Influence of Tourism Disturbance on Soil Microbial Community Structure in Dawei Mountain National Forest Park
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Methods
2.2.1. Quadrat Setting and Soil Collection
2.2.2. Determination of Soil Physical and Chemical Properties
2.2.3. DNA Extraction, PCR Amplification, and Illumina MiSeq Sequencing
2.2.4. Data Processing
3. Results
3.1. The Influence of Tourism Disturbance Activities on the Main Physical and Chemical Properties of Soil
3.2. The Influence of Tourism Disturbance Activities on the Composition of Microbial Species
3.2.1. The Number of Microorganism Species at Different Soil Levels
3.2.2. Similarity of Soil Microbial Species under Different OTU Levels
3.3. The Influence of Tourism Disturbance Activities on the Structure of the Soil Microbial Community
3.4. The Relationship between the Degree of Tourism Disturbance and the Alpha Diversity of Soil Community
3.5. The Influence of Physical and Chemical Indexes of Soil on Microbial Community
4. Discussion
4.1. Response Characteristics of Soil Microbial Communities to Disturbance Modes
4.2. The Influence of Physical and Chemical Indexes of Soil under Tourism Disturbance on Bacteria
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Q.H.; Tong, F.; Tao, S.X.; Cao, W.; Fu, L.; Zhu, S.H. Effects of tourism disturbance on the habitat and water quality for Andrias davidianus in Zhangjiajie, Hunan, China. J. Appl. Ecol. 2019, 30, 2101–2108. [Google Scholar]
- Zhang, Q.; Yang, D.; Zhong, Y.; Zhou, G.; Li, W. Influences of tourism activities on typical plants communities in Huangshizhai scenic spot. Acta Agric. Zhejiangensis 2017, 29, 1158–1165. [Google Scholar]
- Nan, R. Rapid Detection Method of Ecological Pollution in Scenic Spot under Different Tourism Disturbance. Ekoloji 2019, 28, 3051–3062. [Google Scholar]
- Mostafanezhad, M.; Norum, R. The anthropocenic imaginary: Political ecologies of tourism in a geological epoch. J. Sustain. Tour. 2019, 27, 421–435. [Google Scholar] [CrossRef] [Green Version]
- Manning, R.E. Impacts of recreation on riparian soils and vegetation 1. JAWRA J. Am. Water Resour. Assoc. 1979, 15, 30–43. [Google Scholar] [CrossRef]
- Niu, L.; Cheng, Z. Impact of tourism disturbance on forest vegetation in Wutai Mountain, China. Environ. Monit. Assess. 2019, 191, 81. [Google Scholar] [CrossRef]
- Yu, Q.Y.; Wang, C.H. Trace Element Contents and Quality Status Evaluation of Topsoil in the Dawei Mountain in Liuyang City. Shandong Agric. Sci. 2014, 46, 88–90. [Google Scholar]
- Li, S.S.; Ma, D.L.; Zang, S.Y.; Wang, L.L.; Sun, H.Z. Structural and functional characteristics of soil microbial community in the Songjiang wetland under different interferences. Acta Ecol. Sin. 2018, 38, 7979–7989. [Google Scholar]
- Kissling, M.; Hegetschweiler, K.T.; Rusterholz, H.-P.; Baur, B. Short-term and long-term effects of human trampling on above-ground vegetation, soil density, soil organic matter and soil microbial processes in suburban beech forests. Appl. Soil Ecol. 2009, 42, 303–314. [Google Scholar] [CrossRef]
- Tejedo, P.; Benayas, J.; Cajiao, D.; Albertos, B.; Lara, F.; Pertierra, L.R.; Andrés-Abellán, M.; Wic, C.; Luciáñez, M.J.; Enríquez, N. Assessing environmental conditions of Antarctic footpaths to support management decisions. J. Environ. Manag. 2016, 177, 320–330. [Google Scholar] [CrossRef]
- Ayodeji, O.; Oluyisola, O.; Fawibe, A. Assessment of the level and impacts of anthropogenic activities in ecotourism sites using soil bacteria prevalence and abundance: Awba dam as a case study. Int. J. Res. Soc. Sci. 2016, 6, 23–36. [Google Scholar]
- Steven, B.; Belnap, J.; Kuske, C.R. Chronic physical disturbance substantially alters the response of biological soil crusts to a wetting pulse, as characterized by metatranscriptomic sequencing. Front. Microbiol. 2018, 9, 2382. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-L.; Zhang, G.-L. Formation, characteristics and eco-environmental implications of urban soils–A review. Soil Sci. Plant Nutr. 2015, 61 (Suppl. 1), 30–46. [Google Scholar] [CrossRef] [Green Version]
- Treweek, G.; Di, H.J.; Cameron, K.C.; Podolyan, A. Simulated animal trampling of a free-draining stony soil stimulated denitrifier growth and increased nitrous oxide emissions. Soil Use Manag. 2016, 32, 455–464. [Google Scholar] [CrossRef]
- Hall, C.M.; Page, S.J. The Geography of Tourism and Recreation: Environment, Place and Space; Routledge: London, UK, 2014. [Google Scholar]
- Newsome, D.; Moore, S.A.; Dowling, R.K. Natural Area Tourism: Ecology, Impacts and Management; Channel View Publications: Bristol, UK, 2012. [Google Scholar]
- Andrés-Abellán, M.; Del Álamo, J.B.; Landete-Castillejos, T.; López-Serrano, F.R.; García-Morote, F.A.; Del Cerro-Barja, A. Impacts of visitors on soil and vegetation of the recreational area “Nacimiento del Rio Mundo” (Castilla-La Mancha, Spain). Environ. Monit. Assess. 2005, 101, 55–67. [Google Scholar]
- Wang, S.; Sheng, X.L.; Zhang, L.; Han, J.C.; Luo, Y.Z.; Xie, D.T. Effects of Agricultural Tourism on Soil Microbial Community Structure in Hilly Area of East Sichuan Chinese. J. Soil Sci. 2017, 48, 101–109. [Google Scholar]
- Wang, S.T.; Zhang, J.C.; Zheng, D.Y.; Wang, J.P.; Li, W.Q. Impacts of R ecreational Human Trampling on Soil Properties in Zhongshan Scenic Park. Sci. Silvae Sin. 2017, 53, 9–16. [Google Scholar]
- Wang, L.; Sun, X.; Li, S.; Zhang, T.; Zhang, W.; Zhai, P. Application of organic amendments to a coastal saline soil in north China: Effects on soil physical and chemical properties and tree growth. PLoS ONE 2014, 9, e89185. [Google Scholar] [CrossRef] [Green Version]
- Samani, K.M.; Pordel, N.; Hosseini, V.; Shakeri, Z. Effect of land-use changes on chemical and physical properties of soil in western Iran (Zagros oak forests). J. For. Res. 2020, 31, 637–647. [Google Scholar] [CrossRef]
- Colombo, F.; Macdonald, C.A.; Jeffries, T.C.; Powell, J.R.; Singh, B.K. Impact of forest management practices on soil bacterial diversity and consequences for soil processes. Soil Biol. Biochem. 2016, 94, 200–210. [Google Scholar] [CrossRef]
- Mallik, I.; Fulladolsa, A.C.; Yellareddygari, S.; Bittara, F.G.; Charkowski, A.O.; Gudmestad, N.C. Detection and quantification of Spongospora subterranea sporosori in soil by quantitative real-time PCR. Plant Dis. 2019, 103, 3189–3198. [Google Scholar] [CrossRef]
- Ettenauer, J.D.; Piñar, G.; Lopandic, K.; Spangl, B.; Ellersdorfer, G.; Voitl, C.; Sterflinger, K. Microbes on building materials—evaluation of DNA extraction protocols as common basis for molecular analysis. Sci. Total Environ. 2012, 439, 44–53. [Google Scholar] [CrossRef]
- Zeng, J.Y.; Wu, D.D.; Shi, Z.B.; Yang, J.; Zhang, G.C.; Zhang, J. Influence of dietary aconitine and nicotine on the gut microbiota of two lepidopteran herbivores. Arch. Insect Biochem. Physiol. 2020, 104, e21676. [Google Scholar] [CrossRef]
- Zheng, J.; Xiao, X.; Zhang, Q.; Mao, L.; Yu, M.; Xu, J. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients 2015, 7, 6924–6937. [Google Scholar] [CrossRef] [PubMed]
- Schappe, T.; Albornoz, F.E.; Turner, B.L.; Jones, F.A. Co-occurring fungal functional groups respond differently to tree neighborhoods and soil properties across three tropical rainforests in Panama. Microb. Ecol. 2020, 79, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Dibbern, A.; Botaro, B.; Viziack, M.; Silva, L.; Santos, M. Evaluation of methods of DNA extraction from Staphylococcus aureus in milk for use in real-time PCR. Genet Mol. Res. 2015, 14, 227–233. [Google Scholar] [CrossRef]
- Gan, H.M.; Szegedi, E.; Fersi, R.; Chebil, S.; Kovács, L.; Kawaguchi, A.; Hudson, A.O.; Burr, T.J.; Savka, M.A. Insight into the microbial co-occurrence and diversity of 73 grapevine (Vitis vinifera) crown galls collected across the Northern hemisphere. Front. Microbiol. 2019, 10, 1896. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Holden, S.R.; Treseder, K.K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front. Microbiol. 2013, 4, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Wan, S.; Fu, S.; Wang, X.; Wang, M.; Liang, C.; Chen, Y.; Zhu, X. Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. For. Ecol. Manag. 2013, 310, 80–86. [Google Scholar] [CrossRef]
- Duan, G.L.; Zhu, Y.J. Review on the effects of tourism disturbance on soil ecosystem. Acta Ecol. Sin. 2019, 39, 8338–8345. [Google Scholar]
- Cong, J.; Yang, Y.; Liu, X.; Lu, H.; Liu, X.; Zhou, J.; Li, D.; Yin, H.; Ding, J.; Zhang, Y. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Guan, D.; Zhou, B.; Zhao, B.; Ma, M.; Qin, J.; Jiang, X.; Chen, S.; Cao, F.; Shen, D. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 2015, 90, 42–51. [Google Scholar] [CrossRef]
- Yelle, D.J.; Ralph, J.; Lu, F.; Hammel, K.E. Evidence for cleavage of lignin by a brown rot basidiomycete. Environ. Microbiol. 2008, 10, 1844–1849. [Google Scholar] [CrossRef] [PubMed]
- Shade, A.; Read, J.S.; Welkie, D.G.; Kratz, T.K.; Wu, C.H.; McMahon, K.D. Resistance, resilience and recovery: Aquatic bacterial dynamics after water column disturbance. Environ. Microbiol. 2011, 13, 2752–2767. [Google Scholar] [CrossRef]
- Schnurr-Pütz, S.; Bååth, E.; Guggenberger, G.; Drake, H.L.; Kirsten, K. Compaction of forest soil by logging machinery favours occurrence of prokaryotes. FEMS Microbiol. Ecol. 2006, 58, 503–516. [Google Scholar] [CrossRef] [Green Version]
- Hayek, M.; Salgues, M.; Souche, J.-C.; Cunge, E.; Giraudel, C.; Paireau, O. Influence of the Intrinsic Characteristics of Cementitious Materials on Biofouling in the Marine Environment. Sustainability 2021, 13, 2625. [Google Scholar] [CrossRef]
- Wei, A. Machine learning-based detection of mountain soil composition and environmental and ecological management of tourist areas. Arab. J. Geosci. 2021, 14, 1–14. [Google Scholar]
- Yang, H.; Liu, C.; Liu, Y.; Xing, Z. Impact of human trampling on biological soil crusts determined by soil microbial biomass, enzyme activities and nematode communities in a desert ecosystem. Eur. J. Soil Biol. 2018, 87, 61–71. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [Green Version]
- DeBruyn, J.M.; Nixon, L.T.; Fawaz, M.N.; Johnson, A.M.; Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 2011, 77, 6295–6300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Gong, H.; Guo, X. Rhizosphere bacterial community of Typha angustifolia L. and water quality in a river wetland supplied with reclaimed water. Appl. Microbiol. Biotechnol. 2015, 99, 2883–2893. [Google Scholar] [CrossRef]
- Dean, S.L.; Farrer, E.C.; Taylor, D.L.; Porras-Alfaro, A.; Suding, K.N.; Sinsabaugh, R.L. Nitrogen deposition alters plant–fungal relationships: Linking belowground dynamics to aboveground vegetation change. Mol. Ecol. 2014, 23, 1364–1378. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Jiang, X.; Wang, Q.; Ongena, M.; Wei, D.; Ding, J.; Guan, D.; Cao, F.; Zhao, B.; Li, J. Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols. MicrobiologyOpen 2018, 7, e00597. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Jiang, X.; Zhou, B.; Zhao, B.; Ma, M.; Guan, D.; Li, J.; Chen, S.; Cao, F.; Shen, D. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biol. Biochem. 2016, 95, 135–143. [Google Scholar] [CrossRef]
NO | Moisture Content/% | Bulk Density/g·cm−3 | pH | Organic Matter/g·kg−1 | Total N/g·kg−1 | Total P/g·kg−1 | Total K/g·kg−1 |
---|---|---|---|---|---|---|---|
CK | 21.50 ± 0.19a | 1.47 ± 0.04b | 7.72 ± 0.29c | 14.44 ± 0.74a | 1.48 ± 0.2 | 0.23 ± 0.06a | 39.46 ± 1.15 |
MD | 20.47 ± 0.49a | 1.24 ± 0.05c | 8.05 ± 0.21a | 10.14 ± 0.11b | 1.49 ± 0.14 | 023 ± 0.01ab | 39.01 ± 0.8 |
HD | 6.94 ± 0.60b | 1.60 ± 0.17a | 8.27 ± 0.18b | 12.95 ± 0.80a | 1.48 ± 0.27 | 0.24 ± 0.04a | 38.83 ± 0.49 |
NO | NH+4-N/mg·kg−1 | Available P/mg·g−1 | Available K/mg·g−1 | Catalase/ umol·d−1·g−1 | Invertase/ mg·d−1·g−1 | Alkaline phosphatase/umol·d−1·g−1 | NO−3-Nmg·kg−1 |
CK | 43.23 ± 0.02b | 0.03 ± 0.01 | 0.06 ± 0.006a | 18.69 ± 0.98a | 11.69 ± 0.52a | 7.40 ± 0.30a | 56.56 ± 0.63a |
MD | 48.51 ± 0.52a | 0.03 ± 0.01 | 0.04 ± 0.006b | 22.24 ± 0.28b | 6.38 ± 0.64b | 4.55 ± 0.44b | 85.15 ± 2.25b |
HD | 32.28 ± 0.11c | 0.03 ± 0.01 | 0.03 ± 0.002b | 12.03 ± 0.74c | 4.45 ± 0.22c | 2.47 ± 0.10c | 75.97 ± 1.59c |
Group | Phylum | Class | Order | Family | Genus | Species | OTU | |
---|---|---|---|---|---|---|---|---|
Bacteria | CK | 26 | 73 | 176 | 277 | 396 | 701 | 1904 |
MD | 27 | 66 | 163 | 256 | 366 | 646 | 1829 | |
HD | 25 | 71 | 170 | 254 | 359 | 629 | 1700 | |
Fungi | CK | 12 | 26 | 56 | 120 | 173 | 212 | 896 |
MD | 9 | 21 | 46 | 89 | 108 | 126 | 530 | |
HD | 8 | 22 | 42 | 62 | 105 | 127 | 336 |
Group | ACE Index | Qstat | Smithwilson Index | Coverage/% | |
---|---|---|---|---|---|
Bacteria | CK | 1889.7 ± 51.82a ** | 384.57 ± 16.975a ** | 0.4438 ± 0.002b * | 98.76 ± 0.04a * |
MD | 1799.7 ± 13.73b ** | 366.47 ± 12.634a ** | 0.4443 ± 0.003b * | 98.84 ± 0.02b ** | |
HD | 1595.3 ± 69.58c ** | 317.03 ± 22.759b ** | 0.4511 ± 0.002a * | 99.03 ± 0.08c * | |
Fungi | CK | 615.54 ± 44.29a ** | 154.99 ± 20.94a ** | 0.4810 ± 0.007c ** | 99.84 ± 0.01c * |
MD | 394.95 ± 18.79b ** | 78.346 ± 2.49b ** | 0.5010 ± 0.006b ** | 99.886 ± 0.01b ** | |
HD | 218.38 ± 17.82c ** | 38.795 ± 8.11c ** | 0.5259 ± 0.006a ** | 99.951 ± 0.01a * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Dai, M.; Luo, F. Influence of Tourism Disturbance on Soil Microbial Community Structure in Dawei Mountain National Forest Park. Sustainability 2022, 14, 1162. https://doi.org/10.3390/su14031162
Li Q, Dai M, Luo F. Influence of Tourism Disturbance on Soil Microbial Community Structure in Dawei Mountain National Forest Park. Sustainability. 2022; 14(3):1162. https://doi.org/10.3390/su14031162
Chicago/Turabian StyleLi, Qunjun, Meiqi Dai, and Fen Luo. 2022. "Influence of Tourism Disturbance on Soil Microbial Community Structure in Dawei Mountain National Forest Park" Sustainability 14, no. 3: 1162. https://doi.org/10.3390/su14031162
APA StyleLi, Q., Dai, M., & Luo, F. (2022). Influence of Tourism Disturbance on Soil Microbial Community Structure in Dawei Mountain National Forest Park. Sustainability, 14(3), 1162. https://doi.org/10.3390/su14031162