Evaluation of Alternative Fuels for Coastal Ferries
Abstract
:1. Introduction
2. Assessment of Alternative Fuels
3. Decarbonizing Coastal Ferries
3.1. Fuel Alternative Pilot Projects with the Most Potential
3.1.1. Diesel-Electric Hybrid
3.1.2. Fully Electric
3.1.3. Hydrogen
3.1.4. Methanol
3.1.5. Liquefied Natural Gas
3.2. Evaluation of Potential Technologies
- Technical Readiness: Evaluates the existence and use of relevant technologies in commercial use now. For example, manufacturers do not offer solutions without methane emissions for LNG systems. Scrubber technologies have been designed to reduce SO2 and are not currently optimized to catch GHG, such as carbon dioxide, methane, and laughing gas, nitrous oxide. In the case of methanol, there are no workable solutions for the safe storage of fuel onboard passenger ships. In the case of ammonia, human safety due to the extreme toxicity of the gas needs to be addressed.
- Regulations: Assesses the current situation regarding the regulatory status of the use of the technology and the possibility of use with passengers on board the ship (IMO, [40]).
- Zero emission Well-to-Tank: Assesses the production process and supply of the fuel used by the ship based on the GHG emissions of the cycle and its compliance with the agreed climate targets. As many fuels can use both fossil fuels and renewable energy sources, the technology depends on the fuels available in the region and the choice of ship operator [9].
- Zero emission Tank-to-Wake: Illustrates the impact of the ship’s potential GHG emissions and compliance with agreed climate goals.
- Capex (Capital Expenditure): Indicates the estimated size of the investment compared to the share of today’s usual assets in the business model [41].
- Opex (Operative Expenditure): Estimates the running costs of the technology, such as fuel and technical maintenance, compared to today’s habitual costs as a share of the business model [42].
- Ice: Appreciates the possibility of using the technology in more severe ice conditions, which need remarkably more propulsion power and onboard energy storage.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. 2050 Long-Term Strategy. 2018. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2050-long-term-strategy_en (accessed on 3 May 2022).
- Armstrong, J.V.S. Climate Impacts of Exemptions to EU’s Shipping Proposals Shipping Laws; Transport & Environment: Brussels, Belgium, 2022; Available online: https://www.transportenvironment.org/wp-content/uploads/2022/01/Climate_Impacts_of_Shipping_Exemptions_Report-1.pdf (accessed on 2 August 2022).
- European Parliament. Report—A9-0162/2022; European Parliament: Brussels, Belgium, 2022; Available online: https://www.europarl.europa.eu/doceo/document/A-9-2022-0162_EN.html (accessed on 4 June 2022).
- Saul, J.; Abnett, K. EU Shipping Plan Leaves Millions of Tonnes of CO2 Unregulated—Study. Reuters. 13 January 2022. Available online: https://www.reuters.com/world/europe/eu-shipping-plan-leaves-millions-tonnes-co2-unregulated-study-2022-01-12/ (accessed on 5 June 2022).
- Degiuli, N.; Martić, I.; Farkas, A.; Gospić, I. The impact of slow steaming on reducing CO2 emissions in the Mediterranean Sea. Energy Rep. 2021, 7, 8131–8141. [Google Scholar] [CrossRef]
- Corbett, J.J.; Wang, H.; Winebrake, J.J. The effectiveness and costs of speed reductions on emissions from international shipping. Transp. Res. Part D Transp. Environ. 2009, 14, 593–598. [Google Scholar] [CrossRef]
- Nielsen, K.V.; Blanke, M.; Eriksson, L.; Vejlgaard-Laursen, M. Marine diesel engine control to meet emission requirements and maintain maneuverability. Control Eng. Pract. 2018, 76, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Lindstad, E.; Lagemann, B.; Rialland, A.; Gamlem, G.M.; Valland, A. Reduction of maritime GHG emissions and the potential role of E-fuels. Transp. Res. Part D Transp. Environ. 2021, 101, 103075. [Google Scholar] [CrossRef]
- Law, L.C.; Foscoli, B.; Mastorakos, E.; Evans, S. A comparison of alternative fuels for shipping in terms of lifecycle energy and cost. Energies 2021, 14, 8502. [Google Scholar] [CrossRef]
- McKinlay, C.J.; Turnock, S.R.; Hudson, D.A. Route to zero emission shipping: Hydrogen, ammonia or methanol? Int. J. Hydrogen Energy 2021, 46, 28282–28297. [Google Scholar] [CrossRef]
- Equasis. Statistics. French Ministry in Charge of Transport. 2022. Available online: https://www.equasis.org/EquasisWeb/public/PublicStatistic?fs=HomePage (accessed on 5 June 2022).
- DNV Premium Access—Alternative Fuels Insight (AFI). 2022. Available online: https://store.veracity.com/premium-access-alternative-fuels-insight-afi?utm_source=afi_servicepage&utm_medium=premium_link&utm_campaign=ma_22q4_afi (accessed on 3 June 2022).
- Thames Clippers. Hybrid Boats to Revolutionise Sustainable River Travel. 2022. Available online: https://www.thamesclippers.com/news/hybrid-boats-to-Revolutionise-sustainable-river-travel (accessed on 23 September 2022).
- Binnenschifffahrt. Hybridfähren: Dreifachtaufe am NOK (Free Translation to English: “Hybrid Ferries: Triple Christening on the NOK”). 2022. Available online: https://binnenschifffahrt-online.de/2021/10/featured/22736/hybridfaehren-dreifachtaufe-am-nok-%E2%80%A8%E2%80%A8/ (accessed on 23 September 2022).
- Baird Maritime. Norled Ferry to Undergo Hybrid Electric Refit. 2022. Available online: https://www.bairdmaritime.com/work-boat-world/passenger-vessel-world/ro-pax/norled-ferry-to-undergo-hybrid-electric-refit/ (accessed on 23 September 2022).
- Al-Wreikat, Y.; Serrano, C.; Sodré, J.R. Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle. Energy 2022, 238, 122028. [Google Scholar] [CrossRef]
- Liimatainen, H.; van Vliet, O.; Aplyn, D. The potential of electric trucks—An international commodity-level analysis. Appl. Energy 2019, 235, 804–814. [Google Scholar] [CrossRef]
- Corvus Energy. MF Ampere. 2022. Available online: https://corvusenergy.com/projects/mf-ampere/ (accessed on 23 September 2022).
- Ship Technology. Ellen E-Ferry: World First a Glimpse of the Future of Ferries. 2022. Available online: https://www.ship-technology.com/analysis/ellen-e-ferry/ (accessed on 23 September 2022).
- TrAM. About the Project. 2022. Available online: https://tramproject.eu/about/ (accessed on 23 September 2022).
- Al-Falahi, M.D.A.; Nimma, K.S.; Jayasinghe, S.D.G.; Enshaei, H.; Guerrero, J.M. Power management optimization of hybrid power systems in electric ferries. Energy Convers. Manag. 2018, 172, 50–66. [Google Scholar] [CrossRef] [Green Version]
- Kersey, J.; Popovich, N.D.; Phadke, A.A. Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping. Nat. Energy 2022, 7, 664–674. [Google Scholar] [CrossRef]
- Naumanen, M.; Uusitalo, T.; Huttunen-Saarivirta, E.; van der Have, R. Development strategies for heavy duty electric battery vehicles: Comparison between China, EU, Japan and USA. Resour. Conserv. Recycl. 2019, 151, 104413. [Google Scholar] [CrossRef]
- FuelCellWorks. Norway: MF “Hydra”, The World’s First Hydrogen Operated Ferry Wins Ship of The Year 2021. 2022. Available online: https://fuelcellsworks.com/news/norway-mf-hydra-the-worlds-first-hydrogen-operated-ferry-wins-ship-of-the-year-2021/ (accessed on 23 September 2022).
- Switch Maritime. Projects—SW/TCH Maritime. 2022. Available online: https://www.switchmaritime.com/projects (accessed on 23 September 2022).
- CMB TECH. First hydrogen-powered CTV: Hydrocat 48 | CMB TECH. 2022. Available online: https://cmb.tech/news/windcat-workboats-cmb-tech-present-the-first-hydrogen-powered-crew-transfer-vessel-ctv-the-hydrocat-48-ready-for-immediate-operation (accessed on 23 September 2022).
- Langmi, H.W.; Engelbrecht, N.; Modisha, P.M.; Bessarabov, D. Hydrogen storage. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Smolinka, T., Garche, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 455–486. [Google Scholar] [CrossRef]
- Ahmadi, P.; Kjeang, E. Comparative life cycle assessment of hydrogen fuel cell passenger vehicles in different Canadian provinces. Int. J. Hydrog. Energy 2015, 40, 12905–12917. [Google Scholar] [CrossRef]
- Offshore Energy. Stena Germanica Runs on Recycled Methanol—Offshore Energy. 2022. Available online: https://www.offshore-energy.biz/stena-germanica-runs-on-recycled-methanol/ (accessed on 23 September 2022).
- Masih, A.M.M.; Albinali, K.; DeMello, L. Price dynamics of natural gas and the regional methanol markets. Energy Policy 2010, 38, 1372–1378. [Google Scholar] [CrossRef]
- Maersk, A.P. Moller-Maersk Engages in Strategic Partnerships Across the Globe to Scale Green Methanol Production by 2025. Press Release. 10 March 2022. Available online: https://www.maersk.com/news/articles/2022/03/10/maersk-engages-in-strategic-partnerships-to-scale-green-methanol-production (accessed on 23 September 2022).
- Splash247. Methanol Backers Including COSCO and Bill Gates Show Their Hands. 2022. Available online: https://splash247.com/methanol-backers-including-cosco-and-bill-gates-show-their-hands/ (accessed on 23 September 2022).
- Pavlenko, N.; Comer, B.; Zhou, Y.; Clark, N.; Rutherford, D. The Climate Implications of Using LNG as a Marine Fuel. ICCT Working Paper 2020-02. January 2020. Available online: https://theicct.org/sites/default/files/publications/Climate_implications_LNG_marinefuel_01282020.pdf (accessed on 24 September 2022).
- Offshore Energy. Wärtsilä to Support Brittany Ferries’ LNG-Fueled Salamanca. 2022. Available online: https://www.offshore-energy.biz/wartsila-to-support-brittany-ferries-lng-fueled-salamanca/ (accessed on 23 September 2022).
- NOW. LNG Conversion of the RoRo Ferry MS “Münsterland”—NOW GmbH. 2022. Available online: https://www.now-gmbh.de/projektfinder/lng-umruestung-der-roro-faehre-ms-muensterland/ (accessed on 23 September 2022).
- Ship Technology. Tallink’s Megastar LNG-Fuelled Fast Ferry—Ship Technology. 23 February 2018. Available online: https://www.ship-technology.com/projects/tallinks-lng-fuelled-fast-ferry/ (accessed on 23 September 2022).
- Lee, H.J.; Yoo, S.H.; Huh, S.Y. Economic benefits of introducing LNG-fuelled ships for imported flour in South Korea. Transp. Res. Part D Transp. Environ. 2020, 78, 102220. [Google Scholar] [CrossRef]
- Hagos, D.A.; Ahlgren, E.O. Well-to-wheel assessment of natural gas vehicles and their fuel supply infrastructures—Perspectives on gas in transport in Denmark. Transp. Res. Part D Transp. Environ. 2018, 65, 14–35. [Google Scholar] [CrossRef]
- Anderson, M.; Salo, K.; Fridell, E. Particle- and gaseous emissions from an LNG powered ship. Environ. Sci. Technol. 2015, 49, 12568–12575. [Google Scholar] [CrossRef]
- MO Maritime Safety Committee (MSC 105). 20–29 April 2022. Available online: https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MSC-105th-session.aspx (accessed on 24 September 2022).
- Wang, Y.; Wright, L.A. A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation. World 2021, 2, 456–481. [Google Scholar] [CrossRef]
- Pomaska, L.; Acciaro, M. Bridging the maritime-hydrogen cost-gap: Real options analysis of policy alternatives. Transp. Res. Part D Transp. Environ. 2022, 107, 103283. [Google Scholar] [CrossRef]
- Solakivi, T.; Paimander, A.; Ojala, L. Cost competitiveness of alternative maritime fuels in the new regulatory framework. Transp. Res. Part D Transp. Environ. 2022, 113, 103500. [Google Scholar] [CrossRef]
- Gronholm, T.; Makela, T.; Hatakka, J.; Jalkanen, J.P.; Kuula, J.; Laurila, T.; Laakso, L.; Kukkonen, J. Evaluation of methane emissions originating from LNG ships based on the measurements at a remote marine station. Environ. Sci. Technol. 2021, 55, 13677–13686. [Google Scholar] [CrossRef]
- Seithe, G.J.; Bonou, A.; Giannopoulos, D.; Georgopoulou, C.A.; Founti, M. Maritime transport in a life cycle perspective: How fuels, vessel types, and operational profiles influence energy demand and greenhouse gas emissions. Energies 2020, 13, 2739. [Google Scholar] [CrossRef]
- Stoichevski, W. Future Fuels: The Pros and Cons of Methanol. Maritime Logistics. 16 May 2022. Available online: https://www.maritimeprofessional.com/news/future-fuels-pros-cons-methanol-376525 (accessed on 24 September 2022).
- Di Micco, S.; Minutillo, M.; Forcina, A.; Cigolotti, V.; Perna, A. Feasibility analysis of an innovative naval on-board power-train system with hydrogen- based PEMFC technology. E3S Web Conf. 2021, 312, 07009. [Google Scholar] [CrossRef]
- Minutillo, M.; Cigolotti, V.; di Ilio, G.; Bionda, A.; Boonen, E.-J.; Wannemacher, T. Hydrogen-based technologies in maritime sector: Technical analysis and prospective. E3S Web Conf. 2022, 334, 6011. [Google Scholar] [CrossRef]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. Transp. Res. Part D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Korberg, A.D.; Brynolf, S.; Grahn, M.; Skov, I.R. Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships. Renew. Sustain. Energy Rev. 2021, 142, 110861. [Google Scholar] [CrossRef]
- Maritime Battery Forum. MBF Ship Register. 2022. Available online: https://www.maritimebatteryforum.com/ship-register (accessed on 3 June 2022).
- Smyshlyaeva, K.I.; Rudko, V.A.; Povarov, V.G.; Shaidulina, A.A.; Efimov, I.; Gabdulkhakov, R.R.; Pyagay, I.N.; Speight, J.G. Influence of Asphaltenes on the Low-Sulphur Residual Marine Fuels’ Stability. J. Mar. Sci. Eng. 2021, 9, 1235. [Google Scholar] [CrossRef]
- Povarov, V.G.; Efimov, I.; Smyshlyaeva, K.I.; Rudko, V.A. Application of the UNIFAC Model for the Low-Sulfur Residue Marine Fuel Asphaltenes Solubility Calculation. J. Mar. Sci. Eng. 2022, 10, 1017. [Google Scholar] [CrossRef]
Age/Size | Small (1) | Medium (2) | Large (3) | Very Large (4) | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
0–4 years old | 348 | 9% | 371 | 9% | 32 | 2% | 32 | 2% | 783 | 10% |
5–14 years old | 595 | 5% | 559 | 4% | 58 | 1% | 66 | 2% | 1278 | 17% |
15–24 years old | 778 | 9% | 555 | 7% | 100 | 3% | 75 | 5% | 1508 | 20% |
+25 years old | 2491 | 8% | 1405 | 8% | 91 | 16% | 11 | 6% | 3998 | 53% |
Total | 4212 | 56% | 2890 | 38% | 281 | 4% | 184 | 2% | 7567 | 100% |
Vessel Type | LNG | LNG-Ready | Scrubber | Battery | Hydrogen | Methanol | Total |
---|---|---|---|---|---|---|---|
Ferries | 53 | 4 | 13 | 289 | 4 | 0 | 363 |
RoPax | 33 | 9 | 95 | 7 | 0 | 1 | 145 |
Cruise ships | 35 | 0 | 223 | 21 | 1 | 0 | 280 |
Total | 121 | 13 | 331 | 317 | 5 | 1 | 788 |
Type | In Operation | In Order |
---|---|---|
LNG | 46 | 7 |
Scrubber | 13 | 0 |
Hydrogen | 2 | 2 |
Batteries | 220 | 69 |
Pure electric | 24 | |
Hybrid | 30 | |
Plug-in hybrid | 15 |
Technical Readiness | Regulations | Zero Emission | Capex | Opex | Ice | Rating | ||
---|---|---|---|---|---|---|---|---|
Well-to-Tank | Tank-to-Wake | |||||||
Plug-in hybrid | If non fossil source | 26 | ||||||
Hybrid | If non fossil source | No grid energy | 25 | |||||
LNG | Methane slip | Fossil | Methane slip | 23 | ||||
Pure electric | If non fossil source | Bat. cost | 23 | |||||
Scrubber | CO2; CH4; N2O | Fossil | CO2; CH4; N2O | 20 | ||||
Methanol | Safety | Passenger | If non fossil source | 19 | ||||
Hydrogen | If non fossil source | 18 | ||||||
Ammonia | Poisonous | Passenger | If non fossil source | 16 | ||||
Rating map | ||||||||
0 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 |
Technical Readiness | Regulations | Zero Emission | Capex | Opex | Ice | Rating (Total) | Average | Median | St. Deviation | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Well-to-Tank | Tank-to-Wake | ||||||||||
Plug-in hybrid | 4 | 4 | 3 | 3 | 4 | 4 | 4 | 26 | 3.71 | 4.00 | 0.49 |
Hybrid | 4 | 4 | 3 | 2 | 4 | 4 | 4 | 25 | 3.57 | 4.00 | 0.79 |
LNG | 2 | 4 | 2 | 3 | 4 | 4 | 4 | 23 | 3.29 | 4.00 | 0.95 |
Pure electric | 4 | 4 | 3 | 4 | 2 | 4 | 2 | 23 | 3.29 | 4.00 | 0.95 |
Scrubber | 2 | 4 | 0 | 2 | 4 | 4 | 4 | 20 | 2.86 | 4.00 | 1.57 |
Methanol | 2 | 2 | 3 | 4 | 2 | 2 | 4 | 19 | 2.71 | 2.00 | 0.95 |
Hydrogen | 4 | 4 | 3 | 4 | 0 | 1 | 2 | 18 | 2.57 | 3.00 | 1.62 |
Ammonia | 0 | 0 | 3 | 4 | 2 | 3 | 4 | 16 | 2.29 | 3.00 | 1.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laasma, A.; Otsason, R.; Tapaninen, U.; Hilmola, O.-P. Evaluation of Alternative Fuels for Coastal Ferries. Sustainability 2022, 14, 16841. https://doi.org/10.3390/su142416841
Laasma A, Otsason R, Tapaninen U, Hilmola O-P. Evaluation of Alternative Fuels for Coastal Ferries. Sustainability. 2022; 14(24):16841. https://doi.org/10.3390/su142416841
Chicago/Turabian StyleLaasma, Andres, Riina Otsason, Ulla Tapaninen, and Olli-Pekka Hilmola. 2022. "Evaluation of Alternative Fuels for Coastal Ferries" Sustainability 14, no. 24: 16841. https://doi.org/10.3390/su142416841
APA StyleLaasma, A., Otsason, R., Tapaninen, U., & Hilmola, O. -P. (2022). Evaluation of Alternative Fuels for Coastal Ferries. Sustainability, 14(24), 16841. https://doi.org/10.3390/su142416841