Design of an Enhanced SAT Using Zeolite for the Removal of Ammonia Nitrogen at a Bengbu Aquatic Farm in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Screening of the Enhanced Adsorbent of SAT System
2.3. Laboratory Simulation of SAT System
3. Results and Discussion
3.1. Comparison of Adsorption Efficiency of Adsorbents
3.2. Analysis of the Removal Efficiency of SAT System for Ammonia Nitrogen
3.2.1. Analysis of the Removal Efficiency of Ammonia Nitrogen under Different Packing Methods
3.2.2. Effect of Water Environment and Hydrodynamic Conditions on the Removal Efficiency of Ammonia Nitrogen
3.3. Design and Simulation of SAT
3.3.1. Design of SAT Site
3.3.2. Simulation of SAT Site
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abhishek, S.; Pankaj, K.S.; Amit, B.; Archana, T. Growth of marine diatoms on aquaculture wastewater supplemented with nanosilica. Bioresour. Technol. 2021, 344, 126210. [Google Scholar]
- Long, Y.; Zonghe, Y.; Yinyin, L.; Peng, L.; Xiao, J.; Yushun, T.; Xiongqi, D. Ammonia nitrogen and nitrite removal by a heterotrophic Sphingomonas sp. strain LPN080 and its potential application in aquaculture. Aquaculture 2019, 500, 477–484. [Google Scholar]
- Qing, G.; Foster, S.L.; Anari, Z.; Matlock, M.; Thoma, G.; Greenlee, L.F. Disinfection/Ammonia Removal from Aquaculture Wastewater and Disinfection of Irrigation Water using Electrochemical Flow Cells: A Case Study in Hawaii. Water Environ. Res. A Res. Publ. Water Environ. Fed. 2021, 93, 1821. [Google Scholar] [CrossRef]
- Wang, R.; Xu, Q.; Chen, C.; Li, X.; Zhang, C.; Zhang, D. Microbial nitrogen removal in synthetic aquaculture wastewater by fixed-bed baffled reactors packed with different biofilm carrier materials. Bioresour. Technol. 2021, 331, 125045. [Google Scholar] [CrossRef] [PubMed]
- Kyochan, K.; Jun, W.H.; Soohwan, K.; Joo-Young, J.; Hyon-Sob, H. Biological wastewater treatment: Comparison of heterotrophs (BFT) with autotrophs (ABFT) in aquaculture systems. Bioresour. Technol. 2020, 296, 122293. [Google Scholar]
- Díaz, V.; Ibáñez, R.; Gómez, P.; Urtiaga, A.M.; Ortiz, I. Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes. Water Res. 2011, 45, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Maria, D.A.; Ferrer, J.; Rodrigo, B. An economic assessment of proteins recovery from fish meal effluents by ultrafiltration. Trends Food Sci. Technol. 2004, 15, 506–512. [Google Scholar]
- Tom, A.P.; Jayakumar, J.S.; Biju, M.; Somarajan, J.; Ibrahim, M.A. Aquaculture wastewater treatment technologies and their sustainability: A review—ScienceDirect. Energy Nexus 2021, 4, 100022. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Y.Y.; Zhang, Q.; Liu, H. Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies. Sci. Total Environ. 2021, 757, 143901. [Google Scholar] [CrossRef] [PubMed]
- Mook, W.T.; Aroua, M.K.; Issabayeva, G. Prospective applications of renewable energy based electrochemical systems in wastewater treatment: A review. Renew. Sustain. Energy Rev. 2014, 38, 36–46. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, P.; Zhang, Z.; Liu, H.; Xiao, J.; Gao, J. Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology. J. Clean. Prod. 2016, 127, 302–310. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Jaikumar, V.; Kumar, P.S.; Sundarrajan, P. Removal of emerging pollutants from aquatic system using electrochemical treatment and adsorption: Comparison and analysis. Environ. Technol. Innov. 2021, 23, 101754. [Google Scholar] [CrossRef]
- Nasir, A.M.; Adam, M.R.; Kamal, S.; Jaafar, J.; Othman, M.H.D.; Ismail, A.F.; Aziz, F.; Yusof, N.; Bilad, M.R.; Mohamud, R. A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Sep. Purif. Technol. 2022, 286, 120454. [Google Scholar] [CrossRef]
- Jin, T.; Peydayesh, M.; Mezzenga, R. Membrane-based technologies for per- and poly-fluoroalkyl substances (PFASs) removal from water: Removal mechanisms, applications, challenges and perspectives. Environ. Int. 2021, 157, 106876. [Google Scholar] [CrossRef] [PubMed]
- Teoh, G.H.; Jawad, Z.A.; Ooi, B.S.; Chang, Y.S.; Low, S.C. Surface-templating of rough interface to efficiently recover aquaculture wastewater using membrane distillation. Desalination 2022, 522, 115419. [Google Scholar] [CrossRef]
- Asif, M.B.; Zhang, Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. Chem. Eng. J. 2021, 418, 129481. [Google Scholar] [CrossRef]
- Lu, S.; Pei, L.; Bai, X. Study on method of domestic wastewater treatment through new-type multi-layer artificial wetland. Pergamon 2015, 40, 11207–11214. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Guo, Z.; Kang, Y.; Fan, J.; Zhang, J. Recent advances in the enhanced nitrogen removal by oxygen-increasing technology in constructed wetlands. Ecotoxicol. Environ. Saf. 2020, 205, 111330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, Z.J.; Huang, J.C.; Sun, S.; He, S. Salinity-driven nitrogen removal and its quantitative molecular mechanisms in artificial tidal wetlands. Water Res. 2021, 202, 117446. [Google Scholar] [CrossRef]
- Zapater-Pereyra, M.; Ilyas, H.; Lavrnić, S.; Bruggen, J.J.A.V.; Lens, P.N.L. Evaluation of the performance and space requirement by three different hybrid constructed wetlands in a stack arrangement. Ecol. Eng. 2015, 82, 290–300. [Google Scholar] [CrossRef]
- Essandoh, H.M.; Tizaoui, C.; Mohamed, M.H.; Amy, G.; Brdjanovic, D. Soil aquifer treatment of artificial wastewater under saturated conditions. Water Res. 2011, 45, 4211–4226. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Kennedy, M.D. Soil aquifer treatment for wastewater treatment and reuse. Int. Biodeterior. Biodegrad. 2017, 119, 671–677. [Google Scholar] [CrossRef]
- Confirm Delete Pan, W.; Xiong, Y.; Huang, Q.; Huang, G. Removal of Nitrogen and COD from Reclaimed Water during Long-Term Simulated Soil Aquifer Treatment System under Different Hydraulic Conditions. Water 2017, 9, 786. [Google Scholar]
- Abel, C.; Sharma, S.K.; Buçpapaj, E.; Kennedy, M. Impact of hydraulic loading rate and media type on removal of bulk organic matter and nitrogen from primary effluent in a laboratory-scale soil aquifer treatment system. Water Sci. Technol. 2013, 68, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.S.; Lu, Y.; Wen, Y.J.; Li, P.P.; Zhang, G. Bioaugmented soil aquifer treatment for P-nitrophenol removal in wastewater unique for cold regions. Water Res. 2018, 144, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Modrzynski, J.J.; Aamand, J.; Wittorf, L.; Badawi, N.; Albers, C.N. Combined removal of organic micropollutants and ammonium in reactive barriers developed for managed aquifer recharge. Water Res. 2021, 190, 116669. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Zhang, X.; Abdelhafez, A.A.; Zhou, L.; Cui, N. Feasibility of improving nitrogen removal by integrating the rice straw and zeolite with drainage ditches for farmland runoff control. Environ. Technol. Innov. 2021, 21, 101359. [Google Scholar] [CrossRef]
- Sarvajith, M.; Nancharaiah, Y. Enhancing biological nitrogen and phosphorus removal performance in aerobic granular sludge sequencing batch reactors by activated carbon particles. J. Environ. Manag. 2021, 303, 114134. [Google Scholar] [CrossRef]
- Eljamal, O.; Eljamal, R.; Maamoun, I.; Khalil, A.M.E.; Shubair, T.; Falyouna, O.; Sugihara, Y. Efficient treatment of ammonia-nitrogen contaminated waters by nano zero-valent iron/zeolite composite. Chemosphere 2022, 287, 131990. [Google Scholar] [CrossRef]
- Montalvo, S.; Huiliir, C.; Borja, R.; Sánchez, E.; Herrmann, C. Application of zeolites for biological treatment processes of solid wastes and wastewaters—A review. Bioresour. Technol. 2020, 301, 122808. [Google Scholar] [CrossRef] [PubMed]
- Maharana, M.; Sen, S. Magnetic Zeolite: A Green Reusable Adsorbent for Wastewater Treatment. Mater. Today Proc. 2020, 47, 1490–1495. [Google Scholar] [CrossRef]
- Wan, C.; Ding, S.; Zhang, C.; Zou, W.; Yang, X.; Liu, X. Simultaneous recovery of nitrogen and phosphorus from sludge fermentation liquid by zeolite adsorption: Mechanism and application. Sep. Purif. Technol. 2017, 180, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Li, K.; Lu, S.; Guo, X.; Zhang, J.; Xi, B. Removal of nitrogen from low pollution water by long-term operation of an integrated vertical-flow constructed wetland: Performance and mechanism. Sci. Total Environ. 2018, 652, 977–988. [Google Scholar] [CrossRef]
- Ren, Z.; Fu, X.; Zhang, G.; Li, Y.; Qin, Y.; Wang, P.; Liu, Y.; Lv, L. Study on performance and mechanism of enhanced low-concentration ammonia nitrogen removal from low-temperature wastewater by iron-loaded biological activated carbon filter. J. Environ. Manag. 2022, 301, 113859. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Cao, X.; Xu, Z.; Huang, W.; Wang, Y.; Ge, X. Integration of manganese ores with activated carbon granules into CW-MFC to trigger anoxic electron transfer and removal of ammonia nitrogen. J. Clean. Prod. 2021, 334, 130202. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; Sun, H.; Wang, W.J.; Yang, Y.; Qi, Z.; Liu, X. Ammonia assimilation: A double-edged sword influencing denitrification of Rhodobacter azotoformans and for nitrogen removal of aquaculture wastewater. Bioresour. Technol. Biomass Bioenergy Biowastes Convers. Technol. Biotransformations Prod. Technol. 2022, 345, 126495. [Google Scholar] [CrossRef]
- Bai, W.; Qian, M.; Li, Q.; Atkinson, S.; Wang, J. Rice husk-based adsorbents for removing ammonia: Kinetics, thermodynamics and adsorption mechanism. J. Environ. Chem. Eng. 2021, 9, 105793. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, X.; Yan, B.; Yang, L. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. J. Hazard. Mater. 2010, 175, 247–252. [Google Scholar] [CrossRef]
- Hubbert, M.K. Darcy’s law and the field equations of the flow of underground fluids. Hydrol. Sci. J. 1957, 2, 23–59. [Google Scholar] [CrossRef]
- Li, Y. Research on the Transport of Soil Water and Salt under the Condition of One Dimensional and Three Dimensional Infiltration Based on Hydrus Model. Master’s Thesis, Shihezi University, Shihezi, China, 2015; p. 6. (In Chinese). [Google Scholar]
Nitrogen | S-1 (mg L−1) | S-2 (mg L−1) | C-1 (mg L−1) |
---|---|---|---|
Nitrate nitrogen | 0.064 L a | 0.16 | 0.064 L |
Nitrite nitrogen | 0.54 | 0.064 L | 0.064 L |
Ammonia nitrogen | 66.41 | 0.60 | 0.76 |
Adsorbent | qe,exp (mg g−1) | Lagergren Pseudo-First-Order Model | Lagergren Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
qe,cal (mg g−1) | k1 (min−1) | R2 | qe,cal (mg g−1) | k2 (g (mg·min)−1) | R2 | ||
Medium sand | 0.665 | 0.658 | 0.2938 | 0.9934 | 0.672 | 1.7576 | 0.9993 |
Activated carbon | 3.140 | 3.089 | 0.2512 | 0.9907 | 3.175 | 0.2280 | 0.9991 |
Zeolite | 7.216 | 7.062 | 0.2523 | 0.9853 | 7.277 | 0.0894 | 0.9998 |
Column Name | Infiltration Concentration (mg L−1) | Infiltration Rate (mL min−1) |
---|---|---|
SC | 10 | 1 |
20 | ||
10 | 0.5 | |
1 | ||
ESC-2 | 10 | 1 |
20 | ||
10 | 0.5 | |
1 |
Column Name | SC | ESC-2 | |
---|---|---|---|
Soil Depth (cm) | 0–5 | 0–1 | 1–5 |
R (g cm−3) | 1.99 | 1.99 | 1.99 |
θr (cm3 cm−3) | 0.045 | 0.045 | 0.045 |
θs (cm3 cm−3) | 0.43 | 0.43 | 0.43 |
n | 2.68 | 2.68 | 2.68 |
α | 0.145 | 0.145 | 0.145 |
Ks (cm min−1) | 0.495 | 0.495 | 0.495 |
Kd | 4.3004 | 28.105 | 4.3004 |
DL (cm) | 0.078221 | 0.049438 | 0.078221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Zhu, J.; Yang, K.; Zhu, Y.; Sang, Z. Design of an Enhanced SAT Using Zeolite for the Removal of Ammonia Nitrogen at a Bengbu Aquatic Farm in China. Sustainability 2022, 14, 16983. https://doi.org/10.3390/su142416983
Zhang G, Zhu J, Yang K, Zhu Y, Sang Z. Design of an Enhanced SAT Using Zeolite for the Removal of Ammonia Nitrogen at a Bengbu Aquatic Farm in China. Sustainability. 2022; 14(24):16983. https://doi.org/10.3390/su142416983
Chicago/Turabian StyleZhang, Ge, Jinhao Zhu, Ke Yang, Yinhao Zhu, and Zijie Sang. 2022. "Design of an Enhanced SAT Using Zeolite for the Removal of Ammonia Nitrogen at a Bengbu Aquatic Farm in China" Sustainability 14, no. 24: 16983. https://doi.org/10.3390/su142416983
APA StyleZhang, G., Zhu, J., Yang, K., Zhu, Y., & Sang, Z. (2022). Design of an Enhanced SAT Using Zeolite for the Removal of Ammonia Nitrogen at a Bengbu Aquatic Farm in China. Sustainability, 14(24), 16983. https://doi.org/10.3390/su142416983