An Investigation of Multimodal Transport for Last Mile Delivery in Rural Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Analysis
2.2. Cost–Benefit Analysis
- Indices and sets:
- Parameters:
- Decision variables:
2.2.1. The Cost Analysis of Last Mile Delivery in Rural Areas
- Each village has a receiving point for orders, and the vehicle only needs to transport the orders to the receiving point.
- Vehicles from the LLP can only deliver orders from the same villages, and other orders cannot be delivered.
- The distribution vehicle has a constraint of carrying capacity.
- When the villagers pick up the orders by themselves, the orders of the same village are picked up by one villager. Each village only needs to pick up the orders once a day.
- Orders at each distribution node cannot be split.
2.2.2. The Cost Analysis of Multimodal Transport in Rural Logistics
- Order allocation principle
- (1)
- Orders requiring installation and other value-added services are allocated to the LLP.
- (2)
- We allocate the furthest orders to the PT and use the PT cargo capacity as much as possible.
- (3)
- The remaining orders are delivered by the CL.
- Distribution cost model
2.2.3. Analysis of the Profit Distribution Strategy
3. Results
3.1. Parameter Setting
3.2. Cost–Benefit Analysis
3.3. Route Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: http://english.mofcom.gov.cn/article/newsrelease/press/202111/20211103214792.shtml (accessed on 18 January 2022).
- Archetti, C.; Bertazzi, L. Recent challenges in Routing and Inventory Routing: E-commerce and last-mile delivery. Networks 2021, 77, 255–268. [Google Scholar] [CrossRef]
- Macioszek, E. First and last mile delivery–problems and issues. In Proceedings of the Scientific and Technical Conference Transport Systems Theory and Practice, Katowice, Poland, 18–20 September 2017; pp. 147–154. [Google Scholar]
- Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
- Solomom, M.M. Algorithms for the Vehicle Routing and Scheduling Problems with Time Windows Constrains. Oper. Res. 1987, 35, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Desrochers, M.; Desrosiers, J.; Solomom, M. A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows. Oper. Res. 1992, 40, 342–354. [Google Scholar] [CrossRef]
- Niu, Y.Y.; Yang, Z.H.; Chen, P.; Xiao, J.H. Optimizing the green open vehicle routing problem with time windows by minimizing comprehensive routing cost. J. Clean. Prod. 2018, 171, 962–971. [Google Scholar] [CrossRef]
- Pan, B.B.; Zhang, Z.Z.; Lim, A. Multi-trip time-dependent vehicle routing problem with time windows. Eur. J. Oper. Res. 2021, 291, 218–231. [Google Scholar] [CrossRef]
- Laporte, G.; Nobert, Y.; Arpin, D. An exact algorithm for solving a capacitated location-routing problem. Ann. Oper. Res. 1986, 6, 293–310. [Google Scholar] [CrossRef]
- Laporte, G.; Nobert, Y.; Taillefer, S. Solving a family of multi-depot vehicle routing and location-routing problems. Transp. Sci. 1988, 22, 161–172. [Google Scholar] [CrossRef]
- Aras, N.; Aksen, D.; Tekin, M.T. Selective multi-depot vehicle routing problem with pricing. Transp. Res. Part C Emer. Tehnol. 2011, 19, 866–884. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Guan, X.Y.; Fan, J.X.; Xu, M.Z.; Wang, H.Z. Collaborative multi-depot pickup and delivery vehicle routing problem with split loads and time windows. Knowl.-Based Syst. 2021, 231, 107412. [Google Scholar] [CrossRef]
- Erdogan, S.; Hooks, E.M. A green vehicle routing problem. Transp. Res. Part E Logist. Transp. Rev. 2012, 48, 100–114. [Google Scholar] [CrossRef]
- Asghari, M.; Mirzapour, S.M.J. Green vehicle routing problem: A state-of-the-art review. Int. J. Prod. Econ. 2021, 231, 107899. [Google Scholar] [CrossRef]
- Doerner, K.F.; Schmid, V. Survey: Matheuristics for Rich Vehicle Routing Problems. Int. Workshop Hybrid Metaheuristics 2010, 6373, 206–221. [Google Scholar]
- Caceres-Cruz, J.; Arias, P.; Guimarans, D.; Riera, D.; Juan, A.A. Rich vehicle routing problem: Survey. ACM Comput. Surv. 2014, 47, 1–28. [Google Scholar] [CrossRef]
- Lahyani, R.; Khemakhem, M.; Semet, F. Rich vehicle routing problems: From a taxonomy to a definition. Eur. J. Oper. Res. 2015, 241, 1–14. [Google Scholar] [CrossRef]
- Baker, B.M.; Ayechew, M.A. A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 2003, 30, 787–800. [Google Scholar] [CrossRef]
- Rabbouch, B.; Saâdaoui, F.; Mraihi, R. Efficient implementation of the genetic algorithm to solve rich vehicle routing problems. Oper. Res. 2021, 21, 1763–1791. [Google Scholar] [CrossRef]
- Kuo, Y. Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput. Ind. Eng. 2010, 59, 157–165. [Google Scholar] [CrossRef]
- Vincent, F.Y.; Jewpanya, P.; Redi, A.A.N.P.; Tsao, Y.C. Adaptive neighborhood simulated annealing for the heterogeneous fleet vehicle routing problem with multiple cross-docks. Comput. Oper. Res. 2021, 129, 105205. [Google Scholar]
- Archetti, C.; Speranza, M.G.; Hertz, A.A. A tabu search algorithm for the split delivery vehicle routing problem. Transp. Sci. 2006, 40, 64–73. [Google Scholar] [CrossRef]
- Gmira, M.; Gendreau, M.; Lodi, A.; Potvin, J.Y. Tabu search for the time-dependent vehicle routing problem with time windows on a road network. Eur. J. Oper. Res. 2021, 288, 129–140. [Google Scholar] [CrossRef]
- Bell, J.E.; McMullen, P.R. Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. Inform. 2004, 18, 41–48. [Google Scholar] [CrossRef]
- Yu, B.; Yang, Z.Z.; Yao, B. An improved ant colony optimization for vehicle routing problem. Eur. J. Oper. Res. 2009, 196, 171–176. [Google Scholar] [CrossRef]
- Jia, Y.H.; Mei, Y.; Zhang, M. A Bilevel Ant Colony Optimization Algorithm for Capacitated Electric Vehicle Routing Problem. IEEE Trans. Cybern. 2021, 1–14. [Google Scholar] [CrossRef]
- Rougès, J.F.; Montreuil, B. Crowdsourcing delivery: New interconnected business models to reinvent delivery. In Proceedings of the 1st International Physical Internet Conference, Quebec City, QC, Canada, 28–30 May 2014. [Google Scholar]
- Carbone, V.; Rouquet, A.; Roussat, C. The rise of crowd logistics: A new way to co-create logistics value. J. Bus. Logist. 2017, 38, 238–252. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Liu, Q.; Shen, F.; Lee, L.H. Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions. Transp. Res. Part E Logist. Transp. Rev. 2016, 93, 279–293. [Google Scholar] [CrossRef]
- Huang, K.; Ardiansyah, M.N. A decision model for last-mile delivery planning with crowdsourcing integration. Comput. Ind. Eng. 2019, 135, 898–912. [Google Scholar] [CrossRef]
- Kafle, N.; Zou, B.; Lin, J. Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery. Transp. Res. Part B Methodol. 2017, 99, 62–82. [Google Scholar] [CrossRef]
- Akeb, H.; Moncef, B.; Durand, B. Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris. Transp. Res. Part E Logist. Transp. Rev. 2018, 119, 223–233. [Google Scholar] [CrossRef]
- Chen, C.; Pan, S. Using the Crowd of Taxis to Last Mile Delivery in E-Commerce: A methodological research. In Service Orientation in Holonic and Multi-Agent Manufacturing, 1st ed.; Borangiu, T., Trentesaux, D., Thomas, A., Mcfarlane, D., Eds.; Springer: Cambridge, UK, 2016; Volume 640, pp. 61–70. [Google Scholar]
- Zhou, C.; Li, H.; Wang, W.; Lee, L.H.; Chew, E.P. Connecting the Belt and Road through sea-rail collaboration. Front. Eng. Manag. 2017, 4, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Dastjerdi, A.M.; Kaplan, S.; de Abreu e Silva, J.; Nielsen, O.A.; Pereira, F.C. Participating in environmental loyalty program with a real-time multimodal travel app: User needs, environmental and privacy motivators. Transp. Res. Part D Transp. Environ. 2019, 67, 223–243. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Chen, J.M.; Tseng, M.L.; Luan, H.M.; Ali, M.H. Modelling green multimodal transport route performance with witness simulation software. J. Clean. Prod. 2020, 248, 119245. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, D.; Meng, Q.; Liu, Y.J. Regional multimodal logistics network design considering demand uncertainty and CO2 emission reduction target: A system-optimization approach. J. Clean. Prod. 2020, 248, 119304. [Google Scholar] [CrossRef]
- Xu, G.Y.; Zhang, R.; Xu, S.X.; Kou, X.F.; Qiu, X. Personalized Multimodal Travel Service Design for sustainable intercity transport. J. Clean. Prod. 2021, 308, 127367. [Google Scholar] [CrossRef]
- Ayed, H.; Galvez-Fernandez, C.; Habbas, Z.; Khadraoui, D. Solving time-dependent multimodal transport problems using a transfer graph model. Comput. Ind. Eng. 2011, 61, 391–401. [Google Scholar] [CrossRef]
- Qiu, X.; Xu, S.X.; Xu, G. Pricing and scheduling of barge hinterland transportation service for inbound containers. Transp. Res. Part E Logist. Transp. Rev. 2021, 156, 102515. [Google Scholar] [CrossRef]
- Chen, W.D.; Huang, W.; Zhang, R.J.; He, P.; Li, H.; Wang, Q. Research on the Development Strategy of Rural Logistics in China Post. IOP Conf. Ser. Earth. Environ. Sci. 2019, 330, 052029. [Google Scholar]
- Gong, X. Coupling coordinated development model of urban-rural logistics and empirical study. Math. Probl. Eng. 2019, 2019, 9026795. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Dai, Y.; Ma, Z.J. A cooperative rich vehicle routing problem in the last-mile logistics industry in rural areas. Transp. Res. Part E Logist. Transp. Rev. 2020, 141, 102024. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.; Suh, K. A comparative analysis of the environmental benefits of drone-based delivery services in urban and rural areas. Sustainability 2018, 10, 888. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Lim, G.J.; Cho, J.; Cote, M.J. Drone-aided healthcare services for patients with chronic diseases in rural areas. J. Intell. Robot. Syst. 2017, 88, 163–180. [Google Scholar] [CrossRef]
- Koiwanit, J. Analysis of environmental impacts of drone delivery on an online shopping system. Adv. Clim. Chang. Res. 2018, 9, 201–207. [Google Scholar] [CrossRef]
- Shapley, L.S. Stochastic games. Proc. Natl. Acad. Sci. USA 1953, 39, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Macioszek, E. Freight transport planners as information elements in the last mile logistics. In Proceedings of the Scientific and Technical Conference Transport Systems Theory and Practice, Katowice, Poland, 17–19 September 2018; pp. 242–251. [Google Scholar]
- Holland, J.H. Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 1973, 2, 88–105. [Google Scholar] [CrossRef]
- Ageron, B.; Gunasekaran, A.; Spalanzani, A. Sustainable supply management: An empirical study. Int. J. Prod. Econ. 2012, 140, 168–182. [Google Scholar] [CrossRef]
- Zhu, Q.; Sarkis, J.; Geng, Y. Green supply chain management in China: Pressures, practices and performance. Int. J. Oper. Prod. Manag. 2005, 25, 449–468. [Google Scholar] [CrossRef]
- Kilibarda, M.; Andrejić, M.; Popović, V. Research in logistics service quality: A systematic literature review. Transport 2020, 35, 224–235. [Google Scholar]
- Jiang, X.H.; Wang, H.Y.; Guo, X.C.; Gong, X.L. Using the FAHP, ISM, and MICMAC approaches to study the sustainability influencing factors of the last mile delivery of rural e-commerce logistics. Sustainability 2019, 11, 3937. [Google Scholar] [CrossRef] [Green Version]
- Juga, J.; Juntunen, J.; Grant, D.B. Service quality and its relation to satisfaction and loyalty in logistics outsourcing relationships. Manag. Serv. Qual. 2010, 20, 496–510. [Google Scholar] [CrossRef]
- Gotzamani, K.; Longinidis, P.; Vouzas, F. The logistics services outsourcing dilemma: Quality management and financial performance perspectives. Supply Chain Manag. 2010, 15, 438–453. [Google Scholar] [CrossRef]
- Yu, M. Model for evaluating the e-commerce logistics service quality with hesitant fuzzy uncertain linguistic information. J. Intell. Fuzzy Syst. 2017, 32, 4023–4029. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
O | ||||||
C |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
(9,35) | (35,4) | (18,44) | (35,20) | (39,48) | (46,45) | (20,11) | (33,12) | (9,50) | (41,33) |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
(1,1) | (27,44) | (18,33) | (31,29) | (47,17) | (14,15) | (12,27) | (5,15) | (1,37) | (45,6) |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
(49,28) | (40,15) | (6,43) | (11,4) | (33,36) | (1,9) | (28,18) | (3,27) | (20,2) | (26,37) |
Profits | Subsets | Orders | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 1321.8 | 303.2 | 1018.6 | 718.1 | 540.3 | 723.6 | 378.4 | 577.7 | 427.8 | (1,20) |
2 | 5 | 1310.5 | 421.8 | 888.7 | 737.0 | 998.7 | 856.8 | 683.8 | 651.3 | 613.8 | (10,20) |
3 | 5 | 1438.0 | 813.9 | 624.1 | 1105.6 | 1138.7 | 1121.8 | 1004.1 | 1038.9 | 866.0 | (20,30) |
4 | 3 | 1392.1 | 608.2 | 783.9 | 981.4 | 1030.4 | 951.8 | 918.4 | 823.3 | 678.0 | (10,30) |
5 | 4 | 1364.7 | 659.8 | 704.9 | 1100.3 | 1151.0 | 971.6 | 987.1 | 852.5 | 865.8 | (10,30) |
6 | 5 | 1303.2 | 542.2 | 761.0 | 1104.1 | 1149.4 | 980.0 | 822.8 | 759.3 | 763.1 | (10,30) |
7 | 6 | 1417.7 | 700.7 | 717.0 | 1114.4 | 1147.3 | 1118.0 | 905.6 | 920.4 | 814.6 | (10,30) |
Orders | Profits | Shapley Value | |||||||
---|---|---|---|---|---|---|---|---|---|
{1,2,3} | |||||||||
5 | (1,20) | 603.7 | 781.5 | 598.2 | 943.4 | 744.1 | 894 | 1018.6 | {294.1, 457.9, 266.6} |
5 | (10,20) | 573.5 | 311.8 | 453.7 | 626.7 | 659.2 | 696.7 | 888.7 | {341.9, 229.8, 317.0} |
5 | (20,30) | 332.4 | 299.3 | 316.2 | 433.9 | 399.1 | 572.0 | 624.1 | {164.4, 234.3, 225.4} |
3 | (10,30) | 410.7 | 361.7 | 440.3 | 473.7 | 568.8 | 714.1 | 783.9 | {200.2, 248.4, 335.2} |
4 | (10,30) | 264.4 | 213.7 | 393.1 | 377.6 | 512.2 | 498.9 | 705.0 | {204.0, 172.0, 329.0} |
5 | (10,30) | 199.1 | 153.8 | 323.2 | 480.4 | 543.9 | 540.1 | 761.0 | {231.2, 206.7, 323.1} |
6 | (10,30) | 303.3 | 270.4 | 299.7 | 512.1 | 497.3 | 603.1 | 717.0 | {212.3, 248.7, 256.0} |
Transport Mode | Distribution Route |
---|---|
LLP | 24-18-17-3-13 |
PT | 13-3-9-23-19-1: (9-23-19) |
17-28-18-26-11-24: (28-26-11) | |
30-12-5-6-10-25: (5-6) | |
14-21-15-20-22-4: (21-20) | |
27-8-2-29-7-16: (8-2-29) | |
CL | 30-12-1; 16-7-27; 14-10-25; 4-15-22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, X.; Zhang, Y.; Long, D.; Liu, X.; Qie, L. An Investigation of Multimodal Transport for Last Mile Delivery in Rural Areas. Sustainability 2022, 14, 1291. https://doi.org/10.3390/su14031291
Kou X, Zhang Y, Long D, Liu X, Qie L. An Investigation of Multimodal Transport for Last Mile Delivery in Rural Areas. Sustainability. 2022; 14(3):1291. https://doi.org/10.3390/su14031291
Chicago/Turabian StyleKou, Xiaofei, Yanqi Zhang, Die Long, Xuanyu Liu, and Liangliang Qie. 2022. "An Investigation of Multimodal Transport for Last Mile Delivery in Rural Areas" Sustainability 14, no. 3: 1291. https://doi.org/10.3390/su14031291
APA StyleKou, X., Zhang, Y., Long, D., Liu, X., & Qie, L. (2022). An Investigation of Multimodal Transport for Last Mile Delivery in Rural Areas. Sustainability, 14(3), 1291. https://doi.org/10.3390/su14031291