 2021. [Google Scholar]
- Berndes, G. Bioenergy and water—The implications of large-scale bioenergy production for water use and supply. Glob. Environ. Chang. 2002, 12, 253–271. [Google Scholar] [CrossRef]
- Melniks, R.; Sietina, I.; Lazdins, A. Methodology for assessment of area and properties of farmlands sutable for establishment of shelter belts. In Proceedings of the Enggineering for Rural Development, Jelgava, Latvia, 25–27 May 2022; pp. 812–817. [Google Scholar] [CrossRef]
- Conley, D.J.; Carstensen, J.; Ærtenbjerg, G.; Christensen, P.B.; Dalsgaard, T.; Hansen , J.L.S.; Josefson, A.B. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol. Appl. 2007, 17, 165–184. [Google Scholar]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32000L0060 (accessed on 9 November 2022).
- Development of a Model for Calculating the Reference Level of Carbon Dioxide (CO2) Sequestration and Greenhouse gas (GHG) Emissions Caused by Latvian Forest Management. Available online: https://www.lvm.lv/images/lvm/Petijumi_un_publikacijas/Petijumi/atsk_SEGreference_2012.pdf (accessed on 9 November 2022).
- Liepins, J. Latvijas Kokaudžu Biomasas un Oglekļa Uzkrājuma Novērtēšanas Metodes [Forest Stand Biomass and Carbon Stock Estimates in Latvia]. Latv. Veg. 2020, 30, 1–114, (In Latvian with English Summary). [Google Scholar]
- Latvia’s Sustainable Development Strategy until 2030. 2010. Available online: https://pkc.gov.lv/sites/default/files/inline-files/LIAS_2030_en_0.pdf (accessed on 31 October 2022).
- Law on Agriculture and Rural Development. 2004. Available online: https://likumi.lv/ta/id/87480-lauksaimniecibas-un-lauku-attistibas-likums (accessed on 31 October 2022).
- Klavs, G. Use of Renewable Energy Resources in Regions of Latvia and Assesment of Environmental Economic and Social Benefits at the National and Regional Level (Atjaunojami enerģijas resursu izmantošana Latvijas reģionos un vides ekonomisko un sociālo ieguvumu novērtējums nacionālajā un reģionālajā līmenī). Final Review. Project No. 1-08/64/2006, Contract No. 89. Institute of Physical Energy. Available online: https://lvafa.vraa.gov.lv/faili/materiali/petijumi/2006/1_08_64_FEI_lvaf_2006.pdf (accessed on 31 October 2022).
- Mola-Yudego, B. Regional potential yields of short rotation willow plantations on agricultural land in Northern Europe. Silva Fenn. 2010, 44, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Ferm, A. Birch production and utilization for energy. Biomass Bioenergy 1993, 4, 391–404. [Google Scholar] [CrossRef]
- Dimitriou, I.; Rutz, D. Sustainable Short Rotation Coppice Plantations. Reference Guidebook; Lazdina, D., Ed.; WIP Renewable Energies: Munich, Germany, 2015; 108p. [Google Scholar]
- Lazdina, D.; Lazdins, A. Short-Rotation Willow Plantations and Their Use Opportunities; LSFRI “Silava”: Salaspils, Latvia, 2011; 36p. [Google Scholar]
- Johansson, T. Stem volume equations and basic density for grey alder and common alder in Sweden. Forestry 2005, 78, 249–262. [Google Scholar] [CrossRef]
- Daugavietis, M.; Daugaviete, M.; Bisenieks, J. The management of Grey alder (Alnus incana Moench.) stands in Latvia. In Proceedings of the 8th International Scientific Conference “Engineering for Rural Development”, Jelgava, Latvia, 28–29 May 2009; pp. 229–234. [Google Scholar]
- Bardulis, A.; Daugaviete, M.; Bardule, A.; Lazdins, A. The biomass production in above and under-ground grey alder (Alnus incana (L.) Moench) young stands. In Proceedings of the Solutions on Harmonising Sustainability and Nature Protection with Socio-Economic Stability, 3rd International Scientific Conference of the Vidzeme University of Applied Science and Nature Conservation Agency, North Vidzeme Biosphere Reserve, Valmiera, Latvia, 19–20 August 2010; pp. 17–18. [Google Scholar]
- Bisenieks, J.; Daugavietis, M.; Daugaviete, M. Productivity models of grey alder stands. Mežzinātne 2010, 21, 31–44, (In Latvian with English Abstract). [Google Scholar]
- Daugaviete, M. Above-ground biomass in young Grey alder (Alnus incana (L.) Moench.) stands. Bal. For. 2011, 17, 76–82. [Google Scholar]
- Daugaviete, M.; Bambe, B.; Lazdins, A.; Lazdina, D. Plantāciju Mežu Augšanas Gaita, Produktivitāte un Ietekme Uz Vidi [Plantation Forest Growth, Productivity and Environmental Impact]; LSFRI “Silava”: Salaspils, Latvia, 2017; 470p, (In Latvian with English summary). [Google Scholar]
- Telenius, B.F. Stand growth of deciduous pioneer tree species on fertile agricultural land in southern Sweden. Biomass Bioenergy 1999, 16, 13–23. [Google Scholar] [CrossRef]
- Proe, M.F.; Griffiths, J.H.; Craig, J. Effects of spacing, species and coppicing on leaf area, light interception and photosynthesis in short rotation forestry. Biomass Bioenergy 2002, 23, 315–326. [Google Scholar] [CrossRef]
- Senhofa, S.; Zeps, M.; Matisons, R.; Smilga, J.; Lazdina, D.; Jansons, A. Effect of climatic factors on tree ring width of Populus hybrids in Latvia. Silva Fenn. 2016, 50, 1442. [Google Scholar] [CrossRef] [Green Version]
- Senhofa, S.; Neimane, U.; Grava, A.; Sisenis, L.; Lazdina, D.; Jansons, A. Juvenile growth and frost damages of poplar clone OP42 in Latvia. Agron. Res. 2017, 15, 2113–2125. [Google Scholar]
- Senhofa, S.; Zeps, M.; Ķēniņa, L.; Neimane, U.; Kāpostiņš, R.; Kārkliņa, A.; Jansons, A. Intra-annual height growth of hybrid poplars in Latvia: Results from the year of establishment. Agron. Res. 2018, 16, 254–262. [Google Scholar]
- Senhofa, S.; Lazdina, D.; Jansons, A. Papeļu (Populus spp.) Stādījumu Ierīkošana un Apsaimniekošana [Establishment and Management of Poplar (Populus spp.) Plantations]; LSFRI “Silava”: Salaspils, Latvia, 2019; 82p, (In Latvian with English summary). [Google Scholar]
- Tullus, A.; Rytter, L.; Weih, M.; Tullus, H. Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in Northern Europe. Scand. J. For. Res. 2012, 27, 10–29. [Google Scholar] [CrossRef]
- Uri, V.; Vares, A. The above-ground biomass and production of alders (Alnus incana (L.) Moench., Anus glutinosa (L.) Gaertn., Alnus hybrida A.Br.) on abandoned agricultural lands in Estonia. In Proceedings of the Workshop “Management and Utilization of Broadleaved Tree species in Nordic and Baltic countries—Birch, Aspen And Alder”, Vantaa, Finland, 16–18 May 2005. [Google Scholar]
- EURDF Project No. 1.1.1.2/VIAA/3/19/437. Economic and Environmental Assessment of Biomass Production in Buffer Zones Around Drainage Systems and Territories Surrounding the Protective Belts of Natural Water Streams. Available online: http://www.silava.lv/23/section.aspx/View/261 (accessed on 31 October 2022).
- Lazdins, A.; Kaposts, V.; Karins, Z.; Lazdina, D.; Strazdins, U.; Larsson, S. Willow Plantation Installation and Management Guide; LSFRI “Silava”: Salaspils, Latvia, 2005; 74p. [Google Scholar]
- Lazdina, D.; Senhofa, S.; Zeps, M.; Makovskis, K.; Bebre, I.; Jansons, A. The early growth and fall frost damage of poplar clones in Latvia. Agron. Res. 2016, 14, 109–122. [Google Scholar]
- Zeps, M.; Auzenbaha, D.; Gailis, A.; Treimanis, A.; Grinfelds, U. Evaluation and selection of hybrid aspen (Populus tremuloides × Populus tremula) clones. Mežzinātne 2008, 18, 19–34. [Google Scholar]
- Zeps, M.; Jansons, A.; Smilga, J.; Purina, L. Growth intensity and height increment in a young hybrid aspen stand in Latvia. In Proceedings of the 8th WSEAS International Conference “Recent Researches in Environment, Energy Systems and Sustainability”, Faro, Portugal, 2–4 May 2012; Ramos, R.A.R., Straupe, I., Panagopoulos, T., Eds.; WSEAS Press: Attica, Greece, 2012; pp. 120–124. [Google Scholar]
- Zeps, M. Potential of hybrid aspen (Populus tremuloides Michx. × Populus tremula L.) production in Latvia. Doctoral Thesis, Latvia University of Life Sciences and Technologies, Jelgava, Latvia, 2017. [Google Scholar]
- Terauds, V. Meadows and Pastures, (Pļavas un ganības); Zvaigzne: Riga, Latvia, 1972; pp. 57–64. [Google Scholar]
- Lazdina, D.; Rancane, S.; Makovskis, K.; Sarkanabols, T.; Dumins, K. Hybrid aspen and perennial grass agroforestry system interactions. In Proceedings of the 4th European Agroforestry Conference “Agroforestry as Sustainable Land Use”, Nijmegen, The Netherlands, 28–30 May 2018; Nijmegen, Agroforestry Federation and University of Santiago de Compostela: Lugo, Spain, 2018; pp. 523–527. [Google Scholar]
- Jansone, B.; Rancane, S.; Dzenis, V.; Jansons, A. Guide to Perennial Grass Seed Production. Skriveri 2008, 265, 70. [Google Scholar]
- Rancane, S.; Makovskis, K.; Lazdina, D.; Daugaviete, M.; Gutmane, I.; Berzins, P. Analysis of economical, social and environmental aspects of agroforestry systems of trees and perennial herbaceous plants. Agron. Res. 2014, 12, 589–602. [Google Scholar]
- Karklins, A.; Lipenite, I.; Daugaviete, M. Carbon stock and forest productivity planted on agricultural land. In Proceedings of the Abstracts of International Conference “Humus forms and biologically active compounds as indicators of pedodiversity”, Tartu, Estonia, 27–28 August 2012; p. 15. [Google Scholar]
- Callessen, I.; Grohneheit, P.E.; Ostergard, H. Optimization of bioenergy yield from cultivated land in Denmark. Biomass Bioenergy 2010, 34, 1348–1362. [Google Scholar] [CrossRef]
- Sollen-Norrlin, M.; Ghaey, B.B.; Riontoul, N.L.J. Agroforestry Benefits and Challenges for Adoption in Europe and Beyond. Sustainability 2020, 12, 7001. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Zhang, M.; Dahlgren, R.A.; Eitzel, M. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. J. Environ. Qual. 2010, 39, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Aosaar, J.; Varik, M.; Uri, V. Biomass production potential of grey alder (Alnus incana (L.) Moench.) in Scandinavia and Eastern Europe: A review. Biomass Bioenergy 2012, 45, 1–26. [Google Scholar] [CrossRef]
- Miezite, O. The Productivity and Structure of Grey Alder. Doctoral Thesis, Latvia University of Life Sciences and Technologies, Jelgava, Latvia, 2008. [Google Scholar]
- Bardulis, A.; Daugaviete, M.; Lazdins, A.; Bardule, A.; Liepa, I. Biomass structure and carbon accumulation in surface and root biomass in young alder Alnus incana (L.) Moench stands in agricultural land. Mežzinātne 2011, 23, 71–88. [Google Scholar]
- Daugaviete, M.; Bardulis, A.; Lazdina, D.; Daugavietis, U.; Bardule, A. Potential of producing wood biomass in short rotation Grey alder (Alnus incana (L.) Moench.) plantations on agricultural lands. In Proceedings of the 25th NJF Congress, Riga, Latvia, 16–18 June 2015; pp. 394–399. [Google Scholar]
- Lazdiņa, D.; Daugaviete, M.; Rancāne, S.; Daugavietis, U.; Bārdulis, A. Alnus incana L. growth rates—In a perennial tree plantation—In a short-rotation coppice shrub. In Proceedings of the Scientific-Practical Conference “Balanced Agriculture”, Jelgava, Latvia, 21 February 2019; pp. 143–147. [Google Scholar]
- Comparison of Average Prices of Technical Services in Latvia in 2021 and 2020. Available online: http://new.llkc.lv/sites/default/files/baskik_p/pielikumi/1.tabula_6pdf (accessed on 31 October 2022).
- Ministry of Finances: The rise in consumer prices continues to be driven by external factors (FM: Patēriņa cenu pieaugumu turpina ietekmēt ārējie faktori). Available online: https://www.fm.gov.lv/lv/jaunums/fm-paterina-cenu-pieaugumu-turpina-ietekmet-arejie-faktori (accessed on 31 October 2022).
Tree Species | Duration of Rotation, yr | Average Annual Growth, t DM ha−1, yr−1 | Stock Produced | |
---|---|---|---|---|
Per Year, m3 ha−1 | Willow, Poplar: In 5 Years; Aspen Hybrids: 10–25 Years, m3 ha−1 | |||
Willow hybrids, Salix viminalis L. based and others | 1–5 | 8–12 | 30–36; 75–90 bulk | 50–60; 125–150 bulk |
Aspen hybrids, Populus tremula L. based | 10–25 | 23 | 15–20 | 200–400 |
Poplar hybrids, Populus deltoides L. based and other hybrids | 3–5 | 7 | 5–9 9–16 | 20–45; 36–80 |
Grey alder, Alnus incana L. | 5–15 | 3.4–5.5 | 11.8 | 178 |
Black alder, Alnus glutinosa L | 15–20 | 15.5 | 19–26 | 249 |
Nectar Plants | Fodder Grasses | Industrial Grasses | |
---|---|---|---|
Herbaceous species | Trifolium pratense, T. repens, T. hybridum, Lotus corniculatus, Trifolium incarnatum, Melilotus albus, M. officinalis, Festuca ovina, F. pratensis | Lolium multiflorum, L. perenne; Festulolium, Festuca pratensis, Phleum pratense, Trifolium pratense, T. repens, Medicago sativa/varia | Lolium multiflorum, Festuca arundinacea, F. pratensis, Festuca rubra; Phleum pratense; Alopecurus pratensis |
Rotation cycle length | 5–6 years | 4–5 years | 5–7 years |
Number of rotations recommended prior to change of species | 1 | 1 | Can be sown repeatedly |
Above- and below-ground biomass | Increase of above-ground biomass, 5–6 t DM ha−1; below-ground biomass about 50% of the total plant biomass | Increase in above-ground biomass, 8–10 t DM ha−1; below-ground biomass about 50% of the total plant biomass | Increase in above-ground biomass, 5–12 t DM ha−1, depending on growing conditions and lawn mowing regime |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daugaviete, M.; Makovskis, K.; Lazdins, A.; Lazdina, D. Suitability of Fast-Growing Tree Species (Salix spp., Populus spp., Alnus spp.) for the Establishment of Economic Agroforestry Zones for Biomass Energy in the Baltic Sea Region. Sustainability 2022, 14, 16564. https://doi.org/10.3390/su142416564
Daugaviete M, Makovskis K, Lazdins A, Lazdina D. Suitability of Fast-Growing Tree Species (Salix spp., Populus spp., Alnus spp.) for the Establishment of Economic Agroforestry Zones for Biomass Energy in the Baltic Sea Region. Sustainability. 2022; 14(24):16564. https://doi.org/10.3390/su142416564
Chicago/Turabian StyleDaugaviete, Mudrite, Kristaps Makovskis, Andis Lazdins, and Dagnija Lazdina. 2022. "Suitability of Fast-Growing Tree Species (Salix spp., Populus spp., Alnus spp.) for the Establishment of Economic Agroforestry Zones for Biomass Energy in the Baltic Sea Region" Sustainability 14, no. 24: 16564. https://doi.org/10.3390/su142416564
APA StyleDaugaviete, M., Makovskis, K., Lazdins, A., & Lazdina, D. (2022). Suitability of Fast-Growing Tree Species (Salix spp., Populus spp., Alnus spp.) for the Establishment of Economic Agroforestry Zones for Biomass Energy in the Baltic Sea Region. Sustainability, 14(24), 16564. https://doi.org/10.3390/su142416564