A Review of Recycling Methods for Fibre Reinforced Polymer Composites
Abstract
:1. Introduction
Researcher | Year | Content | Main Points |
---|---|---|---|
Schinner et al. [24] | 1996 |
|
|
Kouparitsas et al. [25] | 2002 |
|
|
Halliwell [26] | 2006 |
|
|
Conroy et al. [27,28] | 2004/2006 |
|
|
Various authors [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84] | 1995–2023 |
|
|
Pickering [85] | 2006 |
|
|
Halliwell [86] | 2010 |
|
|
Pimenta and Pinho [87] | 2011 |
|
|
Bank et al. [15,88] | 2014 |
|
|
Vo Dong et al. [80,89] | 2015, 2018 |
|
|
Ribeiro et al. [90] | 2016 |
|
|
Naqvi et al. [21] | 2018 |
|
|
Gharde and Kandasubramanian [16] | 2019 |
|
|
Karuppannan Gopalraj and Karki [91] | 2020 |
|
|
Krauklis et al. [92] | 2021 |
|
|
Bank et al. [93,94,95,96] and Leon [97] | 2021–2022 |
|
|
Utekar et al. [13] | 2021 |
|
|
Gonçalves et al. [22] | 2022 |
|
|
Arif et al. [98] | 2022 |
|
|
2. FRP Waste Disposal Routes
3. Waste Prevention and Reuse
3.1. Waste Minimisation or Prevention
3.2. Reuse or Repurpose
4. Recycling
4.1. Mechanical Recycling
4.2. Thermal Recycling
4.2.1. Pyrolysis
4.2.2. Fluidised Beds
4.2.3. Microwave
4.3. Chemical Recycling
4.3.1. Low-Temperature (Solvolysis)
4.3.2. Sub or Supercritical Fluid (Solvolysis)
5. Recovery and Disposal
5.1. Incineration and Co-Incineration
- The waste should be smaller than 20 mm.
- The toxic and heavy metals should be low in the waste.
- It should not contain foreign material, including any metal fasteners.
- It must not contain dust from pulverised fibreglass.
- It should have a specific calorific value, usually higher than 5000 kcal/kg.
5.2. Landfill
6. Energy Demand and Cost
7. Limitations and Future Research Requirements
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme. Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction Sector—Global Status Report 2017; The United Nations Environment Programme: Nairobi, Kenya, 2017; ISBN 978-92-807-3686-1. [Google Scholar]
- Qureshi, J. A Review of Fibre Reinforced Polymer Structures. Fibers 2022, 10, 27. [Google Scholar] [CrossRef]
- Bank, L.C. Composites for Construction—Structural Design with FRP Materials; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Assadi-Langroudi, A.; O’Kelly, B.C.; Barreto, D.; Cotecchia, F.; Dicks, H.; Ekinci, A.; Garcia, F.E.; Harbottle, M.; Tagarelli, V.; Jefferson, I.; et al. Recent Advances in Nature-Inspired Solutions for Ground Engineering (NiSE). Int. J. Geosynth. Gr. Eng. 2021, 8, 3. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A Review on Basalt Fibre and Its Composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Abdelkerim, D.S.E.; Wang, X.; Ibrahim, H.A.; Wu, Z. Static and Fatigue Behavior of Pultruded FRP Multi-Bolted Joints with Basalt FRP and Hybrid Steel-FRP Bolts. Compos. Struct. 2019, 220, 324–337. [Google Scholar] [CrossRef]
- Abdelkerim, D.S.E.; Wang, X.; Ibrahim, H.A.; Wu, Z. Effect of Connection Techniques on the Static and Fatigue Performance of Pultruded Basalt FRP Multibolted Joints. J. Compos. Constr. 2020, 24, 04020046. [Google Scholar] [CrossRef]
- Gopu, G.N.; Sofi, A.; Brahmareddy, C.; Sairaman, G. Experimental Investigation of Tensile, Compression, Shear and Flexural Behaviour of Basalt Fibre and Glass Fibre Reinforced Polymer Bars. Mater. Today Proc. 2022, 64, 1122–1128. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H.; Alyousef, R.; Rashid, R.S.M.; Alabduljabbar, H.; Hung, C.-C. Properties and Applications of FRP in Strengthening RC Structures: A Review. Structures 2018, 16, 208–238. [Google Scholar] [CrossRef]
- Correia, J.R. Fibre reinforced Polymer (FRP) Composites. In Materials for Construction and Civil Engineering, Science, Processing, and Design; Goncalves, M.C., Margarido, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 501–556. ISBN 978-3-319-08235-6. [Google Scholar]
- Task Group 5.1. FRP Reinforcement in RC Structures; Technical Report CEB-FIP fib bulletin 40; International Federation for Structural Concrete (fib): Lausanne, Switzerland, 2007; ISBN 978-2-88394-080-2. [Google Scholar]
- Vinay, S.S.; Sanjay, M.R.; Siengchin, S.; Venkatesh, C.V. Basalt Fiber Reinforced Polymer Composites Filled with Nano Fillers: A Short Review. Mater. Today Proc. 2022, 52, 2460–2466. [Google Scholar] [CrossRef]
- Utekar, S.; V K, S.; More, N.; Rao, A. Comprehensive Study of Recycling of Thermosetting Polymer Composites—Driving Force, Challenges and Methods. Compos. Part B Eng. 2021, 207, 108596. [Google Scholar] [CrossRef]
- Correia, J.R.; Bai, Y.; Keller, T. A Review of the Fire Behaviour of Pultruded GFRP Structural Profiles for Civil Engineering Applications. Compos. Struct. 2015, 127, 267–287. [Google Scholar] [CrossRef]
- Bank, L.C.; Yazdanbakhsh, A. Reuse of Glass Thermoset FRP Composites in the Construction Industry—A Growing Opportunity. In Proceedings of the 7th International Conference on FRP Composites in Civil Engineering, CICE 2014, Vancouver, BC, Canada, 20–22 August 2014; El-Hacha, R., Ed.; International Institute for FRP in Construction: Vancouver, BC, Canada, 2014. [Google Scholar]
- Gharde, S.; Kandasubramanian, B. Mechanothermal and Chemical Recycling Methodologies for the Fibre Reinforced Plastic (FRP). Environ. Technol. Innov. 2019, 14, 100311. [Google Scholar] [CrossRef]
- Witten, E.; Mathes, V. The Market for Glass Fibre Reinforced Plastics (GRP) in 2020, Report; European Composites Industry Association (EuCIA): Brussels, Belgium, 2020. [Google Scholar]
- EURECOMP. Final Summary Report EURECOMP Recycling Thermoset Composites of the SST. Available online: https://cordis.europa.eu/project/id/218609/reporting (accessed on 30 November 2022).
- Research and Markets. Fiber Reinforced Polymer (FRP) Composites Market—Forecasts from 2021 to 2026. Available online: https://www.researchandmarkets.com/reports/5547603/fiber-reinforced-polymer-frp-composites-market?utm_source=GNOM&utm_medium=PressRelease&utm_code=q88slz&utm_campaign=1679794+-+Worldwide+Fiber+Reinforced+Polymer+Composites+Industry+to+2026+-+by+Type%2C+En (accessed on 30 November 2022).
- JEC Observer Overview of the Global Composites Market, 2021–2026. Available online: https://www.jeccomposites.com/press/jec-observerbroverview-of-the-globalbrcomposites-market-2021-2026-eco/ (accessed on 30 November 2022).
- Naqvi, S.R.; Prabhakara, H.M.; Bramer, E.A.; Dierkes, W.; Akkerman, R.; Brem, G. A Critical Review on Recycling of End-of-Life Carbon Fibre/Glass Fibre Reinforced Composites Waste Using Pyrolysis towards a Circular Economy. Resour. Conserv. Recycl. 2018, 136, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Recycling of Reinforced Glass Fibers Waste: Current Status. Materials 2022, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 Amending Directive 1999/31/EC on the Landfill of Waste. Off. J. Eur. Union 2018, L 150, 100–108. [Google Scholar]
- Schinner, G.; Brandt, J.; Richter, H. Recycling Carbon-Fiber-Reinforced Thermoplastic Composites. J. Thermoplast. Compos. Mater. 1996, 9, 239–245. [Google Scholar] [CrossRef]
- Kouparitsas, C.E.; Kartalis, C.N.; Varelidis, P.C.; Tsenoglou, C.J.; Papaspyrides, C.D. Recycling of the Fibrous Fraction of Reinforced Thermoset Composites. Polym. Compos. 2002, 23, 682–689. [Google Scholar] [CrossRef]
- Halliwell, S. National Composite Network Best Practice Guide—End of Life Options for Composite Waste; TWI Ltd.: Cambridge, UK, 2006. [Google Scholar]
- Conroy, A.; Halliwell, S.; Reynolds, T.; Waterman, A. Recycling Fibre Reinforced Polymers in Construction: A Guide to Best Practicable Environmental Option; BRE Report BR467; BRE: Garston, UK, 2004; ISBN 1 86081 689 4. [Google Scholar]
- Conroy, A.; Halliwell, S.; Reynolds, T. Composite Recycling in the Construction Industry. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1216–1222. [Google Scholar] [CrossRef]
- Dang, W.; Kubouchi, M.; Yamamoto, S.; Sembokuya, H.; Tsuda, K. An Approach to Chemical Recycling of Epoxy Resin Cured with Amine Using Nitric Acid. Polymer 2002, 43, 2953–2958. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, L.; Huang, Y.; Du, J. Recycling of Carbon/Epoxy Composites. J. Appl. Polym. Sci. 2004, 94, 1912–1916. [Google Scholar] [CrossRef]
- Shi, J.; Wada, S.; Kemmochi, K.; Bao, L.M. Development of Recycling System for Fiber-Reinforced Plastics by Superheated Steam. Key Eng. Mater. 2011, 464, 414–418. [Google Scholar] [CrossRef]
- Feraboli, P.; Kawakami, H.; Wade, B.; Gasco, F.; DeOto, L.; Masini, A. Recyclability and Reutilization of Carbon Fiber Fabric/Epoxy Composites. J. Compos. Mater. 2011, 46, 1459–1473. [Google Scholar] [CrossRef]
- Lee, S.-H.; Choi, H.-O.; Kim, J.-S.; Lee, C.-K.; Kim, Y.-K.; Ju, C.-S. Circulating Flow Reactor for Recycling of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composite. Korean J. Chem. Eng. 2011, 28, 449–454. [Google Scholar] [CrossRef]
- Okajima, I.; Hiramatsu, M.; Sako, T. Recycling of Carbon Fiber Reinforced Plastics Using Subcritical Water. Adv. Mater. Res. 2011, 222, 243–246. [Google Scholar] [CrossRef]
- Kamimura, A.; Yamamoto, S.; Yamada, K. Depolymerization of Unsaturated Polyesters and Waste Fiber-Reinforced Plastics by Using Ionic Liquids: The Use of Microwaves to Accelerate the Reaction Rate. ChemSusChem 2011, 4, 644–649. [Google Scholar] [CrossRef]
- Shi, J.; Bao, L.; Kobayashi, R.; Kato, J.; Kemmochi, K. Reusing Recycled Fibers in High-Value Fiber-Reinforced Polymer Composites: Improving Bending Strength by Surface Cleaning. Compos. Sci. Technol. 2012, 72, 1298–1303. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.C.; Ghita, O.R.; Hallam, K.R.; Heard, P.J.; Evans, K.E. Mechanical Studies of Single Glass Fibres Recycled from Hydrolysis Process Using Sub-Critical Water. Compos. Part A Appl. Sci. Manuf. 2012, 43, 398–406. [Google Scholar] [CrossRef]
- Xu, P.; Li, J.; Ding, J. Chemical Recycling of Carbon Fibre/Epoxy Composites in a Mixed Solution of Peroxide Hydrogen and N,N-Dimethylformamide. Compos. Sci. Technol. 2013, 82, 54–59. [Google Scholar] [CrossRef]
- Mizuguchi, J.; Tsukada, Y.; Takahashi, H. Recovery and Characterization of Reinforcing Fibers from Fiber Reinforced Plastics by Thermal Activation of Oxide Semiconductors. Mater. Trans. 2013, 54, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Okajima, I.; Hiramatsu, M.; Shimamura, Y.; Awaya, T.; Sako, T. Chemical Recycling of Carbon Fiber Reinforced Plastic Using Supercritical Methanol. J. Supercrit. Fluids 2014, 91, 68–76. [Google Scholar] [CrossRef]
- Dang, W.; Kubouchi, M.; Sembokuya, H.; Tsuda, K. Chemical Recycling of Glass Fiber Reinforced Epoxy Resin Cured with Amine Using Nitric Acid. Polymer 2005, 46, 1905–1912. [Google Scholar] [CrossRef]
- Nakagawa, T.; Goto, M. Recycling Thermosetting Polyester Resin into Functional Polymer Using Subcritical Water. Polym. Degrad. Stab. 2015, 115, 16–23. [Google Scholar] [CrossRef]
- Yan, H.; Lu, C.; Jing, D.; Chang, C.; Liu, N.; Hou, X. Recycling of Carbon Fibers in Epoxy Resin Composites Using Supercritical 1-Propanol. New Carbon Mater. 2016, 31, 46–54. [Google Scholar] [CrossRef]
- Das, M.; Varughese, S. A Novel Sonochemical Approach for Enhanced Recovery of Carbon Fiber from CFRP Waste Using Mild Acid–Peroxide Mixture. ACS Sustain. Chem. Eng. 2016, 4, 2080–2087. [Google Scholar] [CrossRef]
- Okajima, I.; Watanabe, K.; Haramiishi, S.; Nakamura, M.; Shimamura, Y.; Sako, T. Recycling of Carbon Fiber Reinforced Plastic Containing Amine-Cured Epoxy Resin Using Supercritical and Subcritical Fluids. J. Supercrit. Fluids 2017, 119, 44–51. [Google Scholar] [CrossRef]
- Sokoli, H.U.; Beauson, J.; Simonsen, M.E.; Fraisse, A.; Brøndsted, P.; Søgaard, E.G. Optimized Process for Recovery of Glass- and Carbon Fibers with Retained Mechanical Properties by Means of Near- and Supercritical Fluids. J. Supercrit. Fluids 2017, 124, 80–89. [Google Scholar] [CrossRef]
- Kennerley, J.R.; Kelly, R.M.; Fenwick, N.J.; Pickering, S.J.; Rudd, C.D. The Characterisation and Reuse of Glass Fibres Recycled from Scrap Composites by the Action of a Fluidised Bed Process. Compos. Part A Appl. Sci. Manuf. 1998, 29, 839–845. [Google Scholar] [CrossRef]
- Pickering, S.J.; Kelly, R.M.; Kennerley, J.R.; Rudd, C.D.; Fenwick, N.J. A Fluidised-Bed Process for the Recovery of Glass Fibres from Scrap Thermoset Composites. Compos. Sci. Technol. 2000, 60, 509–523. [Google Scholar] [CrossRef]
- Yip, H.L.H.; Pickering, S.J.; Rudd, C.D. Characterisation of Carbon Fibres Recycled from Scrap Composites Using Fluidised Bed Process. Plast. Rubber Compos. 2002, 31, 278–282. [Google Scholar] [CrossRef]
- Jiang, G.; Pickering, S.J.; Walker, G.S.; Wong, K.H.; Rudd, C.D. Surface Characterisation of Carbon Fibre Recycled Using Fluidised Bed. Appl. Surf. Sci. 2008, 254, 2588–2593. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, Z.; Ma, S.; Cai, C.; Zhao, X.; Xing, Y. A Novel Approach to Recycling of Glass Fibers from Nonmetal Materials of Waste Printed Circuit Boards. J. Hazard. Mater. 2009, 170, 978–982. [Google Scholar] [CrossRef]
- Kamimura, A.; Yamada, K.; Kuratani, T.; Taguchi, Y.; Tomonaga, F. Effective Depolymerization Waste FRPs by Treatment with DMAP and Supercritical Alcohol. Chem. Lett. 2006, 35, 586–587. [Google Scholar] [CrossRef]
- Guo, Q.; Yue, X.; Wang, M.; Liu, Y. Pyrolysis of Scrap Printed Circuit Board Plastic Particles in a Fluidized Bed. Powder Technol. 2010, 198, 422–428. [Google Scholar] [CrossRef]
- Ushikoshi, K.; Komatsu, N.; Sugino, M. Recycling of CFRP by Pyrolysis Method. J. Soc. Mater. Sci. Jpn. 1995, 44, 428–431. [Google Scholar] [CrossRef]
- Torres, A.; de Marco, I.; Caballero, B.M.; Laresgoiti, M.F.; Legarreta, J.A.; Cabrero, M.A.; González, A.; Chomón, M.J.; Gondra, K. Recycling by Pyrolysis of Thermoset Composites: Characteristics of the Liquid and Gaseous Fuels Obtained. Fuel 2000, 79, 897–902. [Google Scholar] [CrossRef]
- Cunliffe, A.M.; Jones, N.; Williams, P.T. Pyrolysis of Composite Plastic Waste. Environ. Technol. 2003, 24, 653–663. [Google Scholar] [CrossRef]
- Negami, M.; Sano, K.; Yoshimura, M.; Tasaka, S. Dissolution Method of Unsaturated Polyester in Bean Oil. JSAE Rev. 2003, 24, 221–225. [Google Scholar] [CrossRef]
- Lester, E.; Kingman, S.; Wong, K.H.; Rudd, C.; Pickering, S.; Hilal, N. Microwave Heating as a Means for Carbon Fibre Recovery from Polymer Composites: A Technical Feasibility Study. Mater. Res. Bull. 2004, 39, 1549–1556. [Google Scholar] [CrossRef]
- Jie, G.; Ying-Shun, L.; Mai-Xi, L. Product Characterization of Waste Printed Circuit Board by Pyrolysis. J. Anal. Appl. Pyrolysis 2008, 83, 185–189. [Google Scholar] [CrossRef]
- Meyer, L.O.; Schulte, K.; Grove-Nielsen, E. CFRP-Recycling Following a Pyrolysis Route: Process Optimization and Potentials. J. Compos. Mater. 2009, 43, 1121–1132. [Google Scholar] [CrossRef] [Green Version]
- Nahil, M.A.; Williams, P.T. Recycling of Carbon Fibre Reinforced Polymeric Waste for the Production of Activated Carbon Fibres. J. Anal. Appl. Pyrolysis 2011, 91, 67–75. [Google Scholar] [CrossRef]
- Åkesson, D.; Foltynowicz, Z.; Christéen, J.; Skrifvars, M. Microwave Pyrolysis as a Method of Recycling Glass Fibre from Used Blades of Wind Turbines. J. Reinf. Plast. Compos. 2012, 31, 1136–1142. [Google Scholar] [CrossRef]
- Kamimura, A.; Yamada, K.; Kuratani, T.; Oishi, Y.; Watanabe, T.; Yoshida, T.; Tomonaga, F. DMAP as an Effective Catalyst To Accelerate the Solubilization of Waste Fiber-Reinforced Plastics. ChemSusChem 2008, 1, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Maffezzoli, A.; Buccoliero, G.; Caretto, F.; Cornacchia, G. Thermal and Chemical Treatments of Recycled Carbon Fibres for Improved Adhesion to Polymeric Matrix. J. Compos. Mater. 2012, 47, 369–377. [Google Scholar] [CrossRef]
- Obunai, K.; Fukuta, T.; Ozaki, K. Carbon Fiber Extraction from Waste CFRP by Microwave Irradiation. Compos. Part A Appl. Sci. Manuf. 2015, 78, 160–165. [Google Scholar] [CrossRef]
- Bowlby, L.K.; Saha, G.C.; Afzal, M.T. Flexural Strength Behavior in Pultruded GFRP Composites Reinforced with High Specific-Surface-Area Biochar Particles Synthesized via Microwave Pyrolysis. Compos. Part A Appl. Sci. Manuf. 2018, 110, 190–196. [Google Scholar] [CrossRef]
- Asokan, P.; Osmani, M.; Price, A.D.F. Assessing the Recycling Potential of Glass Fibre Reinforced Plastic Waste in Concrete and Cement Composites. J. Clean. Prod. 2009, 17, 821–829. [Google Scholar] [CrossRef]
- Asokan, P.; Osmani, M.; Price, A.D.F. Improvement of the Mechanical Properties of Glass Fibre Reinforced Plastic Waste Powder Filled Concrete. Constr. Build. Mater. 2010, 24, 448–460. [Google Scholar] [CrossRef]
- Ribeiro, M.C.S.; Fiúza, A.; Castro, A.C.; Silva, F.G.; Meixedo, J.P.; Dinis, M.L.; Costa, C.; Ferreira, F.; Alvim, M.R. Recycling of Pultrusion Production Waste into Innovative Concrete-Polymer Composite Solutions. Adv. Mater. Res. 2011, 295–297, 561–565. [Google Scholar] [CrossRef]
- Meira Castro, A.C.; Ribeiro, M.C.S.; Santos, J.; Meixedo, J.P.; Silva, F.J.G.; Fiúza, A.; Dinis, M.L.; Alvim, M.R. Sustainable Waste Recycling Solution for the Glass Fibre Reinforced Polymer Composite Materials Industry. Constr. Build. Mater. 2013, 45, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.C.S.; Fiúza, A.; Castro, A.C.M.; Silva, F.G.; Dinis, M.L.; Meixedo, J.P.; Alvim, M.R. Mix Design Process of Polyester Polymer Mortars Modified with Recycled GFRP Waste Materials. Compos. Struct. 2013, 105, 300–310. [Google Scholar] [CrossRef] [Green Version]
- García, D.; Vegas, I.; Cacho, I. Mechanical Recycling of GFRP Waste as Short-Fiber Reinforcements in Microconcrete. Constr. Build. Mater. 2014, 64, 293–300. [Google Scholar] [CrossRef]
- Meira Castro, A.C.; Carvalho, J.P.; Ribeiro, M.C.S.; Meixedo, J.P.; Silva, F.J.G.; Fiúza, A.; Dinis, M.L. An Integrated Recycling Approach for GFRP Pultrusion Wastes: Recycling and Reuse Assessment into New Composite Materials Using Fuzzy Boolean Nets. J. Clean. Prod. 2014, 66, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Piñero-Hernanz, R.; García-Serna, J.; Dodds, C.; Hyde, J.; Poliakoff, M.; Cocero, M.J.; Kingman, S.; Pickering, S.; Lester, E. Chemical Recycling of Carbon Fibre Composites Using Alcohols under Subcritical and Supercritical Conditions. J. Supercrit. Fluids 2008, 46, 83–92. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Bank, L.C.; Chen, C. Use of Recycled FRP Reinforcing Bar in Concrete as Coarse Aggregate and Its Impact on the Mechanical Properties of Concrete. Constr. Build. Mater. 2016, 121, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Yazdanbakhsh, A.; Bank, L.C.; Chen, C.; Tian, Y. FRP-Needles as Discrete Reinforcement in Concrete. J. Mater. Civ. Eng. 2017, 29, 04017175. [Google Scholar] [CrossRef]
- Dehghan, A.; Peterson, K.; Shvarzman, A. Recycled Glass Fiber Reinforced Polymer Additions to Portland Cement Concrete. Constr. Build. Mater. 2017, 146, 238–250. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Bank, L.C.; Tian, Y. Mechanical Processing of GFRP Waste into Large-Sized Pieces for Use in Concrete. Recycling 2018, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Yazdanbakhsh, A.; Bank, L.C.; Rieder, K.-A.; Tian, Y.; Chen, C. Concrete with Discrete Slender Elements from Mechanically Recycled Wind Turbine Blades. Resour. Conserv. Recycl. 2018, 128, 11–21. [Google Scholar] [CrossRef]
- Vo Dong, P.A.; Azzaro-Pantel, C.; Boix, M.; Jacquemin, L.; Domenech, S. Modelling of Environmental Impacts and Economic Benefits of Fibre Reinforced Polymers Composite Recycling Pathways. In 12 International Symposium on Process Systems Engineering and 25 European Symposium on Computer Aided Process Engineering, Copenhagen, Denmark, 31 May–4 June 2015; Gernaey, K.V., Huusom, J.K., Gani, R.B.T.-C.A.C.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 37, pp. 2009–2014. ISBN 9780444634290. [Google Scholar]
- Iwaya, T.; Tokuno, S.; Sasaki, M.; Goto, M.; Shibata, K. Recycling of Fiber Reinforced Plastics Using Depolymerization by Solvothermal Reaction with Catalyst. J. Mater. Sci. 2008, 43, 2452–2456. [Google Scholar] [CrossRef]
- Loppinet-Serani, A.; Aymonier, C.; Cansell, F. Current and Foreseeable Applications of Supercritical Water for Energy and the Environment. ChemSusChem 2008, 1, 486–503. [Google Scholar] [CrossRef]
- Loppinet-Serani, A.; Aymonier, C.; Cansell, F. Supercritical Water for Environmental Technologies. J. Chem. Technol. Biotechnol. 2010, 85, 583–589. [Google Scholar] [CrossRef]
- Jiang, G.; Pickering, S.J.; Lester, E.H.; Warrior, N.A. Decomposition of Epoxy Resin in Supercritical Isopropanol. Ind. Eng. Chem. Res. 2010, 49, 4535–4541. [Google Scholar] [CrossRef]
- Pickering, S.J. Recycling Technologies for Thermoset Composite Materials—Current Status. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Halliwell, S. FRPs—The Environmental Agenda. Adv. Struct. Eng. 2010, 13, 783–791. [Google Scholar] [CrossRef]
- Pimenta, S.; Pinho, S.T. Recycling Carbon Fibre Reinforced Polymers for Structural Applications: Technology Review and Market Outlook. Waste Manag. 2011, 31, 378–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdanbakhsh, A.; Bank, L.C. A Critical Review of Research on Reuse of Mechanically Recycled FRP Production and End-of-Life Waste for Construction. Polymers 2014, 6, 1810–1826. [Google Scholar] [CrossRef] [Green Version]
- Vo Dong, P.A.; Azzaro-Pantel, C.; Cadene, A.-L. Economic and Environmental Assessment of Recovery and Disposal Pathways for CFRP Waste Management. Resour. Conserv. Recycl. 2018, 133, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.C.; Fiúza, A.; Ferreira, A.; Dinis, M.D.; Meira Castro, A.C.; Meixedo, J.P.; Alvim, M.R. Recycling Approach towards Sustainability Advance of Composite Materials’ Industry. Recycling 2016, 1, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Karuppannan Gopalraj, S.; Kärki, T. A Review on the Recycling of Waste Carbon Fibre/Glass Fibre reinforced Composites: Fibre Recovery, Properties and Life-Cycle Analysis. SN Appl. Sci. 2020, 2, 433. [Google Scholar] [CrossRef] [Green Version]
- Krauklis, A.E.; Karl, C.W.; Gagani, A.I.; Jørgensen, J.K. Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. J. Compos. Sci. 2021, 5, 28. [Google Scholar] [CrossRef]
- Alshannaq, A.A.; Bank, L.C.; Scott, D.W.; Gentry, R. A Decommissioned Wind Blade as a Second-Life Construction Material for a Transmission Pole. Constr. Mater. 2021, 1, 95–104. [Google Scholar] [CrossRef]
- Alshannaq, A.A.; Bank, L.C.; Scott, D.W.; Gentry, T.R. Structural Analysis of a Wind Turbine Blade Repurposed as an Electrical Transmission Pole. J. Compos. Constr. 2021, 25, 04021023. [Google Scholar] [CrossRef]
- Bank, L.C.; Gentry, T.R.; Al-Haddad, T.; Alshannaq, A.; Zhang, Z.; Bermek, M.; Henao, Y.; McDonald, A.; Li, S.; Poff, A.; et al. Case Studies of Repurposing FRP Wind Blades for Second-Life New Infrastructure. In Proceedings of the Eighth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2022), Cape Town, South Africa, 5–7 September 2022; Zingoni, A., Ed.; CRC Press, 2022; pp. 1441–1446. [Google Scholar]
- Al-Haddad, T.; Alshannaq, A.A.; Bank, L.C.; Bermek, M.; Gentry, R.; Henao-Barragan, Y.; Li, S.; Poff, A.; Respert, J.; Woodham, C. Strategies for Redesigning High Performance FRP Wind Blades as Future Electrical Infrastructure. In Proceedings of the ARCC-EAAE 2022—RESILIENT CITY: Physical, Social, and Economic Perspectives, International conference hosted by Florida International University, Miami, FL, USA, 2–5 March 2022; Jarrett, C., Sharag-Eldin, A., Eds.; Architectural Research Centers Consortium, Inc.: San Antonio, TX, USA, 2022. [Google Scholar]
- Mishnaevsky, L. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. Materials 2021, 14, 1124. [Google Scholar] [CrossRef] [PubMed]
- Arif, Z.U.; Khalid, M.Y.; Ahmed, W.; Arshad, H.; Ullah, S. Recycling of the Glass/Carbon Fibre Reinforced Polymer Composites: A Step towards the Circular Economy. Polym. Technol. Mater. 2022, 61, 761–788. [Google Scholar] [CrossRef]
- Gharfalkar, M.; Court, R.; Campbell, C.; Ali, Z.; Hillier, G. Analysis of Waste Hierarchy in the European Waste Directive 2008/98/EC. Waste Manag. 2015, 39, 305–313. [Google Scholar] [CrossRef] [PubMed]
- EPA Waste Management Hierarchy. Available online: https://www.epa.gov/smm/sustainable-materials-management-non-hazardous-materials-and-waste-management-hierarchy (accessed on 5 December 2022).
- Jacob, A. Composites Can Be Recycled. Reinf. Plast. 2011, 55, 45–46. [Google Scholar] [CrossRef]
- Potter, K.; Ward, C. In-Process Composite Recycling in the Aerospace Industry. In Management, Recycling and Reuse of Waste Composites; Goodship, V., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2010; pp. 458–494. ISBN 978-1-84569-462-3. [Google Scholar]
- Fraile, D.; Walsh, C. Accelerating Wind Turbine Blade Circularity; Report; WindEurope–Cefic-EuCIA: Brussels, Belgium, 2020. [Google Scholar]
- Re-Wind Network Repurposing Wind Blades, Driving Innovation in Wind Farm Decommissioning. Available online: https://www.re-wind.info/ (accessed on 28 September 2022).
- Mohamed Sultan, A.A.; Mativenga, P.T. Sustainable Location Identification Decision Protocol (SuLIDeP) for Determining the Location of Recycling Centres in a Circular Economy. J. Clean. Prod. 2019, 223, 508–521. [Google Scholar] [CrossRef]
- Ogi, K.; Nishikawa, T.; Okano, Y.; Taketa, I. Mechanical Properties of ABS Resin Reinforced with Recycled CFRP. Adv. Compos. Mater. 2007, 16, 181–194. [Google Scholar] [CrossRef]
- Kojima, A.; Furukawa, S. Recycling of Resin Matrix Composite Materials VII: Future Perspective of FRP Recycling. Adv. Compos. Mater. 1997, 6, 215–225. [Google Scholar] [CrossRef]
- Palmer, J.; Ghita, O.R.; Savage, L.; Evans, K.E. Successful Closed-Loop Recycling of Thermoset Composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 490–498. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Jiang, H.; Zhang, X.; Shang, Y.; Jiang, C.; Wang, X.; Qi, G.; Li, B.; Xu, P.; et al. Upcycling of Carbon Fiber-Reinforced Polymer Composites. Compos. Sci. Technol. 2023, 231, 109824. [Google Scholar] [CrossRef]
- European Commission. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control). Off. J. Eur. Union 2010, L 334, 17–119. [Google Scholar]
- Job, S. Recycling Glass Fibre Reinforced Composites—History and Progress. Reinf. Plast. 2013, 57, 19–23. [Google Scholar] [CrossRef]
- Environmental Permitting Guidance. The Waste Incineration Directive for the Environmental Permitting (England and Wales) Regulations 2010; Defra, Environmental Permitting Programme: London, UK, 2010. [Google Scholar]
- Jacob, A.; Tyrrell, M. Tackling the Challenge of Composites Recycling. Available online: https://www.composites.media/tackling-the-challenge-of-composites-recycling/category/features (accessed on 1 December 2022).
- HMRC. Landfill Tax Excise Notice LFT1: A General Guide to Landfill Tax, Updated 1st April 2022. Available online: https://www.gov.uk/government/publications/excise-notice-lft1-a-general-guide-to-landfill-tax/excise-notice-lft1-a-general-guide-to-landfill-tax (accessed on 1 December 2022).
- Job, S.; Leeke, G.A.; Mativenga, P.T.; Oliveux, G.; Pickering, S.J.; Shuaib, N.A. Composites Recycling—Where Are We Now? Composites UK: Berkhamsted, UK, 2016. [Google Scholar]
- Jensen, L. The Sustainable Development Goals Report 2022; United Nations: New York, NY, USA, 2022. [Google Scholar]
Disposal Route | Strengths | Setbacks | Points of Attention |
---|---|---|---|
Landfill |
|
|
|
Incineration |
|
|
|
Co-incineration or Co-processing in cement kiln |
|
|
|
Mechanical recycling or grinding |
|
|
|
Thermal recycling: pyrolysis |
|
|
|
Chemical recycling: solvolysis |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qureshi, J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022, 14, 16855. https://doi.org/10.3390/su142416855
Qureshi J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability. 2022; 14(24):16855. https://doi.org/10.3390/su142416855
Chicago/Turabian StyleQureshi, Jawed. 2022. "A Review of Recycling Methods for Fibre Reinforced Polymer Composites" Sustainability 14, no. 24: 16855. https://doi.org/10.3390/su142416855
APA StyleQureshi, J. (2022). A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability, 14(24), 16855. https://doi.org/10.3390/su142416855