Impact of Biochar Application on Ammonia Volatilization from Paddy Fields under Controlled Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling and Measurement
2.4. Statistical Analysis
3. Results
3.1. Ammonia Volatilization
3.2. Surface Soil Solution (Surface Water) Chemical Characteristics
3.3. Soil Chemical Characteristics
3.4. Diversity Analysis of Ammonia-Oxidizing Microorganisms
3.5. Correlation Coefficients between Ammonia Volatilization, Environmental Properties, and Gene Abundance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, F.S.; Cui, Z.L.; Chen, X.P.; Ju, X.T.; Shen, J.B.; Chen, Q.; Liu, X.J.; Zhang, W.F.; Mi, G.H.; Fan, M.S.; et al. Integrated Nutrient Management for Food Security and Environmental Quality in China. In Advances in Agronomy; Academic Press Inc. Elsevier Science: San Diego, CA, USA, 2012; Volume 116, pp. 1–40. [Google Scholar]
- Zhang, L.; Tang, S.; Guan, Y. Excellent Adsorption-Desorption of Ammonium by a Poly(acrylic acid)-Grafted Chitosan and Biochar Composite for Sustainable Agricultural Development. ACS Sustain. Chem. Eng. 2020, 8, 16451–16462. [Google Scholar] [CrossRef]
- Singh, M.; Bhattacharya, A.K.; Nair, T.V.R.; Singh, A.K. Nitrogen loss through subsurface drainage effluent in coastal rice field from India. Agric. Water Manag. 2002, 52, 249–260. [Google Scholar] [CrossRef]
- Watanabe, T.; Son, T.T.; Hung, N.N.; Van Truong, N.; Giau, T.Q.; Hayashi, K.; Ito, O. Measurement of ammonia volatilization from flooded paddy fields in Vietnam. Soil Sci. Plant Nutr. 2009, 55, 793–799. [Google Scholar] [CrossRef]
- Xiao, X.; Yang, L.; Deng, Y.; Wang, J. The coupling effects of water and nitrogen on ammonia volatilization from paddy field. J. Agro-Environ. Sci. 2012, 31, 2066–2071. [Google Scholar]
- Ferm, M. Atmospheric ammonia and ammonium transport in Europe and critical loads: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 5–17. [Google Scholar] [CrossRef]
- Cao, Y.S.; Tian, Y.H.; Yin, B.; Zhu, Z.L. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Res. 2013, 147, 23–31. [Google Scholar] [CrossRef]
- Raza, S.T.; Tang, J.L.; Ali, Z.; Yao, Z.; Bah, H.; Iqbal, H.; Ren, X. Ammonia Volatilization and Greenhouse Gases Emissions during Vermicomposting with Animal Manures and Biochar to Enhance Sustainability. Int. J. Environ. Res. Public Health 2020, 18, 178. [Google Scholar] [CrossRef]
- Uchimiya, M.; Lima, I.M.; Klasson, K.T.; Wartelle, L.H. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere 2010, 80, 935–940. [Google Scholar] [CrossRef]
- Zhang, A.F.; Bian, R.J.; Pan, G.X.; Cui, L.Q.; Hussain, Q.; Li, L.Q.; Zheng, J.W.; Zheng, J.F.; Zhang, X.H.; Han, X.J.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Tu, C.; Wei, J.; Guan, F.; Liu, Y.; Sun, Y.H.; Luo, Y.M. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ. Int. 2020, 137, 105576. [Google Scholar] [CrossRef]
- Awad, M.; El-Sayed, M.M.; Li, X.; Liu, Z.; Mustafa, S.K.; Ditta, A.; Hessini, K. Diminishing Heavy Metal Hazards of Contaminated Soil via Biochar Supplementation. Sustainability 2021, 13, 2742. [Google Scholar] [CrossRef]
- Naveed, M.; Tanvir, B.; Xiukang, W.; Brtnicky, M.; Ditta, A.; Kucerik, J.; Subhani, Z.; Nazir, M.Z.; Radziemska, M.; Saeed, Q.; et al. Co-composted Biochar Enhances Growth, Physiological, and Phytostabilization Efficiency of Brassica napus and Reduces Associated Health Risks under Chromium Stress. Front. Plant Sci. 2021, 12, 775785. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, S.; She, D.; Geng, Z.; Gao, H. Effects of Biochar on Soil and Fertilizer and Future Research. Chin. Agric. Sci. Bull. 2011, 27, 16–25. [Google Scholar]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. In Advances in Agronomy; Academic Press Inc. Elsevier Science: San Diego, CA, USA, 2010; Volume 105, pp. 47–82. [Google Scholar]
- Javeed, H.M.R.; Ali, M.; Ahmed, I.; Wang, X.; Al-Ashkar, I.; Qamar, R.; Ibrahim, A.; Habib-Ur-Rahman, M.; Ditta, A.; El Sabagh, A. Biochar Enriched with Buffalo Slurry Improved Soil Nitrogen and Carbon Dynamics, Nutrient Uptake and Growth Attributes of Wheat by Reducing Leaching Losses of Nutrients. Land 2021, 10, 1392. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, C.; Wang, Z.; Meng, J.; Chi, D.; Chen, T. Effects of rice straw biochar with different adsorption characteristics on ammonia volatilization from paddy field and rice yield. Trans. Chin. Soc. Agric. Eng. 2021, 37, 100–109. [Google Scholar]
- Murtaza, G.; Ahmed, Z.; Usman, M.; Tariq, W.; Ullah, Z.; Shareef, M.; Iqbal, H.; Waqas, M.; Tariq, A.; Wu, Y.; et al. Biochar induced modifications in soil properties and its impacts on crop growth and production. J. Plant Nutr. 2021, 44, 1677–1691. [Google Scholar] [CrossRef]
- Hui, Z.; Zheng-li, Y.; Liang-guo, L.U.O.; Qing-wen, Z.; Jun, Y.I.; Yong-sheng, W.; Yuan-yuan, C.; Ming, W. Study on the ammonia volatilization from paddy field in irrigation area of the Yellow River. Plant Nutr. Fertitizer Sci. 2011, 17, 1131–1139. [Google Scholar]
- Zhou, L.; Rong, X.; Xie, G.; Wang, X.; Xie, Y.; Ning, Q. Effects of Different Nitrogen Fertilizers on Ammonia Volatilization and Its Dynamic Characteristics of Double Cropping Rice. J. Soil Water Conserv. 2014, 28, 143–147. [Google Scholar]
- Zhou, M.; Ying, S.; Chen, J.; Jiang, P.; Teng, Y. Effects of biochar-based fertilizer on nitrogen use efficiency and nitrogen losses via leaching and ammonia volatilization from an open vegetable field. Environ. Sci. Pollut. Res. Int. 2021, 28, 65188–65199. [Google Scholar] [CrossRef]
- Li, Q.; Liao, N.; Zhang, N.; Ru, S.; Hou, Z. Effects of Cotton Stalk and Its Biochar on Ammonia Volatilization from a Drip Irrigated Cotton Field. J. Agro-Environ. Sci. 2014, 33, 1987–1994. [Google Scholar]
- Song, C.N.; Jiao, Y.; Yang, W.Z.; Yu, Y.Z.; Zhang, J.; Liu, Y.B. Research progress on the influence of irrigation methods on ammonia volatilization in farmland. In Proceedings of the 6th International Conference on Advances in Energy Resources and Environment Engineering, Chongqing, China, 20–22 November 2020. [Google Scholar]
- Peng, S.; Yang, S.; Xu, J. Ammonia volatilization and its influence factors of paddy field under water-saving irrigation. Trans. Chin. Soc. Agric. Eng. 2009, 25, 35–39. [Google Scholar]
- Dong, D.; Feng, Q.B.; McGrouther, K.; Yang, M.; Wang, H.L.; Wu, W.X. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J. Soils Sediments 2015, 15, 153–162. [Google Scholar] [CrossRef]
- Yang, S.H.; Peng, S.Z.; Xu, J.Z.; Yao, J.Q.; Jin, X.P.; Song, J. Characteristics and simulation of ammonia volatilization from paddy fields under different water and nitrogen management. Trans. Chin. Soc. Agric. Eng. 2012, 28, 99–104. [Google Scholar]
- Wang, Z.; Liu, X.; Ju, X.; Zhang, F. Field in situ determination of ammonia volatilization from soil: Venting method. Plant Nutr. Fertitizer Sci. 2002, 8, 205–209. [Google Scholar]
- Zhang, M.; Yao, Y.L.; Zhao, M.; Zhang, B.W.; Tian, Y.H.; Yin, B.; Zhu, Z.L. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field. Agric. Ecosyst. Environ. 2017, 247, 236–245. [Google Scholar] [CrossRef]
- Wang, X.; Guo, G.; Zheng, R.; Zhong, M.; Zhu, Y. Effect of Biochar on Abundance of N-Related Functional Microbial Communities in Degraded Greenhouse Soil. Acta Pedol. Sin. 2013, 50, 624–631. [Google Scholar]
- Jiang, Z.; Yang, S.; Pang, Q.; Xu, Y.; Chen, X.; Sun, X.; Qi, S.; Yu, W. Biochar improved soil health and mitigated greenhouse gas emission from controlled irrigation paddy field: Insights into microbial diversity. J. Clean. Prod. 2021, 318. [Google Scholar] [CrossRef]
- Liao, L.X.; Shao, X.H.; Ji, R.J.; Wen, T.; Xu, J.Z. Ammonia Volatilization from Direct Seeded Later-rice Fields as Affected by Irrigation and Nitrogen Managements. Int. J. Agric. Biol. 2015, 17, 582–588. [Google Scholar] [CrossRef]
- Xu, J.Z.; Peng, S.Z.; Hou, H.J.; Yang, S.H.; Luo, Y.F.; Wang, W.G. Gaseous losses of nitrogen by ammonia volatilization and nitrous oxide emissions from rice paddies with different irrigation management. Irrig. Sci. 2013, 31, 983–994. [Google Scholar] [CrossRef]
- Feng, Y.F.; Sun, H.J.; Xue, L.H.; Wang, Y.M.; Yang, L.Z.; Shi, W.M.; Xing, B.S. Sawdust biochar application to rice paddy field: Reduced nitrogen loss in floodwater accompanied with increased NH3 volatilization. Environ. Sci. Pollut. Res. 2018, 25, 8388–8395. [Google Scholar] [CrossRef]
- He, T.H.; Liu, D.Y.; Yuan, J.J.; Ni, K.; Zaman, M.; Luo, J.F.; Lindsey, S.; Ding, W.X. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agric. Ecosyst. Environ. 2018, 264, 44–53. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, Z.; Li, B.; Xu, X.; Xiong, Z. Effects of biochar reapplication on ammonia volatilization and nitrogen use efficiency during wheat season in a rice-wheat annual rotation system. J. Plant Nutr. Fertitizer 2017, 23, 1258–1267. [Google Scholar]
- Zhou, G.W.; Zhang, W.; Ma, L.J.; Guo, H.J.; Min, W.; Li, Q.; Liao, N.; Hou, Z.N. Effects of Saline Water Irrigation and N Application Rate on NH3 Volatilization and N use Efficiency in a Drip-Irrigated Cotton Field. Water Air Soil Pollut. 2016, 227, 103. [Google Scholar] [CrossRef]
- Sun, L.Y.; Li, L.; Chen, Z.Z.; Wang, J.Y.; Xiong, Z.Q. Combined effects of nitrogen deposition and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest soils. Soil Sci. Plant Nutr. 2014, 60, 254–265. [Google Scholar] [CrossRef]
- Xu, Y.-X.; He, L.-L.; Chen, J.-Y.; Liu, Y.-X.; Lyu, H.-H.; Wang, Y.-Y.; Yang, S.-M. Effects of biochar on ammonia volatilization from farmland soil: A review. J. Appl. Ecol. 2020, 31, 4312–4320. [Google Scholar] [CrossRef]
- Jia, Y.; Hu, Z.; Ba, Y.; Qi, W. Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency. Chem. Biol. Technol. Agric. 2021, 8, 3. [Google Scholar] [CrossRef]
- He, F.; Liang, Y.; Rong, X.; Liu, Q. Effects of biochar on ammonia volatilisation and soil properties of vegetable—Planting red soil in a laboratory. J. Yunnan Univ. Nat. Sci. 2014, 36, 299–304. [Google Scholar]
- Duan, J.; Xue, L.; Yin, A.; Feng, Y.; Yang, L. Rural low-pollution wastewater purification in Oenanthe Javanica wetland with biochar addition. J. Agro-Environ. Sci. 2017, 36, 353–361. [Google Scholar]
- Mandal, S.; Donner, E.; Smith, E.; Sarkar, B.; Lombi, E. Biochar with near-neutral pH reduces ammonia volatilization and improves plant growth in a soil-plant system: A closed chamber experiment. Sci. Total Environ. 2019, 697, 134114. [Google Scholar] [CrossRef]
- Esfandbod, M.; Phillips, I.R.; Miller, B.; Rashti, M.R.; Lan, Z.M.; Srivastava, P.; Singh, B.; Chen, C.R. Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand. Ecol. Eng. 2017, 98, 157–165. [Google Scholar] [CrossRef]
- Sun, H.J.; Zhang, H.L.; Min, J.; Feng, Y.F.; Shi, W.M. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy Water Environ. 2016, 14, 105–111. [Google Scholar] [CrossRef]
- Mandal, S.; Donner, E.; Vasileiadis, S.; Skinner, W.; Smith, E.; Lombi, E. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. Sci. Total Environ. 2018, 627, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Schomberg, H.H.; Gaskin, J.W.; Harris, K.; Das, K.C.; Novak, J.M.; Busscher, W.J.; Watts, D.W.; Woodroof, R.H.; Lima, I.M.; Ahmedna, M.; et al. Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil. J. Environ. Qual. 2012, 41, 1087–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, Q.F.; Chen, Q.H.; Yang, X.R.; Li, H.; Zheng, B.X.; Zhou, W.W.; Liu, X.X.; Dai, P.B.; Li, K.J.; Lin, X.Y. Effects of combined application of nitrogen fertilizer and biochar on the nitrification and ammonia oxidizers in an intensive vegetable soil. AMB Express 2017, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Laird, D.A.; Ahmedna, M.A.; Niandou, M.A.S. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 2010, 154, 281–288. [Google Scholar] [CrossRef]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Li, H.; Liang, X.Q.; Chen, Y.X.; Tian, G.M.; Zhang, Z.J. Ammonia volatilization from urea in rice fields with zero-drainage water management. Agric. Water Manag. 2008, 95, 887–894. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M. Biochar and the Nitrogen Cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef]
- Prommer, J.; Wanek, W.; Hofhansl, F.; Trojan, D.; Offre, P.; Urich, T.; Schleper, C.; Sassmann, S.; Kitzler, B.; Soja, G.; et al. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial. PLoS ONE 2014, 9, e86388. [Google Scholar] [CrossRef]
- Clough, T.J.; Bertram, J.E.; Ray, J.L.; Condron, L.M.; O’Callaghan, M.; Sherlock, R.R.; Wells, N.S. Unweathered Wood Biochar Impact on Nitrous Oxide Emissions from a Bovine-Urine-Amended Pasture Soil. Soil Sci. Soc. Am. J. 2010, 74, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.; Li, H.; Yang, J.; Zhu, W.; Yin, C.; Wang, X.; Xie, W.; Zhang, X. Combined application of biochar and N fertilizer shifted nitrification rate and amoA gene abundance of ammonia-oxidizing microorganisms in salt-affected anthropogenic-alluvial soil. Appl. Soil Ecol. 2022, 171, 104348. [Google Scholar] [CrossRef]
Month | Treatment | AOA | AOB | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chao1 | Observed_ Species | Shannon | Simpson | Goods_ Coverage | Chao1 | Observed_ Species | Shannon | Simpson | Goods_ Coverage | ||
July | CA | 454 | 373 | 3.819 | 0.816 | 0.995 | 450 | 391 | 4.580 | 0.915 | 1.000 |
CB | 436 | 362 | 3.767 | 0.816 | 0.996 | 429 | 370 | 4.748 | 0.923 | 1.000 | |
CC | 380 | 309 | 3.392 | 0.727 | 0.996 | 393 | 353 | 4.452 | 0.905 | 1.000 | |
FC | 469 | 389 | 3.935 | 0.824 | 0.995 | 562 | 516 | 4.287 | 0.884 | 0.999 | |
August | CA | 440 | 368 | 3.712 | 0.808 | 0.996 | 355 | 327 | 3.438 | 0.803 | 1.000 |
CB | 448 | 369 | 3.759 | 0.816 | 0.995 | 376 | 337 | 3.515 | 0.812 | 1.000 | |
CC | 421 | 352 | 3.733 | 0.813 | 0.996 | 361 | 325 | 3.483 | 0.808 | 1.000 | |
FC | 443 | 318 | 4.015 | 0.851 | 0.995 | 318 | 293 | 3.821 | 0.847 | 1.000 | |
September | CA | 230 | 177 | 4.588 | 0.918 | 0.998 | 417 | 370 | 4.463 | 0.909 | 1.000 |
CB | 244 | 194 | 4.801 | 0.922 | 0.997 | 432 | 371 | 4.809 | 0.928 | 1.000 | |
CC | 204 | 159 | 4.006 | 0.867 | 0.998 | 414 | 350 | 4.503 | 0.906 | 1.000 | |
FC | 212 | 164 | 3.723 | 0.822 | 0.998 | 402 | 353 | 4.214 | 0.891 | 1.000 |
AV Flux | NH4+-N Concentration | NO3−-N Concentration | TN Concentration | |
---|---|---|---|---|
AV flux | 1 | |||
NH4+-N concentration | 0.719 ** | 1 | ||
NO3−-N concentration | 0.525 ** | 0.378 ** | 1 | |
TN concentration | 0.658 ** | 0.783 ** | 0.563 ** | 1 |
AV Flux | Soil NH4+-N Content | Soil NO3−-N Content | Urease Activity | |
---|---|---|---|---|
AV flux | 1 | |||
Soil NH4+-N content | 0.160 | 1 | ||
Soil NO3−-N content | 0.809 ** | 0.381 | 1 | |
Urease activity | 0.562 * | 0.541 * | 0.726 ** | 1 |
AV Flux | Log AOA amoA Gene Copy Numbers | Log AOB amoA Gene Copy Numbers | |
---|---|---|---|
AV flux | 1 | ||
log AOA amoA gene copy numbers | 0.085 | 1 | |
log AOB amoA gene copy numbers | −0.39 | 0.654 * | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, S.; Ding, J.; Yang, S.; Jiang, Z.; Xu, Y. Impact of Biochar Application on Ammonia Volatilization from Paddy Fields under Controlled Irrigation. Sustainability 2022, 14, 1337. https://doi.org/10.3390/su14031337
Qi S, Ding J, Yang S, Jiang Z, Xu Y. Impact of Biochar Application on Ammonia Volatilization from Paddy Fields under Controlled Irrigation. Sustainability. 2022; 14(3):1337. https://doi.org/10.3390/su14031337
Chicago/Turabian StyleQi, Suting, Jie Ding, Shihong Yang, Zewei Jiang, and Yi Xu. 2022. "Impact of Biochar Application on Ammonia Volatilization from Paddy Fields under Controlled Irrigation" Sustainability 14, no. 3: 1337. https://doi.org/10.3390/su14031337
APA StyleQi, S., Ding, J., Yang, S., Jiang, Z., & Xu, Y. (2022). Impact of Biochar Application on Ammonia Volatilization from Paddy Fields under Controlled Irrigation. Sustainability, 14(3), 1337. https://doi.org/10.3390/su14031337