Evaluation of Nutritional Content in Wild Apricot Fruits for Sustainable Apricot Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Samples
2.2. Morphological Parameters
2.3. Nutritional and Nutraceutical Composition
2.3.1. Sample Preparation and Extraction
2.3.2. Organic Acids
2.3.3. Determination of Soluble Sugars
2.3.4. Total Phenol Content
2.3.5. Total Carotenoid Content
2.3.6. Antioxidant Capacity
2.4. Statistical Analysis
3. Results and Discussion
3.1. Morphological Features
3.2. Nutritional Contents
3.2.1. Organic Acids
3.2.2. Soluble Sugars and Sweetness Indices
3.3. Nutraceutical Compositions
Total Phenolic Content, Total Flavonoids, Total Carotenoids, and Antioxidant Activity
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahin, U.; Anapali, O.; Ercisli, S. Physico-chemical and physical properties of some substrates used in horticulture. Gartenbauwissenschaft 2002, 67, 55–60. [Google Scholar]
- Gundogdu, M.; Ozrenk, K.; Ercisli, S.; Kan, T.; Kodad, O.; Hegedus, A. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 2014, 47, 21. [Google Scholar] [CrossRef] [Green Version]
- Engin, S.P.; Mert, C. The effects of harvesting time on the physicochemical components of aronia berry. Turk. J. Agric. For. 2020, 44, 361–370. [Google Scholar] [CrossRef]
- Kaskoniene, V.; Bimbiraite-Surviliene, K.; Kaskonas, P.; Tiso, N.; Cesoniene, L.; Daubaras, R.; Maruska, A.S. Changes in the biochemical compounds of Vaccinium myrtillus, Vaccinium vitis-idaea, and forest litter collected from various forest types. Turk. J. Agric. For. 2020, 44, 557–566. [Google Scholar] [CrossRef]
- Milosevic, T.; Milosevic, N.; Glisic, I. Early tree performances, precocity and fruit quality attributes of newly introduced apricot cultivars grown under western Serbian conditions. Turk. J. Agric. For. 2021, 45, 819–833. [Google Scholar] [CrossRef]
- Gurrieri, F.; Audergon, J.M.; Albagnac, G.; Reich, M. Soluble sugars and carboxylic acids in ripe apricot fruit as parameters for distinguishing different cultivars. Euphytica 2001, 117, 183–189. [Google Scholar] [CrossRef]
- Hegedus, A.; Engel, R.; Abranko, L.; Balogh, E.; Blazovics, A.; Herman, R.; Halasz, J.; Ercisli, S.; Pedryc, A.; Stefanovits-Banyai, E. Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.) fruits: Variation from genotypes, years, and analytical methods. J. Food Sci. 2010, 75, C722–C730. [Google Scholar] [CrossRef]
- Mratinić, E.; Popovski, B.; Milošević, T.; Popovska, M. Evaluation of apricot fruit quality and correlations between physical and chemical attributes. Czech. J. Food Sci. 2011, 29, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Sabbadini, S.; Prieto, H.; Padilla, I.M.; Dardick, C.; Li, Z.; Scorza, R.; Limera, C.; Mezzetti, B.; Perez-Jimenez, M.; et al. Genetic transformation in peach (Prunus persica L.): Challenges and ways forward. Plants 2020, 9, 971. [Google Scholar] [CrossRef]
- Gecer, M.K.; Kan, T.; Gundogdu, M.; Ercisli, S.; Ilhan, G.; Sagbas, H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop Evol. 2020, 67, 935–945. [Google Scholar] [CrossRef]
- Barreca, D.; Nabavi, S.M.; Sureda, A.; Rasekhian, M.; Raciti, R.; Silva, A.S.; Annunziata, G.; Arnone, A.; Tenore, G.C.; Süntar, I.; et al. Almonds (Prunus dulcis Mill. DA webb): A source of nutrients and health-promoting compounds. Nutrients 2020, 12, 672. [Google Scholar] [CrossRef] [Green Version]
- Veerappan, K.; Natarajan, S.; Chung, H.; Park, J. Molecular insights of fruit quality traits in peaches, Prunus persica. Plants 2021, 10, 2191. [Google Scholar] [CrossRef] [PubMed]
- Campbell, O.E.; Merwin, I.A.; Padilla-Zakour, O.I. Characterization and the effect of maturity at harvest on the phenolic and carotenoid content of Northeast USA apricot (Prunus armeniaca) varieties. J. Agric. Food Chem. 2013, 61, 12700–12710. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Laskowski, P.; Oszmiański, J. Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. J. Agric. Food Chem. 2014, 62, 12332–12345. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.L.; Peterson, J.J.; Patel, R.; Jacques, P.F.; Shah, R.; Dwyer, J.T. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 2012, 95, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Karaat, F.E. Variation and Heritability of Phytochemical Characters in Some Apricot Cultivars and Hybrids; Graduate School of Natural and Applied Sciences, Department of Agricultural Genetic Engineering, Nigde Omer Halisdemir University: Nigde, Turkey, 2018; p. 88. [Google Scholar]
- Singh, M.; Suman, S.; Shukla, Y. New enlightenment of skin cancer chemoprevention through phytochemicals: In vitro and in vivo studies and the underlying mechanisms. BioMed Res. Int. 2014, 2014, 243452. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Morató, J.; Xicota, L.; Fitó, M.; Farré, M.; Dierssen, M.; De la Torre, R. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 2015, 20, 4655–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, D.; Egea, J.; Tomás-Barberán, F.A.; Gil, M.I. Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin colour. J. Agric. Food Chem. 2005, 53, 6368–6374. [Google Scholar] [CrossRef]
- Shemesh, K.; Zohar, M.; Bar-Yaakov, I.; Hatib, K.; Holland, D.; Isaacson, T. Analysis of carotenoids in fruit of different apricot accessions reveals large variability and highlights apricot as a rich source of phytoene and phytofluene. Fruits 2017, 72, 185–202. [Google Scholar] [CrossRef]
- Fratianni, F.; Ombra, M.N.; d’Acierno, A.; Cipriano, L.; Nazzaro, F. Apricots: Biochemistry and functional properties. Curr. Opin. Food Sci. 2018, 19, 23–29. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 18 April 2021).
- Ercisli, S. Apricot culture in Turkey. Sci. Res. Essays 2009, 4, 715–719. [Google Scholar]
- Halász, J.; Hegedüs, A.; Szikriszt, B.; Ercisli, S.; Orhan, E.; Unlu, H.M. The S-genotyping of wild-grown apricots reveals only self-incompatible accessions in the Erzincan region of Turkey. Turk. J. Biol. 2013, 37, 733–740. [Google Scholar] [CrossRef]
- Ercisli, S. A short review of the fruit germplasm resources of Turkey. Genet. Resour. Crop Evol. 2004, 51, 419–435. [Google Scholar] [CrossRef]
- Bostan, S.Z. Researches on breeding by selection of wild apricot (Prunus armeniaca L.) types in Gumushane province of Turkey. In Proceeding of the 5th National Horticultural Congress, Barapani, India, 18–21 April 2007; Volume 1, pp. 502–510. [Google Scholar]
- Pinar, H.; Unlu, M.; Ercisli, S.; Uzun, A.; Bircan, M.; Yilmaz, K.U.; Agar, G. Determination of genetic diversity among wild grown apricots from Sakit valley in Turkey using SRAP markers. J. Appl. Bot. Food Qual. 2013, 86, 55–58. [Google Scholar]
- Ozturk, I.; Ercisli, S.; Kalkan, F.; Demir, B. Some chemical and physico-mechanical properties of pear cultivars. Afr. J. Biotechnol. 2009, 8, 687–693. [Google Scholar]
- Fogarasi, M.; Socaciu, M.-I.; Sălăgean, C.-D.; Ranga, F.; Fărcaș, A.C.; Socaci, S.A.; Socaciu, C.; Țibulcă, D.; Fogarasi, S.; Semeniuc, C.A. Comparison of different extraction solvents for characterization of antioxidant potential and polyphenolic composition in Boletus edulis and Cantharellus cibarius mushrooms from Romania. Molecules 2021, 26, 7508. [Google Scholar] [CrossRef]
- Akagić, A.; Oras, A.V.; Oručević Žuljević, S.; Spaho, N.; Drkenda, P.; Bijedić, A.; Memić, S.; Hudina, M. Geographic variability of sugars and organic acids in selected wild fruit species. Foods 2020, 9, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melgarejo, P.; Legua, P.; Martínez-Font, R.; Martínez-Nicolás, J.J.; Sánchez Soriano, J.; Carbonell-Barrachina, Á.A.; Hernández, F. Response of apricot fruit quality to protective netting. Agriculture 2021, 11, 260. [Google Scholar] [CrossRef]
- Roussos, P.A.; Sefferou, V.; Denaxa, N.K.; Tsantili, E.; Stathis, V. Apricot (Prunus armeniaca L.) fruit quality attributes and phytochemicals under different crop load. Sci. Hortic. 2011, 129, 472–478. [Google Scholar] [CrossRef]
- Rampackova, E.; Göttingerova, M.; Gala, P.; Kiss, T.; Ercisli, S.; Necas, T. Evaluation of protein and antioxidant content in apricot kernels as a sustainable additional source of nutrition. Sustainability 2021, 13, 4742. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Evans, R.H.; Van Soestbergen, A.W.; Ristow, K.A. Evaluation of apple juice authenticity of organic acid analysis. J. Assoc. Off. Anal. Chem. 1983, 66, 1517–1520. [Google Scholar] [CrossRef]
- Akca, Y.; Askin, A. Clonal selection in apricot cultivar Hacıhaliloglu. Acta Hortic. 1995, 384, 169–171. [Google Scholar] [CrossRef]
- Asma, B.M.; Ozturk, K. Analysis of morphological, pomological and yield characteristics of some apricot germplasm in Turkey. Genet. Resour. Crop Evol. 2005, 52, 305–313. [Google Scholar] [CrossRef]
- Altindag, M.; Sahin, M.; Esitken, A.; Ercisli, S.; Guleryuz, M.; Donmez, M.F.; Sahin, F. Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu) by Bacillus, Burkholderia and Pseudomonas application under in vitro and in vivo conditions. Biol. Control 2006, 38, 369–372. [Google Scholar] [CrossRef]
- Yilmaz, K.U.; Paydas Kargi, S.; Kafkas, S. Morphological diversity of the Turkish apricot (Prunus armeniaca L.) germplasm in the Irano-Caucasian ecogeographical group. Turk. J. Agric. For. 2010, 36, 688–694. [Google Scholar]
- Akin, E.B.; Karabulut, I.; Topcu, A. Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem. 2008, 107, 939–948. [Google Scholar] [CrossRef]
- Ilhan, G.; Sagbas, H.I.; Ercisli, S.; Ozkan, G. Physicochemical characteristics of wild apricots from Northeastern Turkey. Acta Hortic. 2020, 1290, 13–18. [Google Scholar] [CrossRef]
- Karaat, F.E.; Serce, S. Total phenolics, antioxidant capacities and pomological characteristics of 12 apricot cultivars grown in Turkey. Adyütayam 2019, 7, 46–60. [Google Scholar]
- Yaman, B. The Effects of Mulch Types on Earliness, Yield and Fruit Quality for Apricot. Master’s Thesis, Graduate School of Mustafa Kemal University, Hatay, Turkey, 2012; p. 72. [Google Scholar]
- Akca, Y.; Asma, B.M. Clonal selection from cv. Kabasi apricot. Turk. J. Agric. For. 1997, 21, 519–521. [Google Scholar]
- Polat, A.A.; Yilmaz, M. Investigations on the adaptations of some native and foreign apricot cultivars to Adana ecological conditions. J. Sci. Eng. 1988, 2, 127–146. [Google Scholar]
- Polat, A.A.; Durgac, C.; Kamiloglu, O.; Caliskan, O. Investigation on the adaptation of some low-chill apricot cultivars to Kirikhan (Turkey) ecological conditions. Acta Hortic. 2004, 636, 395–400. [Google Scholar] [CrossRef]
- Çaliskan, O.; Bayazit, S.; Sumbul, A. Fruit quality and phytochemical attributes of some apricot (Prunus armeniaca L.) cultivars as affected by genotypes and seasons. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, D.; Egea, J. Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 2008, 163, 143–158. [Google Scholar] [CrossRef]
- Karatas, N.; Sengul, M. Some important physicochemical and bioactive characteristics of the main apricot cultivars from Turkey. Turk. J. Agric. For. 2020, 44, 651–661. [Google Scholar] [CrossRef]
- Alajil, O.; Sagar, V.R.; Kaur, C.; Rudra, S.G.; Sharma, R.R.; Kaushik, R.; Verma, M.K.; Tomar, M.; Kumar, M.; Mekhemar, M. Nutritional and phytochemical traits of apricots (Prunus armeniaca L.) for application in nutraceutical and health industry. Foods 2021, 10, 1344. [Google Scholar] [CrossRef]
- Xi, W.; Feng, J.; Liu, Y.; Zhang, S.; Zhao, G. The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynthesis in apricots and determines red blushed skin. BMC Plant Biol. 2019, 19, 287. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zhang, J.X.; Nageswaran, D.; Li, L. Carotenoid metabolism and regulation in horticultural crops. Hortic. Res. 2015, 2, 15036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saridas, M.A.; Agcam, E. Detailed fruit quality contents of ‘Teberze’ and ‘Ağerik’ apricot (Prunus armeniaca L.) cultivars grown in Iğdır province. Harran J. Agric. Food Sci. 2021, 25, 214–224. [Google Scholar]
- Bae, H.; Yun, S.K.; Yoon, I.K.; Nam, E.Y.; Kwon, J.H. 2014. Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development. J. Food Qual. Appl. Bot. 2014, 87, 24–29. [Google Scholar]
- Elmenofy, H.M.; Okba, S.K.; Salama, A.-M.; Alam-Eldein, S.M. Yield, fruit quality, and storability of ‘canino’ apricot in response to aminoethoxyvinylglycine, salicylic acid, and chitosan. Plants 2021, 10, 1838. [Google Scholar] [CrossRef]
- Cirilli, M.; Baccichet, I.; Chiozzotto, R.; Spinardi, A.; Bassi, D. Organic acids content in fruit flesh and skin from a large apricot collection. Acta Hortic. 2020, 1290, 197–200. [Google Scholar] [CrossRef]
- Kargi, S.P.; Kafkas, E.; Yilmaz, K.U. Detection of sugar composition of some apricot cultivars by high performance liquid chromatography. Acta Hortic. 2010, 862, 583–586. [Google Scholar]
- Okba, S.K.; Mazrou, Y.; Elmenofy, H.M.; Ezzat, A.; Salama, A. New insights of potassium sources impacts as foliar application on “Canino” apricot fruit yield, fruit anatomy, quality and storability. Plants 2021, 10, 1163. [Google Scholar] [CrossRef]
- Imrak, B.A.; Küden, V.; Yurtkulu, E.; Kafkas, S.; Ercişli, S.; Kafkas, E. Evaluation of some phenological and biochemical characteristics of selected new late flowering dried apricot cultivars. Biochem. Genet. 2017, 55, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Zheng, X.; Zhang, D.; Chen, Y.; Xiao, J.; He, Y.; Shi, X. Investigation of sugars, organic acids, phenolic compounds, antioxidant activity and the aroma fingerprint of small white apricots grown in Xinjiang. J. Food Sci. 2020, 85, 4300–4311. [Google Scholar] [CrossRef]
- Génard, M.; Lescourret, F.; Audergon, J.M.; Reich, M.; Albagnac, G. Modeling the apricot sugar contents in relation to fruit growth. Acta Hortic. 2006, 701, 517–522. [Google Scholar] [CrossRef]
- Hecke, K.; Herbinger, K.; Veberic, R.; Trobec, M.; Toplak, H.; Štampar, F.; Keppel, H.; Grill, D. Sugar, acid and phenol contents in apple cultivars from organic and integrated fruit cultivation. Eur. J. Clin. Nutr. 2006, 60, 1136–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledbetter, C.; Peterson, S.; Jenner, J. Modification of sugar profiles in California adapted apricots (Prunus armeniaca L.) through breeding with Central Asian germplasm. Euphytica 2006, 148, 251–259. [Google Scholar] [CrossRef]
- Bavec, M.; Turinek, M.; Grobelnik-Mlakar, S.; Slatnar, A.; Bavec, F. Influence of industrial and alternative farming systems on contents of sugars, organic acids, total phenolic content, and the antioxidant activity of red beet (Beta vulgaris L. ssp. vulgaris Rote Kugel). J. Agric. Food Chem. 2010, 58, 11825–11831. [Google Scholar] [CrossRef]
- Schmitzer, V.; Slatnar, A.; Mikulic-Petkovsek, M.; Veberic, R.; Krska, B.; Stampar, F. Comparative study of primary and secondary metabolites in apricot (Prunus armeniaca L.) cultivars. J. Sci. Food Agric. 2011, 91, 860–866. [Google Scholar] [CrossRef]
- Saeed, I.; Guo, X.; Azeem, M.; Elshikh, M.S.; Zainab, B.; Ayaz, Z.; You, L.; Alwahibi, M.S.; Abbasi, A.M. Comparative assessment of polyphenolics’ content, free radicals’ scavenging and cellular antioxidant potential in apricot fruit. J. King Saud Univ.-Sci. 2021, 33, 101459. [Google Scholar] [CrossRef]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res.-Fundam. Mol. Mutagen. 2005, 579, 200–213. [Google Scholar] [CrossRef]
- Leccese, A.; Bartolini, S.; Viti, R. Total antioxidant capacity and phenolics content in fresh apricots. Acta Aliment. 2008, 37, 65–76. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Ahmad, S.; Qayum, M.; Ercisli, S. Compositional studies and antioxidant potential of Albizia lebbeck (L.) Benth. Pods and seeds. Turk. J. Biol. 2013, 37, 25–32. [Google Scholar]
- Carbone, K.; Ciccoritti, R.; Paliotta, M.; Rosato, T.; Terlizzi, M.; Cipriani, G. Chemometric classification of early-ripening apricot (Prunus armeniaca L.) germplasm based on quality traits, biochemical profiling and in vitro biological activity. Sci. Hortic. 2018, 227, 187–195. [Google Scholar] [CrossRef]
- Wani, A.A.; Zargar, S.A.; Malik, A.H.; Kashtwari, M.; Nazir, M.; Khuroo, A.A.; Ahmad, F.; Dar, T.A. Assessment of variability in morphological characters of apricot germplasm of Kashmir, India. Sci. Hortic. 2017, 225, 630–637. [Google Scholar] [CrossRef]
- Benjak, A.; Ercisli, S.; Vokurka, A.; Maletic, E.; Pejic, I. Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis 2005, 44, 73–77. [Google Scholar]
- Ercisli, S.; Esitken, A.; Turkkal, C.; Orhan, E. The allelopathic effects of juglone and walnut leaf extracts on yield, growth, chemical and PNE composition of strawberry cv. Fern. Plant Soil Environ. 2005, 51, 283–387. [Google Scholar] [CrossRef] [Green Version]
- Bolat, I.; Dikilitas, M.; Ercisli, S.; Ikinci, A.; Tonkaz, T. The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. Sci. World J. 2014, 76, 9732. [Google Scholar] [CrossRef]
- Dogan, H.; Ercisli, S.; Jurikova, T.; Temim, E.; Leto, A.; Hadziabulic, A.; Tosun, M.; Narmanlioglu, H.K.; Zia-Ul-Haq, M. Physicochemical and antioxidant characteristics of fruits of cape gooseberry (Physalis peruviana L.) from Turkey. Oxid. Commun. 2014, 37, 1005–1014. [Google Scholar]
- Dogan, H.; Ercisli, S.; Temim, E.; Hadziabulic, A.; Tosun, M.; Yilmaz, S.O.; Zia-Ul-Haq, M. Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. C. R. Acad. Bulg. Sci. 2014, 67, 1593–1600. [Google Scholar]
- Ersoy, N.; Kupe, M.; Sagbas, H.I.; Ercisli, S. Phytochemical diversity among barberry (Berberis vulgaris L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 198–204. [Google Scholar]
- Ersoy, N.; Kupe, M.; Gundogdu, M.; Gulce, I.; Ercisli, S. Phytochemical and antioxidant diversity in fruits of currant (Ribes spp.) cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Kupe, M. Some ampelographic and biochemical characteristics of local grape accessions from Turkey. Genetika 2020, 52, 513–525. [Google Scholar] [CrossRef]
Genotypes | L* | a* | b* | Ground Color | Red Blushed Skin |
---|---|---|---|---|---|
IA1 | 52.72 cd | 11.37 cd | 46.11 ab | Orange | Exist |
IA2 | 56.24 bc | 10.44 d | 39.11 c | Dark yellow | Absent |
IA3 | 58.11 b | 12.24 c | 44.22 b | Dark yellow | Exist |
IA4 | 53.44 cd | 9.44 de | 46.89 ab | Orange | Exist |
IA5 | 49.14 e | 11.15 cd | 48.56 a | Dark yellow | Absent |
IA6 | 60.14 ab | 13.23 bc | 41.23 bc | Yellow | Exist |
IA7 | 51.27 d | 9.89 de | 47.55 ab | Orange | Exist |
IA8 | 54.32 cd | 15.33 ab | 42.12 bc | Light orange | Exist |
IA9 | 61.07 a | 14.12 b | 40.33 bc | Yellow | Exist |
IA10 | 55.31 c | 16.32 a | 44.78 b | Dark orange | Exist |
Genotypes | Citric Acid | Malic Acid | Ascorbic Acid | Tartaric Acid |
---|---|---|---|---|
IA1 | 1224 ab | 441 ab | 18.4 b | 4.2 NS |
IA2 | 1167 ab | 502 ab | 21.5 ab | 4.7 |
IA3 | 1114 ab | 380 c | 20.6 ab | 5.4 |
IA4 | 1268 a | 397 bc | 20.2 ab | 3.1 |
IA5 | 1087 b | 567 a | 18.8 b | 6.1 |
IA6 | 965 bc | 515 ab | 22.2 ab | 5.0 |
IA7 | 982 bc | 470 b | 19.6 ab | 6.8 |
IA8 | 923 c | 495 abc | 23.6 a | 6.2 |
IA9 | 1035 bc | 544 ab | 19.4 ab | 4.4 |
IA10 | 996 bc | 450 ab | 21.0 ab | 5.3 |
Genotypes | Sucrose | Glucose | Fructose | Sweetness Indices (SI) |
---|---|---|---|---|
IA1 | 7.03 de | 2.09 ab | 0.95 NS | 13.77 ab |
IA2 | 6.80 e | 2.56 ab | 0.77 | 13.51 ab |
IA3 | 7.44 cd | 1.85 b | 0.63 | 13.34 b |
IA4 | 8.33 a | 2.44 ab | 0.58 | 15.02 ab |
IA5 | 6.97 de | 2.95 ab | 1.04 | 14.75 ab |
IA6 | 7.77 bc | 3.04 a | 0.85 | 15.49 a |
IA7 | 7.55 cd | 2.80 ab | 1.11 | 15.54 a |
IA8 | 7.23 d | 2.78 ab | 0.67 | 14.08 ab |
IA9 | 8.02 b | 2.40 ab | 0.80 | 15.07 ab |
IA10 | 7.64 c | 2.21 ab | 0.60 | 13.90 ab |
Genotypes | Total Phenolic Content (mg GAE/100 g) | Total Flavonoids (mg CE/100 g) | Total Carotenoid (mg/100 g) | TEAC (μmoL TE/g) |
---|---|---|---|---|
IA1 | 72.4 bc | 11.2 e | 8.42 bc | 1.95 bc |
IA2 | 70.1 bc | 9.2 g | 7.89 bc | 1.85 bc |
IA3 | 80.8 ab | 14.6 b | 7.13 c | 2.35 ab |
IA4 | 74.4 b | 10.3 | 8.64 b | 1.90 bc |
IA5 | 68.3 c | 9.7 f | 7.02 cd | 1.80 c |
IA6 | 79.6 ab | 13.7 c | 6.41 cd | 2.29 ab |
IA7 | 77.2 ab | 12.3 d | 9.12 ab | 2.11 b |
IA8 | 81.4 a | 15.1 a | 6.67 cd | 2.44 a |
IA9 | 69.3 bc | 9.2 g | 6.15 d | 1.76 bcd |
IA10 | 76.0 ab | 11.6 e | 9.93 a | 2.03 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatas, N. Evaluation of Nutritional Content in Wild Apricot Fruits for Sustainable Apricot Production. Sustainability 2022, 14, 1063. https://doi.org/10.3390/su14031063
Karatas N. Evaluation of Nutritional Content in Wild Apricot Fruits for Sustainable Apricot Production. Sustainability. 2022; 14(3):1063. https://doi.org/10.3390/su14031063
Chicago/Turabian StyleKaratas, Neva. 2022. "Evaluation of Nutritional Content in Wild Apricot Fruits for Sustainable Apricot Production" Sustainability 14, no. 3: 1063. https://doi.org/10.3390/su14031063
APA StyleKaratas, N. (2022). Evaluation of Nutritional Content in Wild Apricot Fruits for Sustainable Apricot Production. Sustainability, 14(3), 1063. https://doi.org/10.3390/su14031063