Influence of Mowing and Trampling on the Allelopathy and Weed Suppression Potential of Digitaria ciliaris and Cyperus microiria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Planting Conditions and Treatments
2.1.1. Field Study
2.1.2. Greenhouse Study
- Soil cultivation (for assessing allelopathic influences of the rhizosphere soil)
- Sand cultivation (for assessing allelopathic influences of the root exudates)
2.2. Field Experiments
2.2.1. Weed Survey and Calculation of the Frequency Percentage
2.2.2. Multiplied Dominance Ratio (MDR)
2.2.3. Soil Hardness Test
2.2.4. Gathering of the Rainfall Data
2.3. Laboratory Bioassays
2.3.1. Rhizosphere Soil Method
2.3.2. Plant-Box Method
2.4. Statistical Analysis
3. Results
3.1. Weed Survey
3.2. Multiplied Dominance Ratio (MDR)
Impacts of Mowing and Trampling on MDR of the Five Most Frequent Weeds
3.3. Soil Hardness Test
3.4. Results of the Allelopathic Potential of Selected Weed Species
3.4.1. The Allelopathic Influences of Rhizosphere Soil
3.4.2. The Allelopathic Influences of Root Exudates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ghanizadeh, H.; Harrington, K.C. Non-Target Site Mechanisms of Resistance to Herbicides. Crit. Rev. Plant Sci. 2017, 36, 24–34. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, S.; Merfield, C.; Jabran, K. Mechanical Weed Control. In Non-Chemical Weed Control; Elsevier Academic Press: Cambridge, MA, USA, 2018; pp. 133–155. ISBN 978-0-12-809881-3. [Google Scholar]
- Fynn, R.W.S.; Morris, C.D.; Edwards, T.J. Effect of Burning and Mowing on Grass and Forb Diversity in a Long-Term Grassland Experiment. Appl. Veg. Sci. 2004, 7, 1–10. [Google Scholar] [CrossRef]
- Inagaki, H.; Inagaki, S.; Kato, Y.; Kawai, M.; Sunakawa, T. Effects of Tread Pressure Treatment on Vegetation Surrounding Rice Fields. J. Jpn. Soc. Reveg. Technol. 2017, 43, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Kogler, R.; Quendler, E.; Boxberger, J. Occupational Accidents with Mowing Machines in Austrian Agriculture. Ann. Agric. Environ. Med. 2015, 22, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Wu, Y.; Aoki, Y.; Nishimura, S. Mowing Patterns Comparison: Analyzing the Mowing Behaviors of Elderly Adults on an Inclined Plane via a Motion Capture Device. IEEE Access 2020, 8, 216623–216633. [Google Scholar] [CrossRef]
- Börklü, H.R.; Erdemir, F. Conceptual design of an innovative lawn mower machine. Düzce Üniversitesi Bilim Ve Teknol. Derg./Duzce Univ. J. Sci. Amp; Technol. 2019, 7, 15–26. [Google Scholar] [CrossRef]
- FAO. Pesticides and Environmental Incidents: Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade; FAO: Rome, Italy, 2022; ISBN 978-92-5-134937-3. [Google Scholar]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Mushtaq, W. Chapter 9—Biological Control of Weeds by Allelopathic Compounds from Different Plants: A BioHerbicide Approach. In Natural Remedies for Pest, Disease and Weed Control; Egbuna, C., Sawicka, B., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2020; pp. 107–117. ISBN 978-0-12-819304-4. [Google Scholar]
- Creamer, N.G.; Dabney, S.M. Killing Cover Crops Mechanically: Review of Recent Literature and Assessment of New Research Results. Am. J. Altern. Agric. 2002, 17, 32–40. [Google Scholar] [CrossRef]
- Cole, D.N.; Bayfield, N.G. Recreational Trampling of Vegetation: Standard Experimental Procedures. Biol. Conserv. 1993, 63, 209–215. [Google Scholar] [CrossRef]
- Mihretie, F.A.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Tsubo, M.; Masunaga, T.; Meshesha, D.T.; Tsuji, W.; Ebabu, K.; Tassew, A. Tillage and Sowing Options for Enhancing Productivity and Profitability of Teff in a Sub-Tropical Highland Environment. Field Crop. Res. 2021, 263, 108050. [Google Scholar] [CrossRef]
- Warren, S.D.; Nevill, M.B.; Blackburn, W.H.; Garza, N.E. Soil Response to Trampling under Intensive Rotation Grazing. Soil Sci. Soc. Am. J. 1986, 50, 1336–1341. [Google Scholar] [CrossRef]
- Burden, R.F.; Randerson, P.F. Quantitative Studies of the Effects of Human Trampling on Vegetation as an Aid to the Management of Semi-Natural Areas. J. Appl. Ecol. 1972, 9, 439–457. [Google Scholar] [CrossRef]
- Jaffe, M.J. Thigmomorphogenesis: The Response of Plant Growth and Development to Mechanical Stimulation. Planta 1973, 114, 143–157. [Google Scholar] [CrossRef]
- Hatanaka, A. The Biogeneration of Green Odour by Green Leaves. Phytochemistry 1993, 34, 1201–1218. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Front Plant Sci 2017, 8, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardgett, R.D.; Mawdsley, J.L.; Edwards, S.; Hobbs, P.J.; Rodwell, J.S.; Davies, W.J. Plant Species and Nitrogen Effects on Soil Biological Properties of Temperate Upland Grasslands. Funct. Ecol. 1999, 13, 650–660. [Google Scholar] [CrossRef] [Green Version]
- Paterson, E.; Thornton, B.; Sim, A.; Pratt, S. Effects of Defoliation and Atmospheric CO2 Depletion on Nitrate Acquisition, and Exudation of Organic Compounds by Roots of Festuca rubra. Plant Soil 2003, 250, 293–305. [Google Scholar] [CrossRef]
- Paterson, E.; Thornton, B.; Midwood, A.J.; Sim, A. Defoliation Alters the Relative Contributions of Recent and Non-Recent Assimilate to Root Exudation from Festuca rubra. Plant Cell Environ. 2005, 28, 1525–1533. [Google Scholar] [CrossRef]
- Bertin, C.; Yang, X.; Weston, L.A. The Role of Root Exudates and Allelochemicals in the Rhizosphere. Plant Soil 2003, 256, 67–83. [Google Scholar] [CrossRef]
- Yang, X.; Owens, T.G.; Scheffler, B.E.; Weston, L.A. Manipulation of Root Hair Development and Sorgoleone Production in Sorghum Seedlings. J. Chem. Ecol. 2004, 30, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Czarnota, M.A.; Rimando, A.M.; Weston, L.A. Evaluation of Root Exudates of Seven Sorghum Accessions. J. Chem. Ecol. 2003, 29, 2073–2083. [Google Scholar] [CrossRef] [PubMed]
- Trezzi, M.M.; Vidal, R.A. Potential of Sorghum and Pearl Millet Cover Crops in Weed Suppression in the Field: II—Mulching Effect. Planta Daninha 2004, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fujii, Y.; Pariasca, D.; Shibuya, T.; Yasuda, T.; Kahn, B.; Waller, G.R. Plant-box Method: A Specific Bioassay to Evaluate Allelopathy through Root Exudates. In Allelopathy New Concept and Methodology; Fujii, Y., Hiradate, S., Eds.; Science Publishers: Enfield, CT, USA, 2007; pp. 39–56. [Google Scholar]
- Fujii, Y.; Furubayashi, A.; Hiradate, S. Rhizosphere Soil Method: A New Bioassay to Evaluate Allelopathy in the Field. In Proceedings of the 4th World Congress on Allelopathy, “Establishing the Scientific Base”, Wagga Wagga, Australia, 21–26 August 2005; pp. 493–497. [Google Scholar]
- Fujii, Y.; Matsuyama, M.; Hiradate, S.; Shimozawa, H. Dish Pack Method: A New Bioassay for Volatile Allelopathy. Thymus 2005, 2, 493–497. [Google Scholar]
- Fujii, Y.; Parvez, S.S.; Parvez, M.M.; Ohmae, Y.; Iida, O. Screening of 239 Medicinal Plant Species for Allelopathic Activity Using the Sandwich Method. Weed Biol. Manag. 2003, 3, 233–241. [Google Scholar] [CrossRef]
- Noguchi, K. Upland Weeds and Their Management in Soybean in Japan. In Pest Management in Soybean; Copping, L.G., Green, M.B., Rees, R.T., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 299–307. ISBN 978-94-011-2870-4. [Google Scholar]
- Ito, M.; Ichikawa, E. Nitrification Inhibition by Roots of Digitaria adscendens (H. B. K.) Henr. J. Weed Sci. Technol. 1994, 39, 125–127. [Google Scholar] [CrossRef]
- Chozin, M.A.; Yasuda, S. Possibility of Natural Hybridization between Cyperus iria L. and Cyperus microiria Steud. J. Weed Sci. Technol. 1991, 36, 282–289. [Google Scholar] [CrossRef]
- Zhou, B.; Kong, C.-H.; Li, Y.-H.; Wang, P.; Xu, X.-H. Crabgrass (Digitaria sanguinalis) Allelochemicals that Interfere with Crop Growth and the Soil Microbial Community. J. Agric. Food Chem. 2013, 61, 5310–5317. [Google Scholar] [CrossRef]
- Komai, K.; Tang, C.-S. Chemical Constituents and Inhibitory Activities of Essential Oils from Cyperus brevifolius And C. kyllingia. J Chem Ecol 1989, 15, 2171–2176. [Google Scholar] [CrossRef]
- Chou, C.-H.; Leu, L.-L. Allelopathic Substances and Interactions of Delonix regia (Boj) Raf. J. Chem. Ecol. 1992, 18, 2285–2303. [Google Scholar] [CrossRef]
- Jaikaew, P.; Boulange, J.; Thuyet, D.Q.; Malhat, F.; Ishihara, S.; Watanabe, H. Potential Impacts of Seasonal Variation on Atrazine and Metolachlor Persistence in Andisol Soil. Env. Monit Assess 2015, 187, 760. [Google Scholar] [CrossRef]
- IUSS Working Group, W.R.B. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014; ISBN 978-92-5-108370-3. [Google Scholar]
- Booth, B.D.; Murphy, S.D.; Swanton, C.J. Weed Ecology in Natural and Agricultural Systems; CAB International: Wallingford, UK, 2003; ISBN 978-0-85199-528-1. [Google Scholar]
- Kobayashi, H. Seasonal Dynamics of Weed Biomass in Upland Fields, Periodically Cultivated Fields and Weeded Fields without Soil Disturbance: Estimation Based on Plant Coverage and Height. Tohoku Agri. Res. 2000, 53, 93–94. [Google Scholar]
- Kobayashi, H.; Nakamura, Y.; Watanabe, Y. Analysis of Weed Vegetation of No-Tillage Upland Fields Based on the Multiplied Dominance Ratio. Weed Biol. Manag. 2003, 3, 77–92. [Google Scholar] [CrossRef]
- da Silva, A.P.; Imhoff, S.; Corsi, M. Evaluation of Soil Compaction in an Irrigated Short-Duration Grazing System. Soil Tillage Res. 2003, 70, 83–90. [Google Scholar] [CrossRef]
- Pande, T.N.; Yamamoto, H. Cattle Treading Effects on Plant Growth and Soil Stability in the Mountain Grassland of Japan. Land Degrad. Dev. 2006, 17, 419–428. [Google Scholar] [CrossRef]
- Japan Meteorological Agency|AMeDAS. Available online: https://www.jma.go.jp/jma/en/Activities/amedas/amedas.html (accessed on 28 October 2022).
- Kang, S.; Mills, A.L. Soil Bacterial Community Structure Changes Following Disturbance of the Overlying Plant Community. Soil Sci. 2004, 169, 55–65. [Google Scholar] [CrossRef]
- Hill, R.; Pickering, C. Differences in Resistance of Three Subtropical Vegetation Types to Experimental Trampling. J. Environ. Manag. 2009, 90, 1305–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, H.; Miura, S.; Oyanagi, A. Effects of Winter Barley as a Cover Crop on the Weed Vegetation in a No-Tillage Soybean. Weed Biol. Manag. 2004, 4, 195–205. [Google Scholar] [CrossRef]
- Rahman, A.; James, T.K.; Grbavac, N. Potential of Weed Seedbanks for Managing Weeds: A Review of Recent New Zealand Research. Weed Biol. Manag. 2001, 1, 89–95. [Google Scholar] [CrossRef]
- Rahman, A.; James, T.K.; Grbavac, N. Correlation between the Soil Seed Bank and Weed Populations in Maize Fields. Weed Biol. Manag. 2006, 6, 228–234. [Google Scholar] [CrossRef]
- Sun, D.; Liddle, M.J. Trampling Resistance, Stem Flexibility and Leaf Strength in Nine Australian Grasses and Herbs. Biol. Conserv. 1993, 65, 35–41. [Google Scholar] [CrossRef]
- Kobayashi, T.; Hori, Y.; Nomoto, N. Effects of Trampling and Vegetation Removal on Species Diversity and Micro-Environment under Different Shade Conditions. J. Veg. Sci. 1997, 8, 873–880. [Google Scholar] [CrossRef]
- Greenland, D.J. Soil Management and Soil Degradation. J. Soil Sci. 1981, 32, 301–322. [Google Scholar] [CrossRef]
- Dexter, A.R. Amelioration of Soil by Natural Processes. Soil Tillage Res. 1991, 20, 87–100. [Google Scholar] [CrossRef]
- Jordan, D.; Li, F.; Ponder Jr, F.; Berry, E.C.; Hubbard, V.C.; Kim, K.Y. The Effects of Forest Practices on Earthworm Populations and Soil Microbial Biomass in a Hardwood Forest in Missouri. Appl. Soil Ecol. 1999, 13, 31–38. [Google Scholar] [CrossRef]
- Elliott, A.H.; Tian, Y.Q.; Rutherford, J.C.; Carlson, W.T. Effect of Cattle Treading on Interrill Erosion from Hill Pasture: Modelling Concepts and Analysis of Rainfall Simulator Data. Soil Res. 2002, 40, 963–976. [Google Scholar] [CrossRef]
- Drewry, J.J.; Paton, R.J.; Monaghan, R.M. Soil Compaction and Recovery Cycle on a Southland Dairy Farm: Implications for Soil Monitoring. Soil Res. 2004, 42, 851–856. [Google Scholar] [CrossRef]
- Reintam, E.; Kuht, J. Weed Responses to Soil Compaction and Crop Management. In Weed Control; Price, A., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0159-8. [Google Scholar]
- More, S.S.; Shinde, S.E.; Kasture, M.C. Root Exudates a Key Factor for Soil and Plant: An Overview. Pharma Innov. J 2020, 8, 449–459. [Google Scholar]
- Ito, M.; Kobayashi, H.; Ueki, K. Allelopathic Potential of Digitaria adscendens: Inhibitory Effects of Previously Grown Soil on Crop Growth and Weed Emergence. In Proceedings of the 11th Asian Pacific Weed Science Society Conference, Taipei, Taiwan, China, 29 November–5 December 1987; Volume 2, pp. 607–612. [Google Scholar]
- Alsaadawi, I.S.; Salih, N.M.M. Allelopathic Potential of Cyperus rotundas LI Interference with Crops. Allelopath. J. 2009, 23, 297–303. [Google Scholar]
- Chopra, N.; Tewari, G.; Tewari, L.M.; Upreti, B.; Pandey, N. Allelopathic Effect of Echinochloa colona L. and Cyperus iria L. Weed Extracts on the Seed Germination and Seedling Growth of Rice and Soyabean. Adv. Agric. 2017, 2017, 5748524. [Google Scholar] [CrossRef] [Green Version]
- Paterson, E.; Sim, A. Rhizodeposition and C-Partitioning of Lolium perenne in Axenic Culture Affected by Nitrogen Supply and Defoliation. Plant Soil 1999, 216, 155–164. [Google Scholar] [CrossRef]
- Danckwerts, J.E.; Gordon, A.J. Long-Term Partitioning, Storage and Re-Mobilization of 14C Assimilated by Lolium perenne (Cv. Melle). Ann. Bot. 1987, 59, 55–66. [Google Scholar] [CrossRef]
- Evans, G.C. The Quantitative Analysis of Plant Growth; University of California Press: Berkeley, CA, USA, 1972; Volume 1. [Google Scholar]
- Bokhari, U.G.; Singh, J.S. Effects of Temperature and Clipping on Growth, Carbohydrate Reserves, and Root Exudation of Western Wheatgrass in Hydroponic Culture1. Crop Sci. 1974, 14, 790–794. [Google Scholar] [CrossRef]
- Mikola, J.; Kytöviita, M.-M. Defoliation and the Availability of Currently Assimilated Carbon in the Phleum pratense Rhizosphere. Soil Biol. Biochem. 2002, 34, 1869–1874. [Google Scholar] [CrossRef]
- Nguyen, C.; Henry, F. A Carbon-14-Glucose Assay to Compare Microbial Activity between Rhizosphere Samples. Biol. Fertil. Soils 2002, 35, 270–276. [Google Scholar] [CrossRef]
- Chehab, E.W.; Eich, E.; Braam, J. Thigmomorphogenesis: A Complex Plant Response to Mechano-Stimulation. J. Exp. Bot. 2009, 60, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Sunohara, Y.; Ikeda, H.; Tsukagoshi, S.; Murata, Y.; Sakurai, N.; Noma, Y. Effects of Trampling on Morphology and Ethylene Production in Asiatic Plantain. Weed Sci. 2002, 50, 479–484. [Google Scholar] [CrossRef]
- Stephane, F.F.Y.; Juleshttps, B.K.J. Terpenoids as Important Bioactive Constituents of Essential Oils. In Essential Oils-Bioactive Compounds, New Perspectives and Applications; IntechOpen: London, UK, 2020; ISBN 978-1-83962-697-5. [Google Scholar]
- Iwamur, J.; Hosotsubo, H.; Hirao, N. Mass Spectra for Molecular Structure(4)Mass Spectra of 2-Alkenoic Acid Methyl Esters. Mass Spectrosc. 1978, 26, 269–274. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Mao, Z.; Jiang, Z.; Gao, Y.; Chen, X.; Aubrey, D.P. Root Exudation Rates Decrease with Increasing Latitude in Some Tree Species. Forests 2020, 11, 1045. [Google Scholar] [CrossRef]
No. | Scientific Name | Common Name | Frequency (%) |
---|---|---|---|
1 | Digitaria ciliaris | Southern crabgrass | 95.8 |
2 | Cyperus microiria | Asian flatsedge | 95.8 |
3 | Justicia procumbens | Oriental water willow | 95.8 |
4 | Solanum carolinense | Horsenettle | 75.0 |
5 | Setaria faberi | Giant foxtail | 70.8 |
6 | Rumex japonicus | Japanese dock | 66.7 |
7 | Houttuynia cordata | Fish-mint | 62.5 |
8 | Cayratia japonica | Bush killer | 54.2 |
9 | Paederia scandens | Skunk vine | 41.7 |
10 | Plantago lanceolata | Ribwort plantain | 37.5 |
11 | Oxalis corniculata | Sleeping beauty | 37.5 |
12 | Taraxacum officinale | Dandelion | 20.8 |
13 | Poa annua | Annual bluegrass | 12.5 |
14 | Euphorbia maculata | Spotted spurge | 12.5 |
15 | Paspalum dilatatum | Dallisgrass | 8.33 |
16 | Morus alba | Mulberry | 4.17 |
17 | Setaria glauca | Yellow foxtail | 4.17 |
MDR (×100 m3 m−2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Plant Species | |||||||||||
D. ciliaris | C. microiria | J. procumbens | S. faberi | S. carolinense | |||||||
Time | Treatment | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE |
0 WAT | Control | 49.7 | 20.3 | 0.843 | 0.688 | 0.775 | 0.379 | 0.467 | 0.192 | 1.19 | 0.523 |
Mowing | 20.2 | 8.95 | 1.33 | 0.407 | 0.735 | 0.208 | 1.13 | 0.522 | 1.92 | 0.605 | |
T25 | 34.8 | 12.5 | 1.67 | 0.816 | 0.568 | 0.211 | 2.17 | 1.73 | 0.398 | 0.213 | |
T50 | 42.8 | 22.5 | 1.80 | 0.888 | 1.09 | 0.776 | 0.391 | 0.293 | 1.71 | 1.48 | |
T100 | 16.7 | 5.94 | 1.56 | 0.484 | 1.29 | 0.355 | 0.589 | 0.354 | 0.888 | 0.454 | |
T200 | 38.9 | 14.9 | 1.65 | 0.582 | 0.349 | 0.117 | 11.2 | 10.9 | 0.848 | 0.122 | |
2 WAT | Control | 58.9 a | 21.4 | 0.835 | 0.452 | 0.836 a | 0.255 | 0.733 | 0.332 | 0.450 a | 0.169 |
Mowing | 0.533 b | 0.191 | 0.849 | 0.368 | 0.115 b | 0.0674 | 0.000 | 0.000 | 0.0408 b | 0.0164 | |
T25 | 34.2 ab | 14.3 | 0.363 | 0.0606 | 0.171 ab | 0.0858 | 0.188 | 0.0409 | 0.193 ab | 0.114 | |
T50 | 22.2 ab | 5.68 | 1.07 | 0.525 | 0.453 ab | 0.248 | 0.107 | 0.0645 | 0.0467 b | 0.0467 | |
T100 | 19.6 ab | 2.83 | 0.829 | 0.463 | 0.226 ab | 0.0783 | 0.729 | 0.586 | 0.0408 b | 0.0238 | |
T200 | 17.7 ab | 6.37 | 0.317 | 0.122 | 0.0417 b | 0.0146 | 3.76 | 3.55 | 0.0200 b | 0.0115 | |
4 WAT | Control | 60.4 a | 23.4 | 12.0 | 11.7 | 0.445 | 0.214 | 1.19 | 0.889 | 0.263 | 0.111 |
Mowing | 0.517 b | 0.228 | 0.570 | 0.234 | 0.238 | 0.188 | 0.000 | 0.000 | 0.118 | 0.0228 | |
T25 | 24.0 ab | 9.71 | 0.238 | 0.0618 | 0.154 | 0.0887 | 0.614 | 0.301 | 0.0775 | 0.0775 | |
T50 | 19.5 ab | 6.79 | 0.570 | 0.243 | 0.152 | 0.0812 | 0.127 | 0.0744 | 0.0217 | 0.0217 | |
T100 | 19.6 ab | 4.16 | 0.584 | 0.141 | 0.0950 | 0.00569 | 0.477 | 0.228 | 0.147 | 0.0952 | |
T200 | 15.2 ab | 5.71 | 0.383 | 0.116 | 0.0625 | 0.00250 | 1.99 | 1.93 | 0.0575 | 0.0225 |
Source of Variance | Sum of Squares | df | Mean of Squares | F | p-Value |
---|---|---|---|---|---|
Between treatments | 10,600 | 2 | 5310 | 894 | 0.000 *** |
Within treatments | 35.6 | 6 | 5.94 | ||
Total | 10,600 | 8 |
Treatments | Mean (%) | SD | Pair Comparison | MD (%) | SE | p-Value |
---|---|---|---|---|---|---|
Control (agar) | 100 | 2.27 | Control vs. D. ciliaris | 72.0 | 1.31 | 0.000 *** |
D. ciliaris | 28.0 | 3.22 | Control vs. C. microiria | 73.8 | 1.86 | 0.000 *** |
C. microiria | 26.2 | 1.50 | D. ciliaris vs. C. microiria | 1.80 | 0.867 | 0.430 ns |
Species | Source of Variance | Sum of Squares | df | Mean of Squares | F | p-Value |
---|---|---|---|---|---|---|
D. ciliaris | Between treatments | 13,800 | 3 | 4610 | 49.6 | 0.000 *** |
Within treatments | 743 | 8 | 92.9 | |||
Total | 14,500 | 11 | ||||
C. microiria | Between treatments | 5460 | 3 | 1820 | 6.37 | 0.016 * |
Within treatments | 2290 | 8 | 286 | |||
Total | 7750 | 11 |
Species | Treatment | Mean (%) | SD | Pair Comparison | MD (%) | SE | p-Value |
---|---|---|---|---|---|---|---|
D. ciliaris | Control (Agar) | 100 | 7.08 | Control vs. Intact | 68.8 | 8.16 | 0.011 * |
Intact | 31.2 | 12.2 | Control vs. Mowing | 77.9 | 4.99 | 0.001 ** | |
Mowing | 22.1 | 4.99 | Control vs. Trampling | 85.2 | 8.10 | 0.005 * | |
Trampling | 14.8 | 12.1 | Intact vs. Mowing | 9.11 | 7.63 | 0.783 ns | |
Intact vs. Trampling | 16.4 | 9.94 | 0.553 ns | ||||
Mowing vs. Trampling | 7.27 | 7.57 | 0.881 ns | ||||
C. microiria | Control (Agar) | 100 | 24.1 | Control vs. Intact | 58.9 | 14.3 | 0.138 ns |
Intact | 41.1 | 6.05 | Control vs. Mowing | 40.2 | 16.7 | 0. 292 ns | |
Mowing | 59.8 | 16.1 | Control vs. Trampling | 30.5 | 16.8 | 0.488 ns | |
Trampling | 69.5 | 16.3 | Intact vs. Mowing | −18.7 | 9.93 | 0.492 ns | |
Intact vs. Trampling | −28.5 | 10.0 | 0. 252 ns | ||||
Mowing vs. Trampling | −9.77 | 13.2 | 0.959 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biramahire, B.; Appiah, K.S.; Tojo, S.; Fujii, Y.; Chosa, T. Influence of Mowing and Trampling on the Allelopathy and Weed Suppression Potential of Digitaria ciliaris and Cyperus microiria. Sustainability 2022, 14, 16665. https://doi.org/10.3390/su142416665
Biramahire B, Appiah KS, Tojo S, Fujii Y, Chosa T. Influence of Mowing and Trampling on the Allelopathy and Weed Suppression Potential of Digitaria ciliaris and Cyperus microiria. Sustainability. 2022; 14(24):16665. https://doi.org/10.3390/su142416665
Chicago/Turabian StyleBiramahire, Bienvenu, Kwame Sarpong Appiah, Seishu Tojo, Yoshiharu Fujii, and Tadashi Chosa. 2022. "Influence of Mowing and Trampling on the Allelopathy and Weed Suppression Potential of Digitaria ciliaris and Cyperus microiria" Sustainability 14, no. 24: 16665. https://doi.org/10.3390/su142416665
APA StyleBiramahire, B., Appiah, K. S., Tojo, S., Fujii, Y., & Chosa, T. (2022). Influence of Mowing and Trampling on the Allelopathy and Weed Suppression Potential of Digitaria ciliaris and Cyperus microiria. Sustainability, 14(24), 16665. https://doi.org/10.3390/su142416665