A Review on Superadsorbents with Adsorption Capacity ≥1000 mg g−1 and Perspectives on Their Upscaling for Water/Wastewater Treatment
Abstract
:1. Introduction
2. Preparation Methods
3. Physicochemical Properties
4. Adsorption Chemistries
5. Mechanistic Interactions
6. Milestones towards Real-Scale Water Purification
6.1. Comprehensive Field-Scale Analysis
6.2. Fulfilling ‘Thrust’ Research Directions
- (i)
- Selection of ecofriendly and cost-effective raw materials for synthesizing the superadsorbent having commercial potential.
- (ii)
- (Optimization of the chemical stability, selectivity, mechanical strength, and resilience of the superabsorbent.
- (iii)
- Guarding the superadsorbent against microbial degradation.
- (iv)
- Better understanding the dominant adsorptive mechanistic interactions of superadsorbents.
- (v)
- Comprehensive life cycle-oriented toxicity analysis of the superadsorbents in the environment.
- (vi)
- Tuning the physicochemical features in superadsorbents that can diminish their overall toxicological footprint.
- (vii)
- Formulation and implementation of appropriate local, federal, regional, and/or international policies which regulate the ‘cradle-to-grave’ design, production, usage, and disposal of superadsorbents for large-scale water purification.
- (viii)
- Recovery and reuse of superadsorbents for enabling process-effective and cost-effective reuse cycles.
- (ix)
- Probing the scope for hybridizing superadsorbent-type water purification with other treatment technologies such as membrane filtration, photodegradation, bioremediation, and/or advanced oxidation processes.
- (x)
- Developing multi-functional adsorbents to apply hybrid treatment by relying on the same materials.
6.3. Techno-Economic Maturity and Real-Scale Use ‘Worthiness’
6.4. Priorities for Industrial Superadsorbent Production
7. Summary and Conclusions
- (i)
- Why is there is a need for several synthetic methods for preparing superadsorbents?
- (ii)
- Is there any comprehensive method which is recommended for potential application in real-scale water treatment processes?
- (iii)
- Will the selected superadsorbent embody identical attributes at large-scale production?
- (iv)
- Will the selected superadsorbent deliver the expected adsorption behavior and performance in real contaminated aquatic systems which constitute hostile environments to its survival?
- (v)
- Which are the definitive techno-economic yardsticks to apply when actually selecting one specific superadsorbent?
- (i)
- Its ability to withstand the harshness and complexity of different contaminated aqueous media in which it will be put to service;
- (ii)
- Its ability to self-clean and self-heal in the wake of the impacts those harsh environmental conditions (e.g., extreme fluctuations in pH, temperature, and hydrodynamic forces) can have on its structure;
- (iii)
- Its resilience to perform effectively and efficiently as an adsorbent until it reaches absolute exhaustion at the end of a predetermined number of regeneration cycles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Li, H.; Guo, G.; Semple, K.T.; Jones, K.C. Soil contamination in China: Current priorities, defining background levels and standards for heavy metals. J. Environ. Manag. 2019, 251, 109512. [Google Scholar] [CrossRef] [PubMed]
- Liu, D. Value evaluation system of ecological environment damage compensation caused by air pollution. Environ. Technol. Innov. 2021, 22, 101473. [Google Scholar] [CrossRef]
- Usman, M.; Sanaullah, M.; Ullah, A.; Li, S.; Farooq, M. Nitrogen Pollution Originating from Wastewater and Agriculture: Advances in Treatment and Management. Rev. Environ. Contam. Toxicol. 2022, 260, 9. [Google Scholar] [CrossRef]
- Knudsen, M.T.; Hermansen, J.E.; Cederberg, C.; Herzog, F.; Vale, J.; Jeanneret, P.; Sarthou, J.-P.; Friedel, J.K.; Balázs, K.; Fjellstad, W.; et al. Characterization factors for land use impacts on biodiversity in life cycle assessment based on direct measures of plant species richness in European farmland in the ‘Temperate Broadleaf and Mixed Forest’ biome. Sci. Total Environ. 2017, 580, 358–366. [Google Scholar] [CrossRef]
- Pourchet, M.; Debrauwer, L.; Klanova, J.; Price, E.J.; Covaci, A.; Caballero-Casero, N.; Oberacher, H.; Lamoree, M.; Damont, A.; Fenaille, F.; et al. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. Environ. Int. 2020, 139, 105545. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Farooq, M.; Hanna, K. Environmental side effects of the injudicious use of antimicrobials in the era of COVID-19. Sci. Total Environ. 2020, 745, 141053. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.; Sudha, M.C. Occurrence and Human Health Risk of Micro-Pollutants—A Special Focus on Endocrine Disruptor Chemicals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 23–39. [Google Scholar] [CrossRef]
- Yang, Y.; Ok, Y.S.; Kim, K.H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef]
- Sall, M.L.; Diaw, A.K.D.; Gningue-Sall, D.; Efremova Aaron, S.; Aaron, J.-J. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res. 2020, 27, 29927–29942. [Google Scholar] [CrossRef]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2021, 12, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, F.C.P.; Tonelli, F.M.P. Concerns and Threats of Xenobiotics on Aquatic Ecosystems; Springer International Publishing: Cham, Switzerland, 2020; pp. 15–23. [Google Scholar] [CrossRef]
- Mudhoo, A.; Ramasamy, D.L.; Bhatnagar, A.; Usman, M.; Sillanpää, M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. Ecotoxicol. Environ. Saf. 2020, 197, 110587. [Google Scholar] [CrossRef] [PubMed]
- Inman, A.; Winter, M.; Wheeler, R.; Vrain, E.; Lovett, A.; Collins, A.; Jones, I.; Johnes, P.; Cleasby, W. An exploration of individual, social and material factors influencing water pollution mitigation behaviours within the farming community. Land Use Policy 2018, 70, 16–26. [Google Scholar] [CrossRef]
- Bunke, D.; Moritz, S.; Brack, W.; Herráez, D.L.; Posthuma, L.; Nuss, M. Developments in society and implications for emerging pollutants in the aquatic environment. Environ. Sci. Eur. 2019, 31, 32. [Google Scholar] [CrossRef] [Green Version]
- Anastopoulos, I.; Pashalidis, I. Environmental applications of Luffa cylindrica-based adsorbents. J. Mol. Liq. 2020, 319, 114127. [Google Scholar] [CrossRef]
- Chenab, K.K.; Sohrabi, B.; Jafari, A.; Ramakrishna, S. Water treatment: Functional nanomaterials and applications from adsorption to photodegradation. Mater. Today Chem. 2020, 16, 100262. [Google Scholar] [CrossRef]
- Dotto, G.L.; McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 2020, 8, 103988. [Google Scholar] [CrossRef]
- Jain, M.; Mudhoo, A.; Ramasamy, D.L.; Najafi, M.; Usman, M.; Zhu, R.; Kumar, G.; Shobana, S.; Garg, V.K.; Sillanpää, M. Adsorption, degradation, and mineralization of emerging pollutants (pharmaceuticals and agrochemicals) by nanostructures: A comprehensive review. Environ. Sci. Pollut. Res. 2020, 27, 34862–34905. [Google Scholar] [CrossRef]
- Sonal, S.; Mishra, B.K. A comprehensive review on the synthesis and performance of different zirconium-based adsorbents for the removal of various water contaminants. Chem. Eng. J. 2021, 424, 130509. [Google Scholar] [CrossRef]
- Kim, S.; Nam, S.-N.; Jang, A.; Jang, M.; Park, C.M.; Son, A.; Her, N.; Heo, J.; Yoon, Y. Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere 2022, 286, 131916. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Ma, F.; Tankpa, V.; Bai, S.; Guo, X.; Wang, X. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Sci. Total Environ. 2019, 668, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Byrne, J.M.; Chaudhary, A.; Orsetti, S.; Hanna, K.; Ruby, C.; Kappler, A.; Haderlein, S.B. Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals. Chem. Rev. 2018, 118, 3251–3304. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Azam, K.; Shezad, N.; Shafiq, I.; Akhter, P.; Akhtar, F.; Jamil, F.; Shafique, S.; Park, Y.-K.; Hussain, M. A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. Chemosphere 2022, 306, 135566. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jia, F.; Wang, Q.; Yang, B.; Song, S. Two-dimensional molybdenum disulfide as adsorbent for high-efficient Pb(II) removal from water. Appl. Mater. Today 2017, 9, 220–228. [Google Scholar] [CrossRef]
- Mirzaie, M.; Rashidi, A.; Tayebi, H.-A.; Yazdanshenas, M.E. Removal of Anionic Dye from Aqueous Media by Adsorption onto SBA-15/Polyamidoamine Dendrimer Hybrid: Adsorption Equilibrium and Kinetics. J. Chem. Eng. Data 2017, 62, 1365–1376. [Google Scholar] [CrossRef]
- Hayati, B.; Maleki, A.; Najafi, F.; Daraei, H.; Gharibi, F.; McKay, G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J. Hazard. Mater. 2017, 336, 146–157. [Google Scholar] [CrossRef]
- Jung, K.-W.; Choi, B.H.; Ahn, K.-H.; Lee, S.-H. Synthesis of a novel magnetic Fe3O4/γ-Al2O3 hybrid composite using electrode-alternation technique for the removal of an azo dye. Appl. Surf. Sci. 2017, 423, 383–393. [Google Scholar] [CrossRef]
- Salama, A. Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water. Int. J. Biol. Macromol. 2018, 106, 940–946. [Google Scholar] [CrossRef]
- Hu, X.-S.; Liang, R.; Sun, G. Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J. Mater. Chem. A 2018, 6, 17612–17624. [Google Scholar] [CrossRef]
- Dai, L.; Zhu, W.; He, L.; Tan, F.; Zhu, N.; Zhou, Q.; He, M.; Hu, G. Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal. Bioresour. Technol. 2018, 267, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Yan, L.; Liu, C.; Su, C.; Zhou, Q.; Zhang, X.; Lan, Y.; Zheng, Y.; Lai, L.; Liu, X.; et al. Non-covalent functionalized graphene oxide (GO) adsorbent with an organic gelator for co-adsorption of dye, endocrine-disruptor, pharmaceutical and metal ion. Chem. Eng. J. 2018, 349, 791–799. [Google Scholar] [CrossRef]
- Ballav, N.; Das, R.; Giri, S.; Muliwa, A.M.; Pillay, K.; Maity, A. l-cysteine doped polypyrrole (PPy@L-Cyst): A super adsorbent for the rapid removal of Hg+2 and efficient catalytic activity of the spent adsorbent for reuse. Chem. Eng. J. 2018, 345, 621–630. [Google Scholar] [CrossRef]
- Alijani, H.; Shariatinia, Z. Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal. Chem. Eng. Res. Des. 2018, 129, 132–149. [Google Scholar] [CrossRef]
- Beyki, M.H.; Shemirani, F.; Malakootikhah, J.; Minaeian, S.; Khani, R. Catalytic synthesis of graphene-like polyaniline derivative-MFe2O4 (M; Cu, Mn) nanohybrid as multifunctionality water decontaminant. React. Funct. Polym. 2018, 125, 108–117. [Google Scholar] [CrossRef]
- Oveisi, M.; Asli, M.A.; Mahmoodi, N.M. MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. J. Hazard. Mater. 2018, 347, 123–140. [Google Scholar] [CrossRef]
- Liao, H.; Wang, Z. Adsorption removal of amaranth by nanoparticles-composed Cu2O microspheres. J. Alloys Compd. 2018, 769, 1088–1095. [Google Scholar] [CrossRef]
- Paul Guin, J.; Bhardwaj, Y.K.; Varshney, L. Radiation grafting: A voyage from bio-waste corn husk to an efficient thermostable adsorbent. Carbohydr. Polym. 2018, 183, 151–164. [Google Scholar] [CrossRef]
- Agathian, K.; Kannammal, L.; Meenarathi, B.; Kailash, S.; Anbarasan, R. Synthesis, characterization and adsorption behavior of cotton fiber based Schiff base. Int. J. Biol. Macromol. 2018, 107, 1102–1112. [Google Scholar] [CrossRef]
- Dat, T.Q.; Ha, N.T.; Thin, P.V.; Tung, N.V.; Hung, D.Q. Synthesis of RGO/CF/PANI Magnetic Composites for Effective Adsorption of Uranium. IEEE Trans. Magn. 2018, 54, 1–6. [Google Scholar] [CrossRef]
- Song, X.; An, J.; He, C.; Zhou, J.; Xu, Y.; Ji, H.; Yang, L.; Yin, J.; Zhao, W.; Zhao, C. A bioinspired strategy towards super-adsorbent hydrogel spheres via self-sacrificing micro-reactors for robust wastewater remediation. J. Mater. Chem. A 2019, 7, 21386–21403. [Google Scholar] [CrossRef]
- Ali, S.A.; Yaagoob, I.Y.; Mazumder, M.A.J.; Al-Muallem, H.A. Fast removal of methylene blue and Hg(II) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid. J. Hazard. Mater. 2019, 369, 642–654. [Google Scholar] [CrossRef]
- Mahmoodi-Babolan, N.; Nematollahzadeh, A.; Heydari, A.; Merikhy, A. Bioinspired catecholamine/starch composites as superadsorbent for the environmental remediation. Int. J. Biol. Macromol. 2019, 125, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wang, L.; Zhang, D.; Yan, P.; Nie, J.; Sharma, V.K.; Wang, C. Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent. Chem. Eng. J. 2019, 358, 253–263. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, K.; Wu, M.; Wu, Q.; Liu, J.; Yang, J.; Zhang, J. Unexpectedly High Adsorption Capacity of Esterified Hydroxyapatite for Heavy Metal Removal. Langmuir 2019, 35, 16111–16119. [Google Scholar] [CrossRef]
- Li, B.; Guo, J.; Lv, K.; Fan, J. Adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water. Environ. Pollut. 2019, 254, 113014. [Google Scholar] [CrossRef]
- Xu, W.; Chen, Y.; Kang, J.; Li, B. Synthesis of polyaniline/lignosulfonate for highly efficient removal of acid red 94 from aqueous solution. Polym. Bull. 2019, 76, 4103–4116. [Google Scholar] [CrossRef]
- Boakye, P.; Tran, H.N.; Lee, D.S.; Woo, S.H. Effect of water washing pretreatment on property and adsorption capacity of macroalgae-derived biochar. J. Environ. Manag. 2019, 233, 165–174. [Google Scholar] [CrossRef]
- Zhao, D.; Tian, Y.; Jing, X.; Lu, Y.; Zhu, G. PAF-1@cellulose nanofibril composite aerogel for highly-efficient removal of bisphenol A. J. Mater. Chem. A 2019, 7, 157–164. [Google Scholar] [CrossRef]
- Qiu, J.; Fan, P.; Feng, Y.; Liu, F.; Ling, C.; Li, A. Comparison of the adsorption behaviors for methylene blue on two renewable gels with different physical state. Environ. Pollut. 2019, 254, 113117. [Google Scholar] [CrossRef] [PubMed]
- Jana, A.; Roy, O.; Ravuru, S.S.; De, S. Tuning of graphene oxide intercalation in magnesium aluminium layered double hydroxide and their immobilization in polyacrylonitrile beads by single step mussel inspired phase inversion: A super adsorbent for lead. Chem. Eng. J. 2020, 391, 123587. [Google Scholar] [CrossRef]
- Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Removal of dye from aqueous medium with pH-sensitive poly[(2-(acryloyloxy)ethyl]trimethylammonium chloride-co-1-vinyl-2-pyrrolidone] cationic hydrogel. J. Environ. Chem. Eng. 2020, 8, 104436. [Google Scholar] [CrossRef]
- Elbedwehy, A.M.; Atta, A.M. Novel Superadsorbent Highly Porous Hydrogel Based on Arabic Gum and Acrylamide Grafts for Fast and Efficient Methylene Blue Removal. Polymers 2020, 12, 338. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Dai, Y.; Wu, Y.; Lu, G.; Cao, Z.; Cheng, J.; Wang, K.; Yang, H.; Xia, Y.; Wen, X.; et al. Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydr. Polym. 2020, 234, 115882. [Google Scholar] [CrossRef]
- Li, X.; Cui, Y.-Y.; Chen, Y.-J.; Yang, C.-X.; Yan, X.-P. Facile synthesis of dual-functionalized microporous organic network for efficient removal of cationic dyes from water. Microporous Mesoporous Mater. 2020, 296, 110013. [Google Scholar] [CrossRef]
- Binaeian, E.; Babaee Zadvarzi, S.; Yuan, D. Anionic dye uptake via composite using chitosan-polyacrylamide hydrogel as matrix containing TiO2 nanoparticles; comprehensive adsorption studies. Int. J. Biol. Macromol. 2020, 162, 150–162. [Google Scholar] [CrossRef]
- Al-Jammal, N.; Abdullah, T.A.; Juzsakova, T.; Zsirka, B.; Cretescu, I.; Vágvölgyi, V.; Sebestyén, V.; Le Phuoc, C.; Rasheed, R.T.; Domokos, E. Functionalized carbon nanotubes for hydrocarbon removal from water. J. Environ. Chem. Eng. 2020, 8, 103570. [Google Scholar] [CrossRef]
- Luo, T.; Liang, H.; Chen, D.; Ma, Y.; Yang, W. Highly enhanced adsorption of methyl blue on weakly cross-linked ammonium-functionalized hollow polymer particles. Appl. Surf. Sci. 2020, 505, 144607. [Google Scholar] [CrossRef]
- Xu, Q.; Zhou, Q.; Pan, M.; Dai, L. Interaction between chlortetracycline and calcium-rich biochar: Enhanced removal by adsorption coupled with flocculation. Chem. Eng. J. 2020, 382, 122705. [Google Scholar] [CrossRef]
- Toprak, A.; Hazer, B. Novel porous carbon microtubes and microspheres produced from poly(CL-b-VbC) triarm block copolymer as high performance adsorbent for dye adsorption and separation. J. Mol. Liq. 2020, 314, 113565. [Google Scholar] [CrossRef]
- Kıvanç, M.R.; Ozay, O.; Ozay, H.; Ilgin, P. Removal of anionic dyes from aqueous media by using a novel high positively charged hydrogel with high capacity. J. Dispers. Sci. Technol. 2020, 43, 1–16. [Google Scholar] [CrossRef]
- Li, X.-G.; Huang, M.-R.; Tao, T.; Ren, Z.; Zeng, J.; Yu, J.; Umeyama, T.; Ohara, T.; Imahori, H. Highly cost-efficient sorption and desorption of mercury ions onto regenerable poly(m-phenylenediamine) microspheres with many active groups. Chem. Eng. J. 2020, 391, 123515. [Google Scholar] [CrossRef]
- Niu, Y.; Han, X.; Huang, L.; Song, J. Methylene Blue and Lead(II) Removal via Degradable Interpenetrating Network Hydrogels. J. Chem. Eng. Data 2020, 65, 1954–1967. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, H.; Liu, X.; Lin, Z.; Su, X.; Chen, H. Facile Preparation of Super Absorbent from Calcium–Aluminum Waste Residue and Its Application for Adsorption of Congo Red. J. Nanosci. Nanotechnol. 2020, 20, 769–778. [Google Scholar] [CrossRef]
- Khan, N.A.; Najam, T.; Shah, S.S.A.; Hussain, E.; Ali, H.; Hussain, S.; Shaheen, A.; Ahmad, K.; Ashfaq, M. Development of Mn-PBA on GO sheets for adsorptive removal of ciprofloxacin from water: Kinetics, isothermal, thermodynamic and mechanistic studies. Mater. Chem. Phys. 2020, 245, 122737. [Google Scholar] [CrossRef]
- Yaagoob, I.Y.; Mazumder, M.A.J.; Al-Muallem, H.A.; Ali, S.A. A resin containing motifs of maleic acid and glycine: A super-adsorbent for adsorptive removal of basic dye pararosaniline hydrochloride and Cd(II) from water. J. Environ. Health Sci. Eng. 2021, 19, 1333–1346. [Google Scholar] [CrossRef]
- Li, K.; Yan, J.; Zhou, Y.; Li, B.; Li, X. β-cyclodextrin and magnetic graphene oxide modified porous composite hydrogel as a superabsorbent for adsorption cationic dyes: Adsorption performance, adsorption mechanism and hydrogel column process investigates. J. Mol. Liq. 2021, 335, 116291. [Google Scholar] [CrossRef]
- Chen, M.; Shen, Y.; Xu, L.; Xiang, G.; Ni, Z. Highly efficient and rapid adsorption of methylene blue dye onto vinyl hybrid silica nano-cross-linked nanocomposite hydrogel. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126050. [Google Scholar] [CrossRef]
- Tang, Z.; Hu, X.; Ding, H.; Li, Z.; Liang, R.; Sun, G. Villi-like poly(acrylic acid) based hydrogel adsorbent with fast and highly efficient methylene blue removing ability. J. Colloid Interface Sci. 2021, 594, 54–63. [Google Scholar] [CrossRef]
- Onder, A.; Ozay, H. Highly efficient removal of methyl orange from aqueous media by amine functional cyclotriphosphazene submicrospheres as reusable column packing material. Chem. Eng. Process.-Process Intensif. 2021, 165, 108427. [Google Scholar] [CrossRef]
- Huang, L.; Yang, Z.; Li, X.; Hou, L.; Alhassan, S.I.; Wang, H. Synthesis of hierarchical hollow MIL-53(Al)-NH2 as an adsorbent for removing fluoride: Experimental and theoretical perspective. Environ. Sci. Pollut. Res. 2021, 28, 6886–6897. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, Y.; Zhou, L.; Luo, X.; Liu, J. Halloysite nanotubes stabilized polyurethane foam carbon coupled with iron oxide for high-efficient and fast treatment of arsenic(III/V) wastewater. Chem. Eng. Res. Des. 2021, 165, 298–307. [Google Scholar] [CrossRef]
- Ahmad, K.; Shah, H.-U.-R.; Parveen, S.; Aziz, T.; Naseem, H.A.; Ashfaq, M.; Rauf, A. Metal Organic Framework (KIUB-MOF-1) as efficient adsorbent for cationic and anionic dyes from brackish water. J. Mol. Struct. 2021, 1242, 130898. [Google Scholar] [CrossRef]
- Wang, J.-W.; Dai, L.; Liu, Y.-Q.; Li, R.-F.; Yang, X.-T.; Lan, G.-H.; Qiu, H.-Y.; Xu, B. Adsorption properties of β-cyclodextrin modified hydrogel for methylene blue. Carbohydr. Res. 2021, 501, 108276. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bao, S.; Liu, Y.; Yu, Y.; Yang, W.; Xu, S.; Li, H. CoS2/GO nanocomposites for highly efficient and ppb level adsorption of Hg(II) from wastewater. J. Mol. Liq. 2021, 322, 114899. [Google Scholar] [CrossRef]
- Zhang, P.; Xiang, M.; He, T.; Liu, H.; Yu, S.; Pan, X.; Qiu, F.; Zhu, Z.; Zou, Y.; Chen, Y. High-efficiency water purification for methyl orange and lead(II) by eco-friendly magnetic sulfur-doped graphene-like carbon-supported layered double oxide. J. Hazard. Mater. 2021, 419, 126406. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, W.; Tang, S.; Ruiz-Hitzky, E.; Luo, J.; Wang, X. Pod-inspired MXene/porous carbon microspheres with ultrahigh adsorption capacity towards crystal violet. Chem. Eng. J. 2021, 426, 130776. [Google Scholar] [CrossRef]
- Guo, J.; Tian, H.; He, J. Integration of CuS nanoparticles and cellulose fibers towards fast, selective and efficient capture and separation of mercury ions. Chem. Eng. J. 2021, 408, 127336. [Google Scholar] [CrossRef]
- Lin, J.; Su, T.; Chen, J.; Xue, T.; Yang, S.; Guo, P.; Lin, H.; Wang, H.; Hong, Y.; Su, Y.; et al. Efficient adsorption removal of anionic dyes by an imidazolium-based mesoporous poly(ionic liquid) including the continuous column adsorption-desorption process. Chemosphere 2021, 272, 129640. [Google Scholar] [CrossRef]
- Singh, N.; Srivastava, I.; Dwivedi, J.; Sankararamakrishnan, N. Ultrafast removal of ppb levels of Hg(II) and volatile Hg(0) using post modified metal organic framework. Chemosphere 2021, 270, 129490. [Google Scholar] [CrossRef] [PubMed]
- Ferfera-Harrar, H.; Benhalima, T.; Sadi, A. Development of functional chitosan-based superabsorbent hydrogel nanocomposites for adsorptive removal of Basic Red 46 textile dye. Polym. Bull. 2022, 79, 6141–6172. [Google Scholar] [CrossRef]
- Subhan, H.; Alam, S.; Shah, L.A.; Ali, M.W.; Farooq, M. Sodium alginate grafted poly(N-vinyl formamide-co-acrylic acid)-bentonite clay hybrid hydrogel for sorptive removal of methylene green from wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125853. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, B.; Wang, L. Adsorption/desorption performance of Pb2+ and Cd2+ with super adsorption capacity of PASP/CMS hydrogel. Water Sci. Technol. 2021, 84, 43–54. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, G.; Kumar, A.; AlGarni, T.S.; Naushad, M.; Alothman, Z.A.; Stadler, F.J. Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: Synthesis, characterization and isotherm analysis. J. Hazard. Mater. 2022, 421, 126729. [Google Scholar] [CrossRef]
- Zhang, S.; He, F.; Fang, X.; Zhao, X.; Liu, Y.; Yu, G.; Zhou, Y.; Feng, Y.; Li, J. Enhancing soil aggregation and acetamiprid adsorption by ecofriendly polysaccharides hydrogel based on Ca2+- amphiphilic sodium alginate. J. Environ. Sci. 2022, 113, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yin, W.-M.; Wang, Y.; Zhao, N.-D.; Wang, X.-Y.; Zhang, J.-G.; Guo, Y.-R.; Li, S.; Pan, Q.-J. Fabrication of ultra-thin MgAl layered double oxide by cellulose templating and its immobilization effect toward heavy metal ions: Cation-exchange and deposition mechanism. Chem. Eng. J. 2022, 427, 132017. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Karri, R.R. A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J. Environ. Manag. 2019, 231, 622–634. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Sepúlveda, P.; Manquián-Cerda, K.; Ramírez-Tagle, R.; Rubio, M.A.; Bolan, N.; Sarkar, B.; Arancibia-Miranda, N. Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water. J. Hazard. Mater. 2019, 373, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Sarkar, B.; Kwon, E.E.; Bhatnagar, A.; Ok, Y.S.; Vithanage, M. Biochar-based engineered composites for sorptive decontamination of water: A review. Chem. Eng. J. 2019, 372, 536–550. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Hu, X.; He, F.; Bean, E.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Applications of carbonaceous adsorbents in the remediation of polycyclic aromatic hydrocarbon-contaminated sediments: A review. J. Clean. Prod. 2020, 255, 120263. [Google Scholar] [CrossRef]
- Tran, H.N.; Nguyen, D.T.; Le, G.T.; Tomul, F.; Lima, E.C.; Woo, S.H.; Sarmah, A.K.; Nguyen, H.Q.; Nguyen, P.T.; Nguyen, D.D.; et al. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review. J. Hazard. Mater. 2019, 373, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Hiew, B.Y.Z.; Lee, L.Y.; Lee, X.J.; Thangalazhy-Gopakumar, S.; Gan, S.; Lim, S.S.; Pan, G.-T.; Yang, T.C.-K.; Chiu, W.S.; Khiew, P.S. Review on synthesis of 3D graphene-based configurations and their adsorption performance for hazardous water pollutants. Process Saf. Environ. Prot. 2018, 116, 262–286. [Google Scholar] [CrossRef]
- Ajmal, Z.; Usman, M.; Anastopoulos, I.; Qadeer, A.; Zhu, R.; Wakeel, A.; Dong, R. Use of nano-/micro-magnetite for abatement of cadmium and lead contamination. J. Environ. Manag. 2020, 264, 110477. [Google Scholar] [CrossRef] [PubMed]
- Abukhadra, M.R.; Basyouny, M.G.; El-Sherbeeny, A.M.; El-Meligy, M.A. The effect of different green alkali modification processes on the clinoptilolite surface as adsorbent for ammonium ions; characterization and application. Microporous Mesoporous Mater. 2020, 300, 110145. [Google Scholar] [CrossRef]
- Haris, M.; Usman, M.; Su, F.; Lei, W.; Saleem, A.; Hamid, Y.; Guo, J.; Li, Y. Programmable synthesis of exfoliated biochar nanosheets for selective and highly efficient adsorption of thallium. Chem. Eng. J. 2022, 434, 134842. [Google Scholar] [CrossRef]
- Saad, N.; Chaaban, M.; Patra, D.; Ghanem, A.; El-Rassy, H. Molecularly imprinted phenyl-functionalized silica aerogels: Selective adsorbents for methylxanthines and PAHs. Microporous Mesoporous Mater. 2020, 292, 109759. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, R.K. Synthesis and characterization of cellulose based adsorbents for removal of Ni(II), Cu(II) and Pb(II) ions from aqueous solutions. React. Funct. Polym. 2019, 140, 82–92. [Google Scholar] [CrossRef]
- He, Q.; Liang, J.-J.; Chen, L.-X.; Chen, S.-L.; Zheng, H.-L.; Liu, H.-X.; Zhang, H.-J. Removal of the environmental pollutant carbamazepine using molecular imprinted adsorbents: Molecular simulation, adsorption properties, and mechanisms. Water Res. 2020, 168, 115164. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Batool, F.; Akbar, J.; Iqbal, S.; Noreen, S.; Bukhari, S.N.A. Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis. Bioinorg. Chem. Appl. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.; Berwanger, J.; Polesya, S.; Mankovsky, S.; Ebert, H.; Giessibl, F.J. Chemical bond formation showing a transition from physisorption to chemisorption. Science 2019, 366, 235–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Tong, Y.; McNamara, P.J.; Mayer, B.K. Adsorption of organic micropollutants onto biochar: A review of relevant kinetics, mechanisms and equilibrium. Environ. Sci. Water Res. Technol. 2019, 5, 821–838. [Google Scholar] [CrossRef]
- Russo, V.; Masiello, D.; Trifuoggi, M.; Di Serio, M.; Tesser, R. Design of an adsorption column for methylene blue abatement over silica: From batch to continuous modeling. Chem. Eng. J. 2016, 302, 287–295. [Google Scholar] [CrossRef]
- Banerjee, M.; Basu, R.K.; Das, S.K. Cr(VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility. Process Saf. Environ. Prot. 2018, 116, 693–702. [Google Scholar] [CrossRef]
- Usman, M.; Jellali, S.; Anastopoulos, I.; Charabi, Y.; Hameed, B.H.; Hanna, K. Fenton oxidation for soil remediation: A critical review of observations in historically contaminated soils. J. Hazard. Mater. 2022, 424, 127670. [Google Scholar] [CrossRef]
- Nazarzadeh Zare, E.; Mudhoo, A.; Ali Khan, M.; Otero, M.; Bundhoo, Z.M.A.; Patel, M.; Srivastava, A.; Navarathna, C.; Mlsna, T.; Mohan, D.; et al. Smart Adsorbents for Aquatic Environmental Remediation. Small 2021, 17, 2007840. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zheng, Y.-M.; Zhang, B.-G.; Dai, Y.-R. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J. Hazard. Mater. 2021, 401, 123608. [Google Scholar] [CrossRef]
- Yoo, D.K.; Bhadra, B.N.; Jhung, S.H. Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. J. Hazard. Mater. 2021, 403, 123655. [Google Scholar] [CrossRef]
- Sherlala, A.I.A.; Raman, A.A.A.; Bello, M.M.; Asghar, A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 2018, 193, 1004–1017. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, G.E.d.S.; Lins, P.V.d.S.; Oliveira, L.M.T.d.M.; Silva, E.O.d.; Anastopoulos, I.; Erto, A.; Giannakoudakis, D.A.; Almeida, A.R.F.d.; Duarte, J.L.d.S.; Meili, L. Layered double hydroxides/biochar composites as adsorbents for water remediation applications: Recent trends and perspectives. J. Clean. Prod. 2021, 284, 124755. [Google Scholar] [CrossRef]
- Jain, K.; Patel, A.S.; Pardhi, V.P.; Flora, S.J.S. Nanotechnology in Wastewater Management: A New Paradigm Towards Wastewater Treatment. Molecules 2021, 26, 1797. [Google Scholar] [CrossRef] [PubMed]
- Nagar, A.; Pradeep, T. Clean Water through Nanotechnology: Needs, Gaps, and Fulfillment. ACS Nano 2020, 14, 6420–6435. [Google Scholar] [CrossRef]
- Alam, G.; Ihsanullah, I.; Naushad, M.; Sillanpää, M. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chem. Eng. J. 2022, 427, 130011. [Google Scholar] [CrossRef]
- Bakhtiari, N.; Azizian, S. Nanoporous Carbon Derived from MOF-5: A Superadsorbent for Copper Ions. ACS Omega 2018, 3, 16954–16959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristian Ferreira Silva, R.; Sevenini Pinto, P.; de Carvalho Teixeira, A.P. Control of porous size distribution on solvent-free mesoporous carbon and their use as a superadsorbent for 17α-ethinylestradiol removal. Chem. Eng. J. 2021, 407, 127219. [Google Scholar] [CrossRef]
- Abdollahi, H.; Maleki, S.; Sayahi, H.; Gharabaghi, M.; Darvanjooghi, M.H.K.; Magdouli, S.; Brar, S.K. Superadsorbent Fe3O4-coated carbon black nanocomposite for separation of light rare earth elements from aqueous solution: GMDH-based Neural Network and sensitivity analysis. J. Hazard. Mater. 2021, 416, 125655. [Google Scholar] [CrossRef]
- Jawad, A.H.; Saud Abdulhameed, A.; Wilson, L.D.; Syed-Hassan, S.S.A.; Alothman, Z.A.; Rizwan Khan, M. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chin. J. Chem. Eng. 2021, 32, 281–290. [Google Scholar] [CrossRef]
- Ebadollahzadeh, H.; Zabihi, M. Competitive adsorption of methylene blue and Pb (II) ions on the nano-magnetic activated carbon and alumina. Mater. Chem. Phys. 2020, 248, 122893. [Google Scholar] [CrossRef]
- Meramo-Hurtado, S.; Herrera-Barros, A.; González-Delgado, Á. Evaluation of Large-Scale Production of Chitosan Microbeads Modified with Nanoparticles Based on Exergy Analysis. Energies 2019, 12, 1200. [Google Scholar] [CrossRef] [Green Version]
- Meramo-Hurtado, S.I.; González-Delgado, Á.D. Application of Techno-economic and Sensitivity Analyses as Decision-Making Tools for Assessing Emerging Large-Scale Technologies for Production of Chitosan-Based Adsorbents. ACS Omega 2020, 5, 17601–17610. [Google Scholar] [CrossRef] [PubMed]
Superadsorbent | Target Pollutants | Maximum Adsorption Capacity (mg g−1) | Ref. |
---|---|---|---|
Two-dimensional molybdenum disulfide | Pb2+ | 1479 | [28] |
SBA-15/polyamidoamine dendrimer hybrid | Acid Blue 62 | 1428 | [29] |
Polyamidoamine dendrimer-modified carbon nanotubes | Pb2+, Cu2+ | 4870 (Pb2+), 3333 (Cu2+) | [30] |
Fe3O4/γ-Al2O3 hybrid composite | Acid Black 1 | 1959 | [31] |
Carboxymethyl cellulose-g-poly(3-sulfopropyl methacrylate) hydrogel | Methylene blue | 1675 | [32] |
Poly(acrylic acid)-based nanocomposite hydrogel | Methylene blue | 2100 | [33] |
Calcium-rich biochar | Malachite green, Congo red | 12,502 (Malachite green), 20,317 (Congo red) | [34] |
Non-covalent functionalized graphene oxide with an organic gelator | Malachite green, Eriochrome blue black R | 2687 (Malachite green), 1189 (Eriochrome blue black R) | [35] |
L-cysteine-doped polypyrrole | Hg2+ | 2042 | [36] |
Magnetite single-walled carbon nanotubes-CoS | Hg2+ | 1666 | [37] |
Magnetic MnFe2O4 and CuFe2O4-2-aminobenzoic acid–phenylenediamine nanocomposite | Methylene blue | 7089 | [38] |
MIL-Ti metal–organic frameworks | Basic Red 46, Basic Blue 41 | 1296 (Basic Red 46), 1257 (Basic Blue 41) | [39] |
Nanoparticles-composed Cu2O microspheres | Amaranth | 7627 | [40] |
Poly-acrylic acid-g-Corn husk | Methylene blue | 1682 | [41] |
Cot-g-PCL-Schiff base | Rhodamine 6G | 2121 | [42] |
Reduced graphene oxide–CoFe2O4 ferrite–polyaniline nanocomposite | U6+ | 2430 | [43] |
Poly(2-acrylamido-2-methyl-propanesulfonic acid-co-acrylic acid) hydrogel spheres | Methylene blue and Pb2+ | 4625 (methylene blue) and 4312 (Pb2+) | [44] |
pH-responsive resin containing glycine and maleic acid | Methylene blue | 2101 | [45] |
Bioinspired catecholamine/starch composite | Methylene blue | 2276 | [46] |
Hyperbranched chitosan composite | Hg2+ | 1722 | [47] |
Esterified nanohydroxyapatite nanocrystals | Pb2+ | 2398 | [48] |
Maleylated modified hydrochar | Methylene blue | 1155 | [49] |
Polyaniline/lignosulfonate | Acid red 94 | 10,560 | [50] |
Saccharina japonica macroalgae-derived biochar | Crystal violet | 1719 | [51] |
PAF-1@cellulose nanofibril | Bisphenol A | 1000 | [52] |
Sodium alginate/Ca/fiber hydrogels | Methylene blue | 1335 | [53] |
Graphene oxide intercalated layered double hydroxide | Pb2+ | 1062 | [54] |
p(AETAC-co-NVP) hydrogels | Methyl orange | 1992 | [55] |
Partially hydrolyzed polyacrylamide-grafted Arabic gum | Methylene blue | 2300 | [56] |
Polyacrylamide/chitosan/Fe3O4 composite hydrogels | Methylene blue | 1603 | [57] |
Dual-functionalized microporous organic network | Methylene blue, malachite green and crystal violet | 2564 (methylene blue), 3126 (malachite green), 1114 (crystal violet) | [58] |
TiO2 nanoparticles dispersed in chitosan-grafted polyacrylamide matrix | Sirius yellow K-CF | 1000 | [59] |
Microtube and microsphere porous carbon synthesized from poly(ε-caprolactone-b-4-vinyl benzyl chloride) triarm block copolymer with ZnCl2 | Malachite green | 1684 | [63] |
Poly((methacryloylamino)propyl trimethylammonium chloride-co-vinylimidazole) quaternized hydrogels | Eriochrome black T, methyl orange | 1818 (Eriochrome black T), 1449 (methyl orange) | [64] |
Poly(m-phenylenediamine) microspheres | Hg2+ | 1499 | [65] |
Poly(vinyl alcohol)/potassium humate/guar gum-based interpenetrating network hydrogel | Methylene blue | 1166 | [66] |
Manganese Prussian blue analogue/graphene oxide composite | Ciprofloxacin | 1826 | [68] |
Maleic acid and glycine-based pH-responsive resin | Pararosaniline hydrochloride | 1534 | [69] |
Villi-like poly(acrylic acid)-based hydrogel | Methylene blue | 2286 | [72] |
Amine functional cyclotriphosphazene submicrospheres | Methyl orange | 1244 | [73] |
KIUB-MOF-1 (Co-based metal organic framework) | Methyl orange, methylene blue and malachite green | 15,610 (methyl orange), 14,721 (methylene blue), 5083 (malachite green) | [76] |
β-cyclodextrin modified hydrogel | Methylene blue | 2638 | [77] |
Magnetic sulfur-doped graphene-like carbon-supported layered double oxide | Methyl orange | 1456 | [79] |
Pod-inspired MXene/porous carbon microspheres | Crystal violet | 2744 | [80] |
β-cyclodextrin and magnetic graphene oxide modified porous composite hydrogel | Methylene blue, Safranine T | 2802 (methylene blue), 1470 (Safranine T) | [70] |
CuS/cellulose composites | Hg2+ | 1040 | [81] |
Functional chitosan-based hydrogel nanocomposites (2 wt % of montmorillonite clay loading) | Basic Red 46 | 1813 | [84] |
Sodium alginate grafted poly (N-vinyl formamide-co-acrylic acid)-bentonite clay hydrogel | Methylene green | 2108 | [85] |
Carrageenan and itaconic acid-based hydrogel | Methylene blue, crystal violet | 2439 (Methylene blue), 1111 (Crystal violet) | [87] |
MgAl layered double oxide | Cd2+, Cu2+ and Pb2+ | 1422 (Cd2+), 1135 (Cu2+), 1336 (Pb2+) | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karunakaran, K.; Usman, M.; Sillanpää, M. A Review on Superadsorbents with Adsorption Capacity ≥1000 mg g−1 and Perspectives on Their Upscaling for Water/Wastewater Treatment. Sustainability 2022, 14, 16927. https://doi.org/10.3390/su142416927
Karunakaran K, Usman M, Sillanpää M. A Review on Superadsorbents with Adsorption Capacity ≥1000 mg g−1 and Perspectives on Their Upscaling for Water/Wastewater Treatment. Sustainability. 2022; 14(24):16927. https://doi.org/10.3390/su142416927
Chicago/Turabian StyleKarunakaran, Kannan, Muhammad Usman, and Mika Sillanpää. 2022. "A Review on Superadsorbents with Adsorption Capacity ≥1000 mg g−1 and Perspectives on Their Upscaling for Water/Wastewater Treatment" Sustainability 14, no. 24: 16927. https://doi.org/10.3390/su142416927
APA StyleKarunakaran, K., Usman, M., & Sillanpää, M. (2022). A Review on Superadsorbents with Adsorption Capacity ≥1000 mg g−1 and Perspectives on Their Upscaling for Water/Wastewater Treatment. Sustainability, 14(24), 16927. https://doi.org/10.3390/su142416927