Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review
Abstract
:1. Introduction
1.1. Research Background
1.2. Literature Review
1.2.1. Literature Review of the Source Side
1.2.2. Literature Review of the Grid Side
1.3. Innovation Points and Paper Structure
2. WT’s Load Excitation of the Source Side
2.1. Research Status of Source Side Load
Main Sources and Influencing Factors of WT Load
2.2. WT Fatigue Load Caused by Source Side Excitation
Researchers | Year | Object | Analytical Method | Consideration | Main Contribution |
---|---|---|---|---|---|
Pehlivan [77] | 2021 | Main load-bearing frame of a 500 kW WT | Conducted stress analysis with finite element method | Fatigue life design, manufacturing, and implementation process | Determined the fatigue and ultimate load of the main load-bearing frame. |
Jian [78] | 2021 | Blades, hub, and tower of 1.5 MW WT | Rain-flow counting method and data-driven method | Impact of the grid side and the damage equivalent load datasets | Put forward a data-driven method for fatigue load under active power regulation |
Tian [67] | 2018 | A stationary and rotating model WT | Simulated the change of dynamic wind load under wind tunnel test conditions | In the neutral atmospheric boundary layer | Turbulence intensity dominated the fatigue load of WT. |
Toft [59] | 2016 | A framework considering the uncertainty of fatigue load is proposed | Structured a probabilistic framework for the reliability level of fatigue load assessment | Speed-up factors, local wind measurements, and distance between the WT and the measuring position | In the structural reliability analyses, uncertainty of wind climate parameters produced fatigue load usually accounts for 10–30% |
Nejad [79] | 2015 | Multiple transmission system of 5 MW WT | Comparing the fatigue damage | Onshore WT or offshore WT | The main bearing carries axial fatigue load that supports more damage in floating than onshore WT. |
Vassilopoulos [80] | 2010 | Blades of modern WTs | Fatigue load prediction, random nature of the applied load | Random nature of the applied loading patterns, various material properties | Developed reliable fatigue damage progress models and exploration of fatigue failure by stochastic simulation |
Kong [81] | 2005 | A 750 KW class horizontal axis WT system | Design and strength verification | Load cases specified at the GL regulations and international specification | Designed a structure of medium scale composite WT blades made by E-glass/epoxy |
2.3. WT Aerodynamic e Load Caused by Source Side Excitation
2.3.1. Study Models for Aerodynamic Problems Study Methods
2.3.2. Study of the Effect of Complex Flow Field on the Aerodynamic Load of WT
2.3.3. Aeroelastic Phenomenon
2.3.4. Optimization of Aerodynamic Characteristics
3. WT Load of Variable Excitation of the Grid Side
3.1. The Effect of the Grid on WT Load
3.2. Review of the Grid Side Failure
3.3. Effect of Grid Failure on WT Load
4. The Multi-Factor Coupling Effects on the WT’s Load Characteristics
4.1. Research Model of the Transmission Chain
4.1.1. The Multi-Mass Block Equivalent Model of WT
4.1.2. Flexible Multi-Body (FMB) Model of WT
4.2. Control Strategy WT’s Load Reduction under Multi-Factor Coupling
5. Discussion and Conclusions
- WT loads are varied in form and complex in source, and they can be divided into different situations according to different classification standards. The classification of load in this paper mainly has the following basis: the time-varying characteristics of load, the design of WT parts, source of load, and property of load.
- According to the source side, grid side and transfer coupling, the different research models of diverse load were summarized, and the characteristics and transfer mechanism of diverse load are analyzed.
- Studies on the WT’s load characters considering single factors are abundant. However, a WT operating on complex terrain is affected by dual source–grid variable excitation and transference, which aggravated the complexities of the load. Meanwhile, most of the studies are based on simulation or wind tunnel tests, which are not realistic to solve the actual layout of wind farms through these studies. When optimizing the positions of WTs in complex terrain, all optimization simulations require numerous times of calculation for the wake flow. With the development of wind farms in complex terrain and the increasing flexibility of WTs, the research on load characteristics and transfer mechanisms of WTs in heterogeneous flow field needs to be further studied.
- The dynamic characteristics of WT will affect the grid-connected quality of wind power, and the interference and faults of the power grid will also affect the mechanical and electrical components and mechanical components of wind power. The changes of grid behavior are mainly reflected in the voltage, the power flow, and the system frequency. In the transition process of power grid voltage sag and recovery, the electromagnetic torque of the motor will fluctuate greatly, which will inevitably bring about the oscillation of the torque after the fault process and fault removal, and it may further impact the mechanical components, such as gear case, affecting the operation and life of WT. However, at the same time, it may influence the stability of generator output power and speed.
- The commonly used model of the transmission chain with the multi-mass block equivalent model and the FMB model was reviewed. However, the location of wind field and the design of WT often pay more attention to the source side. To increase the power generation and reduce the load under multi-factor coupling, one needs appropriate control strategies.
- A new research idea of ‘comprehensively considering the coupling effects of source and network factors, revealing WT load characteristics and transmission mechanism’ is summarized.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tcrn Group. bp’s Statistical Review of World Energy 2021. Catal. Rev. Newsl. 2021, 34, 14–16. [Google Scholar]
- Dhabi, A. Renewable Capacity Statistics; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Global Wind Energy Council. Global Wind Report 2021; Global Wind Energy Council: Brussels, Belgium, 2021. [Google Scholar]
- Shirzadeh, K.; Hangan, H.; Crawford, C.; Tari, P.H. Investigating the load and performance of a model horizontal axis wind WT under reproducible IEC extreme operational conditions. Wind Energy Sci. 2021, 6, 477–489. [Google Scholar] [CrossRef]
- Zhan, L.; Letizia, S.; Iungo, G.V. Wind LiDAR Measurements of Wind WT Wakes Evolving over Flat and Complex Terrains: Ensemble Statistics of the Velocity Field. J. Phys. Conf. Ser. 2020, 1452, 012077. [Google Scholar] [CrossRef]
- Subramanian, B.; Chokani, N.; Abhari, R. Aerodynamics of wind turbine wakes in flat and complex terrains. Renew. Energy 2016, 85, 454–463. [Google Scholar] [CrossRef]
- Prósper, M.A.; Otero-Casal, C.; Fernández, F.C.; Miguez-Macho, G. Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations. Renew. Energy 2018, 135, 674–686. [Google Scholar] [CrossRef]
- Wiens, M.; Frahm, S.; Thomas, P.; Kahn, S. Holistic simulation of wind WTs with fully aero-elastic and electrical model. Forsch. im Ing. 2021, 85, 417–424. [Google Scholar] [CrossRef]
- Krajinski, P.; Chhor, J.; Kipke, V.; Sourkounis, C. Modeling and Simulation Study of a DFIG Wind WT in a 3D Wind Field During Startup and Wind Speed Changes. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019. [Google Scholar]
- Zhang, S.; Wei, J.; Xu, Z.; Tang, B.; Niu, R. Research on the influence of system parameters on the electromechanical dynamics of a large wind WT drivetrain. Energy Rep. 2021, 7, 7835–7851. [Google Scholar] [CrossRef]
- Govind, B. Increasing the operational capability of a horizontal axis wind WT by its integration with a vertical axis wind WT. Appl. Energy 2017, 199, 479–494. [Google Scholar] [CrossRef]
- Kretschmer, M.; Schwede, F.; Guzmán, R.F.; Lott, S.; Cheng, P.W. Influence of atmospheric stability on the load spectra of wind WTs at alpha ventus. J. Phys. Conf. Ser. 2018, 1037, 052009. [Google Scholar] [CrossRef] [Green Version]
- Kc, A.; Whale, J.; Peinke, J. An investigation of the impact of turbulence intermittency on the rotor loads of a small wind WT. Renew. Energy 2021, 169, 582–597. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Lu, L. Optimization of wind WT layout position in a wind farm using a newly-developed two-dimensional wake model. Appl. Energy 2016, 174, 192–200. [Google Scholar] [CrossRef]
- Dai, J.; Hu, W.; Shen, X. Load and dynamic characteristic analysis of wind WT flexible blades. J. Mech. Sci. Technol. 2017, 31, 1569–1580. [Google Scholar] [CrossRef]
- Zhu, J.; Ni, X.; Shen, X. Aerodynamic and structural optimization of wind WT blade with static aeroelastic effects. Int. J. Low-Carbon Technol. 2019, 15, 55–64. [Google Scholar] [CrossRef]
- Uchida, T.; Gagnon, Y. Effects of continuously changing inlet wind direction on near-to-far wake characteristics behind wind WTs over flat terrain. J. Wind Eng. Ind. Aerodyn. 2022, 220, 104869. [Google Scholar] [CrossRef]
- Keane, A. Advancement of an analytical double-Gaussian full wind WT wake model. Renew. Energy 2021, 171, 687–708. [Google Scholar] [CrossRef]
- He, R.; Yang, H.; Sun, H.; Gao, X. A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind WT wakes. Appl. Energy 2021, 296, 117059. [Google Scholar] [CrossRef]
- Liu, L.; Stevens, R.J. Effects of atmospheric stability on the performance of a wind WT located behind a three-dimensional hill. Renew. Energy 2021, 175, 926–935. [Google Scholar] [CrossRef]
- Castellani, F.; Buzzoni, M.; Astolfi, D.; D’Elia, G.; Dalpiaz, G.; Terzi, L. Wind WT Loads Induced by Terrain and Wakes: An Experimental Study through Vibration Analysis and Computational Fluid Dynamics. Energies 2017, 10, 1839. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tian, S.; Zhang, Y.; Li, H.; Lu, M. Active Control of Drive Chain Torsional Vibration for DFIG-Based Wind WT. Energies 2019, 12, 1744. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Xia, L.; Lu, L.; Li, Y. Analysis of Hong Kong’s Wind Energy: Power Potential, Development Constraints, and Experiences from Other Countries for Local Wind Energy Promotion Strategies. Sustainability 2019, 11, 924. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Gao, Y.; Wang, T.; Yuan, J.; Gao, X. Experimental Study on Wake Evolution of a 1.5 MW Wind WT in a Complex Terrain Wind Farm Based on LiDAR Measurements. Sustainability 2020, 12, 2467. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, X.; Ni, W. Model predictive control based control strategy for battery energy storage system integrated power plant meeting deep load peak shaving demand. J. Energy Storage 2021, 46, 103811. [Google Scholar] [CrossRef]
- Du, M.; Niu, Y.; Hu, B.; Zhou, G.; Luo, H.; Qi, X. Frequency regulation analysis of modern power systems using start-stop peak shaving and deep peak shaving under different wind power penetrations. Int. J. Electr. Power Energy Syst. 2020, 125, 106501. [Google Scholar] [CrossRef]
- Lee, S.; Ham, Y. Probabilistic framework for assessing the vulnerability of power distribution infrastructures under extreme wind conditions. Sustain. Cities Soc. 2020, 65, 102587. [Google Scholar] [CrossRef]
- An, L.; Zhang, J.; Zhao, H. Load Characteristics Analysis of 5 MW Offshore Wind WT. In Proceedings of the International Conference on Logistics, Engineering, Management and Computer Science, Shenyang, China, 29–31 July 2015. [Google Scholar]
- Etemaddar, M.; Gao, Z.; Moan, T. Structural Load Analysis of a Wind WT under Pitch Actuator and Controller Faults. J. Phys. Conf. Ser. 2014, 555, 012034. [Google Scholar] [CrossRef]
- Nasiri, M.; Milimonfared, J.; Fathi, S. A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind WTs. Renew. Sustain. Energy Rev. 2015, 47, 399–415. [Google Scholar] [CrossRef]
- Yao, X.; Liang, L.; Xing, Z. Dynamic Characteristic of the Drive Train of DFIG Wind WTs during Grid Faults. In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, 10–11 October 2009. [Google Scholar]
- Heydarian-Forushani, E.; Moghaddam, M.; Sheikh-El-Eslami, M.; Shafie-Khah, M.; Catalão, J. A stochastic framework for the grid integration of wind power using flexible load approach. Energy Convers. Manag. 2014, 88, 985–998. [Google Scholar] [CrossRef]
- Gao, X.; Li, B.; Wang, T.; Sun, H.; Yang, H.; Li, Y.; Wang, Y.; Zhao, F. Investigation and validation of 3D wake model for horizontal-axis wind WTs based on filed measurements. Appl. Energy 2020, 260, 114272. [Google Scholar] [CrossRef]
- Feist, C.; Sotiropoulos, F.; Guala, M. A quasi-coupled wind wave experimental framework for testing offshore wind WT floating systems. Theor. Appl. Mech. Lett. 2021, 11, 100294. [Google Scholar] [CrossRef]
- Li, X.; Qiu, Y.; Feng, Y.; Wang, Z. Wind WT power prediction considering wake effects with dual laser beam LiDAR measured yaw misalignment. Appl. Energy 2021, 299, 117308. [Google Scholar] [CrossRef]
- Li, L.; Hearst, R.; Ferreira, M.; Ganapathisubramani, B. The near-field of a lab-scale wind WT in tailored turbulent shear flows. Renew. Energy 2019, 149, 735–748. [Google Scholar] [CrossRef]
- Macrí, S.; Aubrun, S.; Leroy, A.; Girard, N. Experimental investigation of wind WT wake and load dynamics during yaw maneuvers. Wind Energy Sci. 2021, 6, 585–599. [Google Scholar] [CrossRef]
- Patra, S.K.; Haldar, S. Seismic response of monopile supported offshore wind WT in liquefiable soil. Structures 2021, 31, 248–265. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, R.P.; Kang, X. Centrifuge Modelling of a Tetrapod Jacket Foundation under Lateral Cyclic and Monotonic Loading in Soft soil. Can. Geotech. J. 2020, 58, 637–649. [Google Scholar] [CrossRef]
- Chinese Wind Energy Association. China Wind Power Industry Map 2021; Chinese Wind Energy Association: Beijing, China, 2021. [Google Scholar]
- Hernandez-Estrada, E.; Lastres-Danguillecourt, O.; Robles-Ocampo, J.B.; Lopez-Lopez, A.; Sevilla-Camacho, P.Y.; Perez-Sariñana, B.Y.; Dorrego-Portela, J.R. Considerations for the structural analysis and design of wind WT towers: A review. Renew. Sustain. Energy Rev. 2020, 137, 110447. [Google Scholar] [CrossRef]
- Yan, Y. Load characteristic analysis and fatigue reliability prediction of wind WT gear transmission system. Int. J. Fatigue 2019, 130, 105259. [Google Scholar] [CrossRef]
- Zuo, H.; Bi, K.; Hao, H. A state-of-the-art review on the vibration mitigation of wind WTs. Renew. Sustain. Energy Rev. 2020, 121, 109710. [Google Scholar] [CrossRef]
- Guo, S.; Li, Y.; Chen, W. Analysis on dynamic interaction between flexible bodies of large-sized wind WT and its response to random wind loads. Renew. Energy 2020, 163, 123–137. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Liu, Y.; Liu, M. Analysis of aerodynamic characteristics of the wind WT tower. IOP Conf. Ser. Earth Environ. Sci. 2021, 791, 012135. [Google Scholar] [CrossRef]
- Tien, T.T.; Hung, P.Q.; Hieu, N.K. Designing a test rig for ultimate load test of small horizontal axis wind WT rotor blades. IOP Conf. Ser. Earth Environ. Sci. 2021, 673, 012002. [Google Scholar] [CrossRef]
- Dai, L.; Zhou, Q.; Zhang, Y.; Yao, S.; Kang, S.; Wang, X. Analysis of wind WT blades aeroelastic performance under yaw conditions. J. Wind Eng. Ind. Aerodyn. 2017, 171, 273–287. [Google Scholar] [CrossRef]
- Yu, Y. An Accurate Three-Dimensional Deformation Measurement Method in Wind WT Blade Static Loading Test. Int. Core J. Eng. 2021, 21, 15–22. [Google Scholar] [CrossRef]
- Cazzulani, G.; Cinquemani, S.; Benedetti, L.; Belloli, M. Load estimation and vibration monitoring of scale model wind WT blades through optical fiber sensors. Eng. Res. Express 2021, 3, 025036. [Google Scholar] [CrossRef]
- Fekry, M.; Yoshida, S. Aeroelastic numerical simulation of a magnetically levitated horizontal axis wind WT. Sustain. Energy Technol. Assess. 2020, 43, 100899. [Google Scholar] [CrossRef]
- Wiens, M.; Martin, T.; Meyer, T.; Zuga, A. Reconstruction of operating loads in wind WTs with inertial measurement units. Forsch. im Ing. 2021, 85, 181–188. [Google Scholar] [CrossRef]
- Zhao, Y.; Dai, P.; Chen, Z.; Zhou, Q.; Ma, Y. Investigation on the Influence of Load on the Strength of Large Wind WT Hubs. J. Phys. Conf. Ser. 2020, 1676, 012198. [Google Scholar] [CrossRef]
- Merino-Martínez, R.; Pieren, R.; Schäffer, B. Holistic approach to wind WT noise: From blade trailing-edge modifications to annoyance estimation. Renew. Sustain. Energy Rev. 2021, 148, 111285. [Google Scholar] [CrossRef]
- Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. A comprehensive review on wind WT power curve modeling techniques. Renew. Sustain. Energy Rev. 2014, 30, 452–460. [Google Scholar] [CrossRef]
- Wang, J.; Ye, Y.; Lu, H.; Li, R. IEC standard based virtual wind WT mechanical load test system. Renew. Energy 2014, 66, 634–640. [Google Scholar] [CrossRef]
- Li, L.; Yuan, Z.-M.; Ji, C.; Gao, Y. Ultimate structural and fatigue damage loads of a spar-type floating wind WT. Ships Offshore Struct. 2018, 14, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Otero, A.D.; Ponta, F.L. On the sources of cyclic loads in horizontal-axis wind WTs: The role of blade-section misalignment. Renew. Energy 2018, 117, 275–286. [Google Scholar] [CrossRef]
- Chen, J.-H.; Hu, Z.-Q.; Liu, G.-L.; Wan, D.-C. Study on Rigid-Flexible Coupling Effects of Floating Offshore Wind WTs. China Ocean Eng. 2019, 33, 1–13. [Google Scholar] [CrossRef]
- Toft, H.S.; Svenningsen, L.; Sørensen, J.D.; Moser, W.; Thøgersen, M.L. Uncertainty in wind climate parameters and their influence on wind WT fatigue loads. Renew. Energy 2016, 90, 352–361. [Google Scholar] [CrossRef]
- Yang, B.; Sun, D. Testing, inspecting and monitoring technologies for wind WT blades: A survey. Renew. Sustain. Energy Rev. 2013, 22, 515–526. [Google Scholar] [CrossRef]
- Knight, J.M.; Obhrai, C. The influence of an unstable turbulent wind spectrum on the loads and motions on floating Offshore Wind WTs. IOP Conf. Ser. Mater. Sci. Eng. 2019, 700, 012005. [Google Scholar] [CrossRef]
- IEC 61400-1; International Standard IEC 61400-1. International Electrotechnical Commission: Geneva, Switzerland, 2005. Available online: https://webstore.iec.ch/preview/info_iec61400-1%7Bed3.0%7Db.pdf (accessed on 7 November 2022).
- Pan, Z.; Wu, J.; Zhao, X.; Xie, Y. Horizontal dual-point excitation and fatigue test of full-scale wind WT blade. IOP Conf. Ser. Mater. Sci. Eng. 2017, 207, 12082. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Bao, S.; Luo, L.; Mao, J.; Lv, B.; Guo, H. Study on the aeroelastic responses of a wind WT using a coupled multibody-FVW method. Energy 2017, 141, 2300–2313. [Google Scholar] [CrossRef]
- Igwemezie, V.; Mehmanparast, A.; Kolios, A. Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind WT support structures—A review. Renew. Sustain. Energy Rev. 2018, 101, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Sheng, S.; Phillips, C.; Keller, J.; Veers, P.; Williams, L. A methodology for reliability assessment and prognosis of bearing axial cracking in wind WT gearboxes. Renew. Sustain. Energy Rev. 2020, 127, 109888. [Google Scholar] [CrossRef]
- Tian, W.; Ozbay, A.; Hu, H. A wind tunnel study of wind loads on a model wind WT in atmospheric boundary layer winds. J. Fluids Struct. 2018, 85, 17–26. [Google Scholar] [CrossRef]
- Menck, O.; Stammler, M.; Schleich, F. Fatigue lifetime calculation of wind WT blade bearings considering blade-dependent load distribution. Wind Energy Sci. 2020, 5, 1743–1754. [Google Scholar] [CrossRef]
- Xu, J.; Benson, S.; Wetenhall, B. Comparative analysis of fatigue life of a wind WT yaw bearing with different support foundations. Ocean Eng. 2021, 235, 109293. [Google Scholar] [CrossRef]
- Miner, M.A. Cumulative damage in fatigue. Appl. Mech. 1945, 12, 159–164. [Google Scholar] [CrossRef]
- Fu, B.; Zhao, J.; Li, B.; Yao, J.; Teifouet, A.R.M.; Sun, L.; Wang, Z. Fatigue reliability analysis of wind WT tower under random wind load. Struct. Saf. 2020, 87, 101982. [Google Scholar] [CrossRef]
- Castro, O.; Branner, K. Preliminary multi-axial strain analysis in wind WT blades under fatigue test loads. IOP Conf. Ser. Mater. Sci. Eng. 2020, 942, 012044. [Google Scholar] [CrossRef]
- Artigao, E.; Martín-Martínez, S.; Honrubia-Escribano, A.; Gómez-Lázaro, E. Wind WT reliability: A comprehensive review towards effective condition monitoring development. Appl. Energy 2018, 228, 1569–1583. [Google Scholar] [CrossRef]
- Liu, X.; Liang, S.; Li, G.; Godbole, A.; Lu, C. An improved dynamic stall model and its effect on wind WT fatigue load prediction. Renew. Energy 2020, 156, 117–130. [Google Scholar] [CrossRef]
- Zhang, L.; Sui, W.; Guo, Y.; Huang, X. Intelligent optimization for bending moment in uniaxial fatigue loading test of wind WT blades. J. Vibroeng. 2021, 23, 360–372. [Google Scholar] [CrossRef]
- Yang, R.; He, Y.; Zhang, H. Progress and trends in nondestructive testing and evaluation for wind WT composite blade. Renew. Sustain. Energy Rev. 2016, 60, 1225–1250. [Google Scholar] [CrossRef]
- Pehlivan, A.; Aksit, M.; Erbatur, K. Fatigue Analysis Design Approach, Manufacturing and Implementation of a 500 kW Wind WT Main Load Frame. Energies 2021, 14, 3581. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, S.; Song, D.; Su, M.; Yang, X.; Joo, Y.H. Data-driven modeling for fatigue loads of large-scale wind WTs under active power regulation. Wind Energy 2020, 24, 558–572. [Google Scholar] [CrossRef]
- Nejad, A.R.; Bachynski, E.E.; Kvittem, M.I.; Luan, C.; Gao, Z.; Moan, T. Stochastic dynamic load effect and fatigue damage analysis of drivetrains in land-based and TLP, spar and semi-submersible floating wind WTs. Mar. Struct. 2015, 42, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Vassilopoulos, A. Fatigue Life Prediction of Composites and Composite Structures, 1st ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 139–173. [Google Scholar]
- Kong, C.; Bang, J.; Sugiyama, Y. Structural investigation of composite wind WT blade considering various load cases and fatigue life. Energy 2005, 30, 2101–2114. [Google Scholar] [CrossRef]
- Gao, Z.; Qian, X.; Wang, T. Spectral partition characteristics of wind WT load response under different atmospheric stability. Sustain. Energy Technol. Assess. 2021, 47, 101421. [Google Scholar] [CrossRef]
- Zhang, B.; Jin, Y.; Cheng, S.; Zheng, Y.; Chamorro, L.P. On the dynamics of a model wind WT under passive tower oscillations. Appl. Energy 2022, 311, 118608. [Google Scholar] [CrossRef]
- Katinas, V.; Marčiukaitis, M.; Tamašauskienė, M. Analysis of the wind WT noise emissions and impact on the environment. Renew. Sustain. Energy Rev. 2016, 58, 825–831. [Google Scholar] [CrossRef]
- Guma, G.; Bangga, G.; Lutz, T.; Krämer, E. Aeroelastic analysis of wind WTs under turbulent inflow conditions. Wind Energy Sci. 2021, 6, 93–110. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Kolios, A. State of the art in the aeroelasticity of wind WT blades: Aeroelastic modelling. Renew. Sustain. Energy Rev. 2016, 64, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.-J.; Wang, W.-C. Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind WTs (HAWTs). Renew. Sustain. Energy Rev. 2016, 63, 506–519. [Google Scholar] [CrossRef]
- Astolfi, D.; Castellani, F.; Terzi, L. A Study of Wind WT Wakes in Complex Terrain Through RANS Simulation and SCADA Data. J. Sol. Energy Eng. 2018, 140, 031001. [Google Scholar] [CrossRef]
- Hasan, M.; El-Shahat, A.; Rahman, M. Performance Investigation of Three Combined Airfoils Bladed Small Scale Horizontal Axis wind WT by BEM and CFD Analysis. J. Power Energy Eng. 2017, 05, 14–27. [Google Scholar] [CrossRef]
- Khalil, Y.; Tenghiri, L.; Abdi, F.; Bentamy, A. Efficiency of a small wind WT using BEM and CFD. IOP Conf. Ser. Earth Environ. Sci. 2018, 161, 012028. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, H.; Dose, B.; Stoevesandt, B.; Peinke, J. Investigation of the validity of BEM for simulation of wind WTs in complex load cases and comparison with experiment and CFD. J. Phys. Conf. Ser. 2016, 749, 012015. [Google Scholar] [CrossRef] [Green Version]
- Nigam, K.; Nishad, D. A Novel Approach for Design and Investigation of Dual Material Stack Gate Oxide TFET Using Oxide Strip Layer Mechanism. 2021. Available online: https://europepmc.org/article/ppr/ppr281085 (accessed on 1 February 2022).
- Elgammi, M.; Sant, T.; Alshaikh, M. Predicting the stochastic aerodynamic loads on blades of two yawed downwind hawts in uncontrolled conditions using a bem algorithm. Renew. Energy 2019, 146, 371–383. [Google Scholar] [CrossRef]
- Bangga, G.; Lutz, T. Aerodynamic modeling of wind WT loads exposed to turbulent inflow and validation with experimental data. Energy 2021, 223, 120076. [Google Scholar] [CrossRef]
- Abbaspour, M.; Radmanesh, A.R.; Soltani, M.R. Unsteady flow over offshore wind WT airfoils and aerodynamic loads with computational fluid dynamic simulations. Int. J. Environ. Sci. Technol. 2016, 13, 1525–1540. [Google Scholar] [CrossRef] [Green Version]
- Tescione, G.; Ferreira, C.S.; van Bussel, G. Analysis of a free vortex wake model for the study of the rotor and near wake flow of a vertical axis wind WT. Renew. Energy 2016, 87, 552–563. [Google Scholar] [CrossRef]
- Dong, J.; Viré, A.; Ferreira, C.S.; Li, Z.; van Bussel, G. A Modified Free Wake Vortex Ring Method for Horizontal-Axis Wind WTs. Energies 2019, 12, 3900. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, T.; Lackner, M. Development of a free vortex wake method code for offshore floating wind WTs. Renew. Energy 2012, 46, 269–275. [Google Scholar] [CrossRef]
- Bhargava, V.; Kasuba, S.; Maddula, S.P.; Jagadish, D.; Chekuri, C.S.V. A case study of wind WT load and performance using steady-state analysis of BEM. Int. J. Sustain. Energy 2020, 40, 1–19. [Google Scholar] [CrossRef]
- Perez-Becker, S.; Papi, F.; Saverin, J.; Marten, D.; Paschereit, C.O. Is the Blade Element Momentum Theory overestimating Wind WT Load?—A Comparison with a Lifting Line Free Vortex Wake Method. Wind Energy Sci. 2019, 5, 721–743. [Google Scholar] [CrossRef]
- Xu, B.; Liu, B.; Cai, X.; Yuan, Y.; Wang, Y. Accuracy of the aerodynamic performance of wind WTs using vortex core models in the free vortex wake method. J. Renew. Sustain. Energy 2019, 11, 53307. [Google Scholar] [CrossRef]
- Ferčák, O.; Bossuyt, J.; Ali, N.; Cal, R.B. Decoupling wind–wave–wake interactions in a fixed-bottom offshore wind WT. Appl. Energy 2022, 309, 118358. [Google Scholar] [CrossRef]
- Pöschke, F.; Petrović, V.; Berger, F.; Neuhaus, L.; Hölling, M.; Kühn, M.; Schulte, H. Model-based wind WT control design with power tracking capability: A wind-tunnel validation. Control Eng. Pract. 2021, 120, 105014. [Google Scholar] [CrossRef]
- Qu, C.; Lin, Z.; Chen, P.; Liu, J.; Chen, Z.; Xie, Z. An improved data-driven methodology and field-test verification of yaw misalignment calibration on wind WTs. Energy Convers. Manag. 2022, 266, 115786. [Google Scholar] [CrossRef]
- Fontanes, P.; Montanyà, J.; Arcanjo, M.; Guerra-Garcia, C.; Tobella, G. Experimental investigation of the electrification of wind WT blades in fair-weather and artificial charge-compensation to mitigate the effects. J. Electrost. 2021, 115, 103669. [Google Scholar] [CrossRef]
- Kan, C.; Devrim, Y.; Eryilmaz, S. On the theoretical distribution of the wind farm power when there is a correlation between wind speed and wind WT availability. Reliab. Eng. Syst. Saf. 2020, 203, 107115. [Google Scholar] [CrossRef]
- Li, Q.; Maeda, T.; Kamada, Y.; Mori, N. Investigation of wake effects on a Horizontal Axis Wind WT in field experiments (Part I: Horizontal axis direction). Energy 2017, 134, 482–492. [Google Scholar] [CrossRef]
- Dar, A.S.; Porté-Agel, F. Wind WT wakes on escarpments: A wind-tunnel study. Renew. Energy 2021, 181, 1258–1275. [Google Scholar] [CrossRef]
- Ryi, J.; Choi, J.S.; Lee, S.; Lee, S. A full-scale prediction method for wind WT rotor noise by using wind tunnel test data. Renew. Energy 2014, 65, 257–264. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Wu, Y.-T.; Lu, H.; Conzemius, R.J. Large-eddy simulation of atmospheric boundary layer flow through wind WTs and wind farms. J. Wind Eng. Ind. Aerodyn. 2011, 99, 154–168. [Google Scholar] [CrossRef]
- Migoya, E.; Crespo, A.; García, J.; Moreno, F.; Manuel, F.; Jiménez, A.; Costa, A. Comparative study of the behavior of wind-turbines in a wind farm. Energy 2007, 32, 1871–1885. [Google Scholar] [CrossRef]
- Kuo, J.Y.; Romero, D.A.; Beck, J.C.; Amon, C.H. Wind farm layout optimization on complex terrains–Integrating a CFD wake model with mixed-integer programming. Appl. Energy 2016, 178, 404–414. [Google Scholar] [CrossRef]
- Gao, X.; Wang, T.; Li, B.; Sun, H.; Yang, H.; Han, Z.; Wang, Y.; Zhao, F. Investigation of wind WT performance coupling wake and topography effects based on LiDAR measurements and SCADA data. Appl. Energy 2019, 255, 113816. [Google Scholar] [CrossRef]
- Gao, X.; Chen, Y.; Xu, S.; Gao, W.; Zhu, X.; Sun, H.; Yang, H.; Han, Z.; Wang, Y.; Lu, H. Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements. Appl. Energy 2022, 307, 118182. [Google Scholar] [CrossRef]
- Regodeseves, P.G.; Morros, C.S. Numerical study on the aerodynamics of an experimental wind WT: Influence of nacelle and tower on the blades and near-wake. Energy Convers. Manag. 2021, 237, 114110. [Google Scholar] [CrossRef]
- Meng, H.; Lien, F.-S.; Li, L. Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind WT blade. Renew. Energy 2018, 116, 423–437. [Google Scholar] [CrossRef]
- Blondel, F.; Cathelain, M. An alternative form of the super-Gaussian wind WT wake model. Wind Energy Sci. 2020, 5, 1225–1236. [Google Scholar] [CrossRef]
- Jensen, N.O. A Note on Wind Generator Interaction; Risø National Laboratory: Roskilde, Denmark, 1983. [Google Scholar]
- Zhang, S.; Li, L.; Gao, X. Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test. Energy 2022, 254, 124277. [Google Scholar]
- Kaldellis, J.K.; Triantafyllou, P.; Stinis, P. Critical evaluation of Wind WTs’ analytical wake models. Renew. Sustain. Energy Rev. 2021, 144, 110991. [Google Scholar] [CrossRef]
- Ding, F.; Tian, Z.; Zhao, F.; Xu, H. An integrated approach for wind WT gearbox fatigue life prediction considering instantaneously varying load conditions. Renew. Energy 2018, 129, 260–270. [Google Scholar] [CrossRef]
- Milan, P.; Wächter, M.; Peinke, J. Turbulent Character of Wind Energy. Phys. Rev. Lett. 2013, 110, 138701. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kamada, Y.; Maeda, T.; Murata, J.; Nishida, Y. Visualization of the flow field and aerodynamic force on a Horizontal Axis Wind WT in turbulent inflows. Energy 2016, 111, 57–67. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, P.; Gan, D.; Wang, J. Integrated Design of Aerodynamic Performance and Structural Characteristics for Medium Thickness Wind WT Airfoil. Appl. Sci. 2019, 9, 5243. [Google Scholar] [CrossRef] [Green Version]
- Greco, L.; Testa, C. Wind WT unsteady aerodynamics and performance by a free-wake panel method. Renew. Energy 2020, 164, 444–459. [Google Scholar] [CrossRef]
- Hanssen-Bauer, W.; de Vaal, J.B.; Tutkun, M.; Asmuth, H.; Ivanell, S.; Stenbro, R. Dependence of wind WT loads on inlet flow field. J. Phys. Conf. Ser. 2020, 1618, 062065. [Google Scholar] [CrossRef]
- Conti, D.; Pettas, V.; Dimitrov, N.; Peña, A. Wind WT load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals. Wind Energy Sci. 2021, 6, 841–866. [Google Scholar] [CrossRef]
- Sun, H.; Gao, X.; Yang, H. A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect. Renew. Sustain. Energy Rev. 2020, 132, 110042. [Google Scholar] [CrossRef]
- Ageze, M.B.; Hu, Y.; Wu, H. Wind WT Aeroelastic Modeling: Basics and Cutting Edge Trends. Int. J. Aerosp. Eng. 2017, 2017, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiao, Q.; Incecik, A.; Peyrard, C. Aeroelastic analysis of a floating offshore wind WT in platform-induced surge motion using a fully coupled CFD-MBD method. Wind Energy 2018, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Balas, M.J.; Nikoueeyan, P.; Yang, H.; Naughton, J.W. Stall Flutter Control of a Smart Blade Section Undergoing Asymmetric Limit Oscillations. Shock Vib. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lu, C.; Li, G.; Godbole, A.; Chen, Y. Effects of aerodynamic damping on the tower load of offshore horizontal axis wind WTs. Appl. Energy 2017, 204, 1101–1114. [Google Scholar] [CrossRef]
- Kaya, M.N.; Köse, F.; Uzol, O.; Ingham, D.; Ma, L.; Pourkashanian, M. Aerodynamic Optimization of a Swept Horizontal Axis Wind WT Blade. J. Energy Resour. Technol. 2021, 143, 090909. [Google Scholar] [CrossRef]
- Akram, T.; Kim, M.-H. Aerodynamic Shape Optimization of NREL S809 Airfoil for Wind WT Blades Using Reynolds-Averaged Navier Stokes Model—Part II. Appl. Sci. 2021, 11, 2211. [Google Scholar] [CrossRef]
- Yin, M.; Yang, Z.; Xu, Y.; Liu, J.; Zhou, L.; Zou, Y. Aerodynamic optimization for variable-speed wind WTs based on wind energy capture efficiency. Appl. Energy 2018, 221, 508–521. [Google Scholar] [CrossRef]
- Swenson, L.; Gao, L.; Hong, J.; Shen, L. An efficacious model for predicting icing-induced energy loss for wind WTs. Appl. Energy 2021, 305, 117809. [Google Scholar] [CrossRef]
- Cheng, X.; Shi, F.; Liu, X.; Zhao, M.; Chen, S. A Novel Deep Class-Imbalanced Semisupervised Model for Wind WT Blade Icing Detection. IEEE Trans. Neural Networks Learn. Syst. 2021, 33, 2558–2570. [Google Scholar] [CrossRef]
- Guo, P.; Infield, D. Wind WT blade icing detection with multi-model collaborative monitoring method. Renew. Energy 2021, 179, 1098–1105. [Google Scholar] [CrossRef]
- Yirtici, O.; Tuncer, I.H. Aerodynamic shape optimization of wind WT blades for minimizing power production losses due to icing. Cold Reg. Sci. Technol. 2021, 185, 103250. [Google Scholar] [CrossRef]
- Madi, E.; Pope, K.; Huang, W.; Iqbal, T. A review of integrating ice detection and mitigation for wind WT blades. Renew. Sustain. Energy Rev. 2019, 103, 269–281. [Google Scholar] [CrossRef]
- Shi, L.; Feng, F.; Guo, W.; Li, Y. Research and Development of a Small-Scale Icing Wind Tunnel Test System for Blade Airfoil Icing Characteristics. Int. J. Rotating Mach. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Lagdani, O.; Tarfaoui, M.; Nachtane, M.; Trihi, M.; Laaouidi, H. Numerical Simulation of the Impact ofIce Accumulation on a Composite Wind WT Blades located in a Cold Climate. E3S Web Conf. 2021, 229, 01052. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Wang, G.; Li, W. Effects of blunt trailing-edge optimization on aerodynamic characteristics of NREL phase VI wind WT blade under rime ice conditions. J. Vibroeng. 2020, 22, 1196–1209. [Google Scholar] [CrossRef]
- He, X.; Geng, H.; Mu, G. Modeling of wind WT generators for power system stability studies: A review. Renew. Sustain. Energy Rev. 2021, 143, 110865. [Google Scholar] [CrossRef]
- Shu, S.; Mo, L.; Wang, Y. Peak Shaving Strategy of Wind-Solar-Hydro Hybrid Generation System Based on Modified Differential Evolution Algorithm. Energy Procedia 2019, 158, 3500–3505. [Google Scholar] [CrossRef]
- Ali, Q.S.; Kim, M.-H. Power conversion performance of airborne wind WT under unsteady loads. Renew. Sustain. Energy Rev. 2022, 153, 111798. [Google Scholar] [CrossRef]
- Gebru, F.M.; Khan, B.; Alhelou, H.H. Analyzing Low Voltage Ride through Capability of Doubly Fed Induction Generator Based Wind WT. Comput. Electr. Eng. 2020, 86, 106727. [Google Scholar] [CrossRef]
- Shakeri, S.; Esmaeili, S.; Koochi, M. Determining accurate area of vulnerability for reliable voltage sag assessment considering wind WT ride-through capability. Int. J. Electr. Power Energy Syst. 2020, 119, 105875. [Google Scholar] [CrossRef]
- Solís-Chaves, J.; Barreto, M.S.; Salles, M.B.; Lira, V.M.; Jacomini, R.V.; Filho, A.J.S. A direct power control for DFIG under a three phase symmetrical voltage sag condition. Control Eng. Pract. 2017, 65, 48–58. [Google Scholar] [CrossRef]
- Okedu, K.E.; Al-Tubi, M.; Alaraimi, S. Comparative Study of the Effects of Machine Parameters on DFIG and PMSG Variable Speed Wind WTs during Grid Fault. Front. Energy Res. 2021, 9, 681443. [Google Scholar] [CrossRef]
- Ye, Y.; Fu, Y.; Wei, S. Simulation for Grid Connected Wind WTs with Fluctuating. Phys. Procedia 2012, 24, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Imen, L.; Djamel, L.; Zohra, M.; Selwa, F. Influence of the wind farm integration on load flow and voltage in electrical power system. Int. J. Hydrogen Energy 2016, 41, 12603–12617. [Google Scholar] [CrossRef]
- Mohammadi, J.; Afsharnia, S.; Vaez-Zadeh, S. Efficient fault-ride-through control strategy of DFIG-based wind WTs during the grid faults. Energy Convers. Manag. 2014, 78, 88–95. [Google Scholar] [CrossRef]
- Rahimi, M.; Parniani, M. Grid-fault ride-through analysis and control of wind WTs with doubly fed induction generators. Electr. Pow. Syst. Res. 2010, 80, 184–195. [Google Scholar] [CrossRef]
- Song, Z.F.; Geng, Q. Joint Modeling of DFIG-Based Wind WTs for Structural Load Characteristics Analysis. Adv. Mater. Res. 2012, 588, 1386–1389. [Google Scholar] [CrossRef]
- Yu, L.; Xu, C.; Wang, N. Rotor current transient analysis of DFIG-based wind WTs during symmetrical voltage faults. Energy Convers. Manag. 2013, 76, 910–917. [Google Scholar]
- Frøyd, L.; Dahlahug, O.G. Effect of Pitch and Safety System Design on Dimensioning Loads for Offshore Wind WTs During Grid Fault. Energy Procedia 2012, 24, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Xia, C.; Wei, C. Analysis of Wind Turbine Structural Loads under Grid fault. In Proceedings of the 2008 International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008. [Google Scholar]
- Chong, C.H.; Rigit, A.R.H.; Ali, I. Wind WT modelling and simulation using Matlab/SIMULINK. IOP Conf. Ser. Mater. Sci. Eng. 2021, 689, 12034–12039. [Google Scholar] [CrossRef]
- Fan, L.; Kavasseri, R.; Miao, Z.L.; Zhu, C. Modeling of DFIG-Based Wind Farms for SSR Analysis. IEEE Trans. Power Deliv. 2010, 25, 2073–2082. [Google Scholar] [CrossRef]
- Seixas, M.; Melício, R.; Mendes, V. Simulation by discrete mass modeling of offshore wind WT system with DC link. Int. J. Mar. Energy 2016, 14, 80–100. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.P.; Kishor, N.; Samuel, P.; Singh, N. Small-signal stability analysis for two-mass and three-mass shaft model of wind WT integrated to thermal power system. Comput. Electr. Eng. 2019, 78, 271–287. [Google Scholar] [CrossRef]
- Boukhezzar, B.; Siguerdidjane, H. Nonlinear Control of a Variable-Speed Wind WT Using a Two-Mass Model. IEEE Trans. Energy Convers. 2010, 26, 149–162. [Google Scholar] [CrossRef]
- Gaidi, A.; Lehouche, H.; Belkacemi, S.; Tahraoui, S.; Guenounou, O. Adaptive Backstepping control of wind WT two mass model. In Proceedings of the 2017 6th International Conference on Systems and Control (ICSC), Batna, Algeria, 7–9 May 2017. [Google Scholar]
- Muyeen, S.M.; Ali, M.H.; Takahashi, R.; Murata, T.; Tamura, J.; Tomaki, Y.; Sakahara, A.; Sasano, E. Comparative study on transient stability analysis of wind WT generator system using different drive train models. IET Renew. Power Gener. 2007, 1, 131–141. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, D.; Feng, J.; Wang, R. Small-signal Modeling and Modal Analysis of Wind WT Based on Three-mass Shaft Model. Electr. Mach. Power Syst. 2014, 42, 693–702. [Google Scholar] [CrossRef]
- Melicio, R.; Mendes, V.M.F.; Catalao, J.P.S. Harmonic assessment of variable-speed wind WTs considering a converter control malfunction. IET Renew. Power Gen. 2010, 4, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Wang, Y. Research And Analysis Of Three Degree Of Freedom Drivetrain Model For Wind WT. J. Phys. Conf. Ser. 2020, 1678, 012013. [Google Scholar] [CrossRef]
- He, J.; Jin, X.; Xie, S.Y.; Cao, L.; Lin, Y.; Wang, N. Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind WTs. Renew. Energy 2019, 141, 305–321. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, Z.; Jiang, T.; Wang, W.; Wang, Y. Numerical simulation on dynamic response of flexible multi-body tower blade coupling in large wind WT. Energy 2018, 152, 601–612. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, W.; Cao, D.; Liu, W.; Huang, R.; Huang, Q.; Chen, Z.; Blaabjerg, F. Data-driven optimal energy management for a wind-solar-diesel-battery-reverse osmosis hybrid energy system using a deep reinforcement learning approach. Energy Convers. Manag. 2020, 227, 113608. [Google Scholar] [CrossRef]
- Ouyang, J.; Pang, M.; Li, M.; Zheng, D.; Tang, T.; Wang, W. Frequency control method based on the dynamic deloading of DFIGs for power systems with high-proportion wind energy. Int. J. Electr. Power Energy Syst. 2021, 128, 106764. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Zhang, D.; Liu, H.; Song, R. Analysis and mitigation of the drive train fatigue load for wind WT with inertial control. Int. J. Electr. Power Energy Syst. 2021, 136, 107698. [Google Scholar] [CrossRef]
- Edrah, M.; Zhao, X.; Hung, W.; Qi, P.; Karcanias, A. Electromechanical interactions of full scale converter wind WT with power oscillation damping and inertia control. Int. J. Electr. Power Energy Syst. 2022, 135, 107522. [Google Scholar] [CrossRef]
- Song, D.; Fan, X.; Yang, J.; Liu, A.; Chen, S.; Joo, Y.H. Power extraction efficiency optimization of horizontal-axis wind WTs through optimizing control parameters of yaw control systems using an intelligent method. Appl. Energy 2018, 224, 267–279. [Google Scholar] [CrossRef]
- Zong, H.; Porté-Agel, F. Experimental investigation and analytical modelling of active yaw control for wind farm power optimization. Renew. Energy 2021, 170, 1228–1244. [Google Scholar] [CrossRef]
- Adaramola, M.S.; Krogstad, P. Experimental investigation of wake effects on wind WT performance. Renew. Energy 2011, 36, 2078–2086. [Google Scholar] [CrossRef]
- Camblong, H.; Nourdine, S.; Vechiu, I.; Tapia, G. Control of wind WTs for fatigue loads reduction and contribution to the grid primary frequency regulation. Energy 2012, 48, 284–291. [Google Scholar] [CrossRef]
Model | Classification | Point |
---|---|---|
CFD | Advantage | |
Disadvantage |
| |
BEM | Advantage | |
Disadvantage |
| |
FVW | Advantage | |
Disadvantage |
|
Researchers | Year | Experimental Type | Research Purpose | Main Contribution |
---|---|---|---|---|
Florian [103] | 2022 | Wind tunnel experiment | To demand well defined closed-loop dynamics to withstand cumulative load over the whole lifetime | Used viewer design and a linear-matrix-inequalities-based control to run a variable-pitch, variable-speed WT in a wind tunnel experiment at repeatable various inflow terms while relying on a derived wind speed estimate |
Chenzhi Qu [104] | 2022 | Wind field experiment | To determine the direction and value of yaw misalignment | A data-driven calibration method is established and verified in the experiment |
Fontanes [105] | 2021 | Wind field and laboratory experiment | Examined the electrostatic polarization of electrically isolated WT blades under the effect of fair-weather electric fields | When the blade is immersed in a strong electric field, the charge control system neutralizes the potential gradient at the root of the blade |
Kan [106] | 2020 | Wind field experiment | To obtain the parameter concerning the potential power output of a WT and a wind farm comprised of a specified number of WTs before installing the WTs | The theoretical distribution of whole farm power is obtained by considering the correlation between the wind speed and WT availability |
Wei Tian [67] | 2019 | Wind tunnel experiment | Dynamic wind load acting in the atmospheric boundary layer is investigated | More than 90% of the mean and fatigue wind load are caused by the rotating rotor of WT |
Qing’an Li [107] | 2017 | Wind field experiment | Study the effects of wind shear and turbulence intensity on WT wake characteristics | As the turbulence intensity increases, the maximum velocity deficit in the wake decreases. Meanwhile, as the wind shear index increases, the maximum velocity deficit in the wake increases |
Arslan Salim [108] | 2017 | Wind tunnel experiment | The wake behind a WT positioned on an escarpment is studied in wind tunnel using particle-image velocimetry | Five different escarpment models were studied, focusing on the sensitivity of WT wake to the geometric details of the terrain |
Jaeha Ryi [109] | 2014 | Wind tunnel experiment | Development of cost-effective and low noise WT rotor | A prediction method for estimating the noise generated by full-size WT rotors with both a two-dimensional section of the blade and a small-scale rotor is discussed |
Porté-Agel [110] | 2011 | Wind field experiment | Accurate prediction of atmospheric boundary layer flow and its interactions with WTs and wind farms | Proposed a large-eddy simulation framework and verify its degree of accuracy |
Migoya [111] | 2007 | Wind field experiment | Derive and verify the relationship among the power output, the wind velocity, and wind characteristics in each WT | The wind characteristics of the measurement situation, the wind speed, the nacelle anemometer, and the power production of each WT are given |
Wake Model | Characteristic | Expression |
---|---|---|
Jensen model [118] | Top-hat shape; far wake region | |
3DJG model [33] | Gaussian shape; far wake region | |
3DEG model [19] | Elliptical Gaussian shape; far wake region | |
3DJGF model [119] | Double-Gaussian shape; full wake region |
Component | Rigid or Flexible Body | Degrees of Freedom |
---|---|---|
Blade | Flexible body | 2 |
Hub | Flexible body | 6 |
Box of Gear case | Rigid body | 6 |
Planet carrier of Gear case | Flexible body | 6 |
Gear bearing of Gear case | Flexible body | 6 |
Gear of Gear case | Rigid body | 6 |
Coupling | Rigid body | 6 |
Generator rotor | Rigid body | 6 |
Generator stator | Rigid body | 6 |
Rack | Flexible body | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Xu, S.; Qian, B.; Gao, X.; Zhu, X.; Shi, Z.; Liu, W.; Hu, Q. Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review. Sustainability 2022, 14, 17051. https://doi.org/10.3390/su142417051
Li W, Xu S, Qian B, Gao X, Zhu X, Shi Z, Liu W, Hu Q. Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review. Sustainability. 2022; 14(24):17051. https://doi.org/10.3390/su142417051
Chicago/Turabian StyleLi, Wei, Shinai Xu, Baiyun Qian, Xiaoxia Gao, Xiaoxun Zhu, Zeqi Shi, Wei Liu, and Qiaoliang Hu. 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review" Sustainability 14, no. 24: 17051. https://doi.org/10.3390/su142417051
APA StyleLi, W., Xu, S., Qian, B., Gao, X., Zhu, X., Shi, Z., Liu, W., & Hu, Q. (2022). Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review. Sustainability, 14(24), 17051. https://doi.org/10.3390/su142417051