Evaluating Pedestrian Service of the New Super Diverging Diamond Interchange on Three Case Study Sites in Denver, Colorado
Abstract
:1. Introduction
1.1. Background
1.2. Objective
1.3. Super DDI Design
2. Materials and Methods
2.1. Site Selection, Data Preparation, and Geometry Design
2.2. Simulation Scenarios
2.3. Traffic Signal Design
2.4. User Behavior
2.5. Calibration and Validation
2.6. Design Flags
3. Results and Discussions
3.1. Overall Pedestrian Performance
3.1.1. Travel Time, Number of Stops, and Waiting Time
3.1.2. Pedestrian Conflicts
3.2. Design Flags Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Highway Traffic Safety Administration (NHTSA). Traffic Safety Facts: Pedestrians; 2020. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812850 (accessed on 7 June 2022).
- Brosseau, M.; Zangenehpour, S.; Saunier, N.; Miranda-Moreno, L. The impact of waiting time and other factors on dangerous pedestrian crossings and violations at signalized intersections: A case study in Montreal. Transp. Res. Part F Traffic Psychol. Behav. 2013, 21, 159–172. [Google Scholar] [CrossRef]
- Pulugurtha, S.S.; Sambhara, V.R. Pedestrian crash estimation models for signalized intersections. Accid. Anal. Prev. 2011, 43, 439–446. [Google Scholar] [CrossRef]
- Liu, P.; Lu, J.J.; Chen, H. Safety effects of the separation distances between driveway exits and downstream u-turn locations. Accid. Anal. Prev. 2008, 40, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Hummer, J.E. Unconventional left-turn alternatives for urban and suburban arterials—Part one. ITE J. (Inst. Transp. Eng.) 1998, 68, 26–29. [Google Scholar]
- Holzem, A.M.; Hummer, J.E.; Cunningham, C.M.; O’Brien, S.W.; Schroeder, B.J.; Salamati, K. Pedestrian and bicyclist accommodations and crossings on superstreets. Transp. Res. Rec. 2015, 2486, 37–44. [Google Scholar] [CrossRef]
- Mehrara Molan, A. Evaluation of Milwaukee B and Synchronized As New Service Interchange Designs. Ph.D. Thesis, Wayne State University, Detroit, MI, USA, January 2017. Available online: http://digitalcommons.wayne.edu/oa_dissertations/1845 (accessed on 11 December 2022).
- Molan, A.M.; Hummer, J.E. Safety analysis of the new synchronized and milwaukee B interchanges in comparison to existing designs. Accid. Anal. Prev. 2017, 109, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, Z. A Bi-Level Model for Planning Signalized and Uninterrupted Flow Intersections in an Evacuation Network. Comp-Aid. Civ. Infrastr. Eng. 2012, 27, 731–747. [Google Scholar] [CrossRef]
- Molan, A.M.; Hummer, J.E. Improving Traffic Operations at Service Interchanges using the New Offset Diamond Design. Transp. Res. Rec. 2020, 2674, 522–536. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Wang, T. Increasing Signalized Intersection Capacity with Unconventional Use of Special Width Approach Lanes. Comp.-Aid. Civ. Infrastr. Eng. 2016, 31, 794–810. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Yang, X. Operation of signalized diamond interchanges with frontage roads using dynamic reversible lane control. Transp. Res. Part C: Emerg. Technol. 2015, 51, 196–209. [Google Scholar] [CrossRef]
- Jagannathan, R.; Bared, J.G. Design and Operational Performance of Crossover Displaced Left-Turn Intersections. Transp. Res. Rec. 2004, 1881, 1–10. [Google Scholar] [CrossRef]
- Suh, W.; Hunter, M.P. Signal design for displaced left-turn intersection using Monte Carlo method. KSCE J. Civ. Eng. 2014, 18, 1140–1149. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, W.; Zhang, H.M.; Yang, X. Increasing the capacity of signalized intersections with dynamic use of exit lanes for left-turn traffic. Transp. Res. Rec. 2013, 2355, 49–59. [Google Scholar] [CrossRef]
- Wu, J.; Liu, P.; Tian, Z.Z.; Xu, C. Operational analysis of the contraflow left-turn lane design at signalized intersections in China. Transp. Res. Part C: Emerg. Technol. 2016, 69, 228–241. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y. Safety evaluation of intersections with dynamic use of exit-lanes for left-turn using field data. Accid. Anal. Prev. 2017, 102, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.; Daganzo, C.F.; Cassidy, M.J. Increasing the capacity of signalized intersections with separate left turn phases. Transp. Res. Part B: Methodol. 2011, 45, 769–781. [Google Scholar] [CrossRef]
- Yan, C.; Jiang, H.; Xie, S. Capacity optimization of an isolated intersection under the phase swap sorting strategy. Transp. Res. Part B: Methodol. 2014, 60, 85–106. [Google Scholar] [CrossRef]
- Mier, F.D.; Romo, B.H. Continuous Flow Intersection. U.S. Patent Number 5,049,000, 1991. Available online: https://patents.google.com/patent/US5049000A/en (accessed on 11 December 2022).
- ATS/American. Diverging Diamond Interchange. Available online: https://divergingdiamond.com (accessed on 7 September 2020).
- Vaughan, C.; Cunningham, C.; Schroeder, B.; Hummer, J. Empirical Study and Assessment of Operational Performance of Double Crossover Diamond Interchanges. In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17 January 2013; Available online: https://trid.trb.org/view/1242894 (accessed on 11 December 2022).
- Bared, J.G.; Edara, P.K.; Jagannathan, R. Design and Operational Performance of Double Crossover Intersection and Diverging Diamond Interchange. Transp. Res. Rec. 2005, 1912, 31–38. [Google Scholar] [CrossRef]
- National Cooperative Highway Research Program (NCHRP). Guide for Pedestrian and Bicyclist Safety at Alternative and Other Intersections and Interchanges; National Academies Press: Washington, DC, USA, 2021; Available online: https://www.trb.org/Main/Blurbs/181781.aspx (accessed on 11 December 2022).
- Molan, A.M.; Hummer, J.E.; Ksaibati, K. Introducing the Super DDI as a Promising Alternative Service Interchange. Transp. Res. Rec. 2019, 2673, 586–597. [Google Scholar] [CrossRef]
- Mehrara Molan, A.; Hummer, J.E.; Ksaibati, K. Modeling safety performance of the new super DDI design in terms of vehicular traffic and pedestrian. Accid. Anal. Prev. 2019, 127, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Mehrara Molan, A.; Ksaibati, K. Proposing the Super DDI Design to Improve the Performance of Failing Service Interchanges in Mountain-Plains Region. Project #MPC-573; Mountain-Plains Consortium (MPC). 2018. Available online: https://www.mountain-plains.org/research/details.php?id=471 (accessed on 11 December 2022).
- Haq, M.T.; Molan, A.M.; Ksaibati, K. Evaluating the Operational Efficiency of Two Versions of Super DDI Design: A Case Study in Denver, Colorado. Transp. Res. Rec. 2022, 2076, 747–762. [Google Scholar] [CrossRef]
- Haq, M.T.; Molan, A.M.; Ksaibati, K. Surrogate safety assessment of super DDI design: A case study in Denver, Colorado. J. Transp. Saf. Secur. 2021. [Google Scholar] [CrossRef]
- Haq, M.T.; Molan, A.M.; Ksaibati, K. Proposing the Super DDI Design To Improve the Performance of Failing Service Interchanges in Denver Metro, Colorado. Final Report, MPC-573; Mountain Plains Consortium; 2022. Available online: https://rosap.ntl.bts.gov/view/dot/62820 (accessed on 11 December 2022).
- Wang, L.; Ye, S.; Tang, M. Simulation research on crossing behavior of the pedestrians and vehicles at the Pedestrian crossing based on simulation software VISSIM. Proc. Int. Conf. Comp. Net. Commun. Eng. 2013. Available online: https://www.researchgate.net/publication/266646383_Simulation_research_on_crossing_behavior_of_the_pedestrians_and_vehicles_at_the_Pedestrian_crossing_bsed_on_simulation_software_VISSIM(accessed on 11 December 2022).
- Haq, M.T.; Farid, A.; Ksaibati, K. Estimating Passing Sight Distances for Overtaking Truck Platoons—Calibration and Validation Using VISSIM. Int. J. Transp. Sci. Technol. 2021, 11, 255–267. [Google Scholar] [CrossRef]
- Molan, A.M.; Hummer, J.E. Simulation modeling of pedestrian performance in the new synchronized and milwaukee B interchanges versus existing designs. Transp. Res. Rec. 2018, 2672, 151–160. [Google Scholar] [CrossRef]
- Haq, M.T.; Zlatkovic, M.; Ksaibati, K. Benefit-cost assessment of truck climbing lanes: A case study of I-80 in Wyoming. Transp. Lett. 2022, 2676, 747–762. [Google Scholar] [CrossRef]
- HCM. Highway Capacity Manual. National Research Council (NRC), U.S. 2010. Available online: https://www.trb.org/Publications/Blurbs/164718.aspx (accessed on 11 December 2022).
- Schroeder, B.; Cunningham, C.; Ray, B.; Daleiden, A.; Jenior, P.; Knudsen, J. Diverging Diamond Interchange Information Guide. Report FHWA-SA-14-067. 2014. Available online: https://www.trb.org/Main/Blurbs/181562.aspx (accessed on 12 December 2022).
- Wu, J.; Radwan, E.; Abou-Senna, H. Determination if VISSIM and SSAM could estimate pedestrian-vehicle conflicts at signalized intersections. J. Transp. Saf. Secur. 2018, 10, 572–585. [Google Scholar] [CrossRef]
- Federal Highway Administration (FHWA). Manual on Uniform Traffic Control Device (MUTCD). U.S. Department of Transportation; 2009. Available online: https://mutcd.fhwa.dot.gov/ (accessed on 11 December 2022).
- Hummer, J.E.; Holzem, A.M.; Rouphail, N.M.; Cunningham, C.M.; O’brien, S.W.; Schroeder, B.J.; Salamati, K.; Foyle, R.S. Pedestrian and Bicycle Accomodations on Superstreets. Final Report, FHWA/NC/2012-13. 2014. Available online: https://rosap.ntl.bts.gov/view/dot/26967 (accessed on 11 December 2022).
- Wallwork, M. Walking In Real Intersection Design Course. 2004. [Google Scholar]
- Fitzpatrick, K.; Schneider IV, W.H.; Park, E.S. Predicting speeds in an urban right-turn lane. J. Transp. Eng. 2006, 132, 199–204. [Google Scholar] [CrossRef]
- Oskarbski, J.; Guminska, L.; Miszewski, M.; Oskarbska, I. Analysis of Signalized Intersections in the Context of Pedestrian Traffic. Transp. Res. Procedia. 2016, 14, 2138–2147. [Google Scholar] [CrossRef] [Green Version]
- Dobrota, N.; Stevanovic, A.; Mitrovic, N. Development of assessment tool and overview of adaptive traffic control deployments in the U.S. Transp. Res. Rec. 2020, 2674, 464–480. [Google Scholar] [CrossRef]
- Dobrota, N.; Stevanovic, A.; Mitrovic, N. Modifying signal retiming procedures and policies by utilizing high-fidelity modeling with medium-resolution traffic data. Transp. Res. Rec. 2022, 2676, 660–684. [Google Scholar] [CrossRef]
- Gavric, S.; Sarazhinsky, D.; Stevanovic, A.; Dobrota, N. Development and Evaluation of Non-Traditional Pedestrian Timing Treatments for Coordinated Signalized Intersections. Transp. Res. Rec. 2022. [Google Scholar] [CrossRef]
Location | Arterial (EB) | Arterial (WB) | Ramp (NB) | Ramp (SB) | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LT | T | RT | LT | T | RT | LT | RT | LT | RT | ||
I-225 and Mississippi Ave | 512 | 1930 | 453 | 446 | 1799 | 408 | 397 | 441 | 470 | 412 | 7268 |
I-25 and 120th Ave | 710 | 1948 | 1097 | 919 | 1737 | 384 | 637 | 780 | 427 | 525 | 9164 |
I-25 and Hampden Ave | 116 | 1776 | 1023 | 597 | 2044 | 679 | 1095 | 606 | 892 | 174 | 9002 |
Pedestrian Volume Distribution | Description of the Scenario |
---|---|
1. All 45 | |
2. All 90 | |
3. E 45–W 90 | |
4. E 90–W 45 | |
5. N 45–S 90 | |
6. N 90–S 45 | |
7. NE and SW 45–NW and SE 90 | |
8. NE and SW 90–NW and SE 45 |
Interchange Type | Traffic Volume Year | I-225 and Mississippi Ave | I-25 and 120th Ave | I-25 and Hampden Ave | |||
---|---|---|---|---|---|---|---|
CL (sec) | R (sec) | CL (sec) | R (sec) | CL (s) | R (sec) | ||
CDI | 2020 | 90 | 28 | 150 | 47 | 160 | 42 |
2030 | 180 | 47 | 150 | 47 | 180 | 46 | |
DDI | 2020 | 60 | 36 | 140 | 76 | 90 | 51 |
2030 | 80 | 46 | 150 | 81 | 150 | 81 | |
Super DDI-1 | 2020 | 60 | 25 | 75 | 35 | 75 | 32 |
2030 | 75 | 30 | 75 | 35 | 75 | 32 | |
Super DDI-2 | 2020 | 60 | 27 | 75 | 35 | 75 | 30 |
2030 | 75 | 30 | 75 | 35 | 75 | 30 |
Scenario | Mean GEH Statistics Considering all Turning Movements | <5? | |
---|---|---|---|
I-225 and Mississippi Ave | 2020 PM | 2.01 | Yes |
I-25 and 120th Ave | 2020 PM | 3.40 | Yes |
I-25 and Hampden Ave | 2020 PM | 3.46 | Yes |
Average Performance | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Interchange Type | I-225 and Mississippi Ave | I-25 and 120th Ave | I-25 and Hampden Ave | |||||||
Travel Time (s) | Stops (no) | Waiting Time (s) | Travel Time (s) | Stops (no) | Waiting Time (s) | Travel Time (s) | Stops (no) | Waiting Time (s) | ||
CDI | 124 | 0.4 | 8 | 140 | 0.42 | 10 | 145 | 0.86 | 19 | |
DDI | 145 | 0.54 | 11 | 200 | 0.62 | 24 | 180 | 0.57 | 19 | |
Super DDI-1 | 128 | 0.5 | 7 | 150 | 0.48 | 8 | 155 | 0.54 | 9 | |
Super DDI-2 | 130 | 0.48 | 7 | 150 | 0.49 | 9 | 151 | 0.54 | 8 | |
ANOVA Tests | ||||||||||
Interchange Type | Compares With | Mean Difference | ||||||||
I-225 and Mississippi Ave | I-25 and 120th Ave | I-25 and Hampden Ave | ||||||||
Travel Time (s) | Stops (no) | Waiting Time (s) | Travel Time (s) | Stops (no) | Waiting Time (s) | Travel Time (s) | Stops (no) | Waiting Time (s) | ||
CDI | DDI | −20.78 | −0.14 | −3.51 | −59.48 | −0.2 | −14.59 | −35.09 | 0.29 | 0.12 |
Super DDI-1 | −4.23 | −0.1 | 0.73 | −9.13 | −0.06 | 1.48 | −10.1 | 0.32 | 10.48 | |
Super DDI-2 | −5.85 | −0.08 | 0.76 | −9.55 | −0.07 | 1.28 | −5.35 | 0.32 | 11.01 | |
DDI | CDI | 20.78 | 0.14 | 3.51 | 59.48 | 0.2 | 14.59 | 35.09 | −0.29 | −0.12 |
Super DDI-1 | 16.55 | 0.04 | 4.24 | 50.34 | 0.14 | 16.07 | 24.99 | 0.03 | 10.36 | |
Super DDI-2 | 14.93 | 0.06 | 4.27 | 49.93 | 0.13 | 15.87 | 29.74 | 0.03 | 10.89 | |
Super DDI-1 | CDI | 4.23 | 0.1 | −0.73 | 9.13 | 0.06 | −1.48 | 10.1 | −0.32 | −10.48 |
DDI | −16.55 | −0.04 | −4.24 | −50.34 | −0.14 | −16.07 | −24.99 | −0.03 | −10.36 | |
Super DDI-2 | −1.62 | 0.02 | 0.03 | −0.42 | −0.01 | −0.21 | 4.75 | 0 | 0.53 | |
Super DDI-2 | CDI | 5.85 | 0.08 | −0.76 | 9.55 | 0.07 | −1.28 | 5.35 | −0.32 | −11.01 |
DDI | −14.93 | −0.06 | −4.27 | −49.93 | −0.13 | −15.87 | −29.74 | −0.03 | −10.89 | |
Super DDI-1 | 1.62 | −0.02 | −0.03 | 0.42 | 0.01 | 0.21 | −4.75 | 0 | −0.53 |
Location | Route | Design | Free-Flow Crossing | Permissive Crossing | Protected Crossing | Total Crossing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N a | L b | V c | N | L | V | N | L | V | N | L | V | |||
I-225 and Mississippi Ave | Southwest to Southeast (one-way) | CDI | 0 | 0 | 0 | 2 | 2 | 894 | 2 | 5 | 843 | 4 | 7 | 1737 |
DDI | 2 | 2 | 894 | 0 | 0 | 0 | 2 | 8 | 4441 | 4 | 10 | 5335 | ||
Super DDI-1 | 0 | 0 | 0 | 1 | 1 | 453 | 3 | 5 | 1284 | 4 | 6 | 1737 | ||
Super DDI-2 | 0 | 0 | 0 | 1 | 1 | 453 | 3 | 5 | 1284 | 4 | 6 | 1737 | ||
I-25 and 120th Ave | Southwest to Southeast (one-way) | CDI | 0 | 0 | 0 | 2 | 2 | 1877 | 2 | 5 | 1556 | 4 | 7 | 3433 |
DDI | 2 | 2 | 1877 | 0 | 0 | 0 | 2 | 8 | 5030 | 4 | 10 | 6907 | ||
Super DDI-1 | 0 | 0 | 0 | 1 | 1 | 1097 | 3 | 5 | 2336 | 4 | 6 | 3433 | ||
Super DDI-2 | 0 | 0 | 0 | 1 | 1 | 1097 | 3 | 5 | 2336 | 4 | 6 | 3433 | ||
I-25 and Hampden Ave | Southwest to Southeast (one-way) | CDI | 0 | 0 | 0 | 2 | 2 | 1629 | 2 | 5 | 1692 | 4 | 7 | 3321 |
DDI | 2 | 2 | 1629 | 0 | 0 | 0 | 2 | 8 | 5780 | 4 | 10 | 7409 | ||
Super DDI-1 | 0 | 0 | 0 | 1 | 1 | 1023 | 3 | 5 | 2298 | 4 | 6 | 3321 | ||
Super DDI-2 | 0 | 0 | 0 | 1 | 1 | 1023 | 3 | 5 | 2298 | 4 | 6 | 3321 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, M.T.; Molan, A.M.; Ksaibati, K. Evaluating Pedestrian Service of the New Super Diverging Diamond Interchange on Three Case Study Sites in Denver, Colorado. Sustainability 2022, 14, 16929. https://doi.org/10.3390/su142416929
Haq MT, Molan AM, Ksaibati K. Evaluating Pedestrian Service of the New Super Diverging Diamond Interchange on Three Case Study Sites in Denver, Colorado. Sustainability. 2022; 14(24):16929. https://doi.org/10.3390/su142416929
Chicago/Turabian StyleHaq, Muhammad Tahmidul, Amirarsalan Mehrara Molan, and Khaled Ksaibati. 2022. "Evaluating Pedestrian Service of the New Super Diverging Diamond Interchange on Three Case Study Sites in Denver, Colorado" Sustainability 14, no. 24: 16929. https://doi.org/10.3390/su142416929
APA StyleHaq, M. T., Molan, A. M., & Ksaibati, K. (2022). Evaluating Pedestrian Service of the New Super Diverging Diamond Interchange on Three Case Study Sites in Denver, Colorado. Sustainability, 14(24), 16929. https://doi.org/10.3390/su142416929