Polyhydroxyalkanoates Production by Mixed Microbial Culture under High Salinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Selection
2.2. PHAs Accumulation
2.3. Analytical Procedures
2.4. Calculations
3. Results and Discussion
3.1. Culture Selection: PHA-Accumulating MMC
3.2. PHAs Accumulation Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fish & Seafood—Worldwide|Statista Market Forecast. Available online: https://www.statista.com/outlook/cmo/food/fish-seafood/worldwide (accessed on 29 November 2021).
- Ching, Y.C.; Redzwan, G. Biological treatment of fish processing saline wastewater for reuse as liquid fertilizer. Sustainability 2017, 9, 1062. [Google Scholar] [CrossRef] [Green Version]
- Cleaner Production Assessment in Fish Processing. Available online: https://digitallibrary.un.org/record/441680 (accessed on 21 May 2021).
- Anh, H.T.H.; Shahsavari, E.; Bott, N.J.; Ball, A.S. Options for Improved Treatment of Saline Wastewater from Fish and Shellfish Processing. Front. Environ. Sci. 2021, 9, 236. [Google Scholar] [CrossRef]
- Lefebvre, O.; Moletta, R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 2006, 40, 3671–3682. [Google Scholar] [CrossRef] [PubMed]
- Dan, N.P.; Visvanathan, C.; Basu, B. Comparative evaluation of yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients. Bioresour. Technol. 2003, 87, 51–56. [Google Scholar] [CrossRef]
- Srivastava, A.; Parida, V.K.; Majumder, A.; Gupta, B.; Gupta, A.K. Treatment of saline wastewater using physicochemical, biological, and hybrid processes: Insights into inhibition mechanisms, treatment efficiencies and performance enhancement. J. Environ. Chem. Eng. 2021, 9, 105775. [Google Scholar] [CrossRef]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Polyhydroxyalkanoate (PHA) Market Global Forecast to 2025|MarketsandMarkets. Available online: https://www.marketsandmarkets.com/Market-Reports/pha-market-395.html?gclid=CjwKCAjw9MuCBhBUEiwAbDZ-7tH0vuR1VsKfgUvzT6jPuDry18A_H8vWVihQJFN_iN7OotkL2PVH7xoCDykQAvD_BwE (accessed on 29 November 2021).
- Oliveira, C.S.S.; Silva, C.E.; Carvalho, G.; Reis, M.A. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities. New Biotechnol. 2017, 37, 69–79. [Google Scholar] [CrossRef]
- Oliveira, C.S.S.; Silva, M.O.D.; Silva, C.E.; Carvalho, G.; Reis, M.A.M. Assessment of protein-rich cheese whey waste stream as a nutrients source for low-cost mixed microbial PHA production. Appl. Sci. 2018, 8, 1817. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.; Campanari, S.; Matteo, S.; Valentino, F.; Majone, M.; Villano, M. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures. New Biotechnol. 2017, 37, 90–98. [Google Scholar] [CrossRef]
- Ecoefficient Biodegradable Composite Advanced Packaging|ECOBIOCAP Project|FP7|CORDIS|European Commission. Available online: https://cordis.europa.eu/project/id/265669 (accessed on 20 November 2020).
- Koller, M.; Niebelschütz, H.; Braunegg, G. Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng. Life Sci. 2013, 13, 549–562. [Google Scholar] [CrossRef]
- Xiao, Y.; Roberts, D.J. A review of anaerobic treatment of saline wastewater. Environ. Technol. 2010, 31, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yin, J.; Liu, J.; Chen, T.; Shen, D. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl. Bioresour. Technol. 2019, 271, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.S.; Oliveira, J.V.; Pereira, C.; Carvalho, M.; Mesquita, D.P.; Alves, M.M. Volatile Fatty Acids (VFA) Production from Wastewaters with High Salinity—Influence of pH, Salinity and Reactor Configuration. Fermentation 2021, 7, 303. [Google Scholar] [CrossRef]
- Fra-Vázquez, A.; Pedrouso, A.; Val del Rio, A.; Mosquera-Corral, A. Volatile fatty acid production from saline cooked mussel processing wastewater at low pH. Sci. Total Environ. 2020, 732, 139337. [Google Scholar] [CrossRef]
- Palmeiro-Sánchez, T.; Oliveira, C.S.S.; Gouveia, A.R.; Noronha, J.P.; Ramos, A.M.; Mosquera-Corral, A.; Reis, M.A.M. NaCl presence and purification affect the properties of mixed culture PHAs. Eur. Polym. J. 2016, 85, 256–265. [Google Scholar] [CrossRef]
- Wen, Q.; Ji, Y.; Hao, Y.; Huang, L.; Chen, Z.; Sposob, M. Effect of sodium chloride on polyhydroxyalkanoate production from food waste fermentation leachate under different organic loading rate. Bioresour. Technol. 2018, 267, 133–140. [Google Scholar] [CrossRef]
- Pedrouso, A.; Fra-Vazquez, A.; Del Rio, A.V.; Mosquera-Corral, A. Recovery of Polyhydroxyalkanoates from Cooked Mussel Processing Wastewater at High Salinity and Acidic Conditions. Sustainability 2020, 12, 10386. [Google Scholar] [CrossRef]
- Argiz, L.; Fra-Vázquez, A.; del Río, Á.V.; Mosquera-Corral, A. Optimization of an enriched mixed culture to increase PHA accumulation using industrial saline complex wastewater as a substrate. Chemosphere 2020, 247, 125873. [Google Scholar] [CrossRef]
- Roibás-Rozas, A.; Val del Rio, A.; Hospido, A.; Mosquera-Corral, A. Strategies for the valorisation of a protein-rich saline waste stream into polyhydroxyalkanoates (PHA). Bioresour. Technol. 2021, 334, 124964. [Google Scholar] [CrossRef]
- APHA/AWWA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Wang, X.; Oehmen, A.; Freitas, E.B.; Carvalho, G.; Reis, M.A.M. The link of feast-phase dissolved oxygen (DO) with substrate competition and microbial selection in PHA production. Water Res. 2017, 112, 269–278. [Google Scholar] [CrossRef]
- Heinzle, E.; Biwer, A.P.; Cooney, C.L. Development of Sustainable Bioprocesses; John Wiley & Sons, Ltd: Chichester, UK, 2006. [Google Scholar]
- Obruca, S.; Sedlacek, P.; Koller, M.; Kucera, D.; Pernicova, I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 2018, 36, 856–870. [Google Scholar] [CrossRef] [PubMed]
- Prados, E.; Maicas, S. Bacterial Production of Hydroxyalkanoates (PHA). Univers. J. Microbiol. Res. 2016, 4, 23–30. [Google Scholar] [CrossRef]
- Soto, G.; Setten, L.; Lisi, C.; Maurelis, C.; Mozzicafreddo, M.; Cuccioloni, M.; Angeletti, M.; Ayub, N.D. Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Extremophiles 2012, 16, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Pujalte, M.J.; Lucena, T.; Ruvira, M.A.; Arahal, D.R.; Macián, M.C. The family Rhodobacteraceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 439–512. [Google Scholar] [CrossRef]
- Mezzolla, V.; D’Urso, O.F.; Poltronieri, P. Role of PhaC type I and type II enzymes during PHA biosynthesis. Polymers 2018, 10, 910. [Google Scholar] [CrossRef] [Green Version]
- Perez-Zabaleta, M.; Atasoy, M.; Khatami, K.; Eriksson, E.; Cetecioglu, Z. Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures. Bioresour. Technol. 2021, 323, 124604. [Google Scholar] [CrossRef]
- Van-Thuoc, D.; Huu-Phong, T.; Minh-Khuong, D.; Hatti-Kaul, R. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Production by a Moderate Halophile Yangia sp. ND199 Using Glycerol as a Carbon Source. Appl. Biochem. Biotechnol. 2015, 175, 3120–3132. [Google Scholar] [CrossRef]
- Chan, C.M.; Vandi, L.J.; Pratt, S.; Halley, P.; Ma, Y.; Chen, G.Q.; Richardson, D.; Werker, A.; Laycock, B. Understanding the effect of copolymer content on the processability and mechanical properties of polyhydroxyalkanoate (PHA)/wood composites. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105437. [Google Scholar] [CrossRef]
Parameter (Unit) | Average ± Standard Deviation | |
---|---|---|
OLR (CmmolVFA/(L.d)) | 60 | 120 |
FP profile (HAc/HPro/HBut/HVal,% Cmol basis) | 25:25:25:25 | 25:25:25:25 |
Feast/famine (h/h) | 14.0 ± 0.00 | 0.13 ± 0.01 |
X @cycle start (gX/L/CmolX/L) | 1.92 ± 0.04/75.8 ± 1.70 | 3.26 ± 0.34/129 ± 13.6 |
PHAmax (% wt., VSS basis) | 35.1 ± 1.56 | 49.2 ± 3.13 |
ΔPHAs ((% wt., VSS basis) | 5.70 ± 0.93 | 9.6 ± 1.76 |
HB/HV ratio (% wt. basis/Cmol basis) | 48:52/46:54 | 35:65/33:67 |
-qVFA (CmmolVFA/(C-mmolX.h)) | 0.40 ± 0.03 | 0.60 ± 0.04 |
-qHAc (CmmolHAc/(CmmolX.h)) | 0.08 ± 0.00 | 0.10 ± 0.01 |
-qHPro (CmmolHPro/(CmmolX.h)) | 0.10 ± 0.02 | 0.11 ± 0.03 |
-qHBut (CmmolHBut/(CmmolX.h)) | 0.09 ± 0.01 | 0.16 ± 0.03 |
-qHVal (CmmolHVal/(CmmolX.h)) | 0.13 ± 0.02 | 0.23 ± 0.03 |
qPHAs (CmmolPHA/(CmmolX.h)) | 0.20 ± 0.01 | 0.46 ± 0.01 |
qHB (CmmolHB/(CmmolX.h)) | 0.09 ± 0.00 | 0.12 ± 0.01 |
qHV (CmmolHV/(CmmolX.h)) | 0.11 ± 0.01 | 0.33 ± 0.04 |
qXfamine (CmmolX/(CmmolX.h)) | 0.06 ± 0.00 | 0.15 ± 0.02 |
-qPHAs (CmmolPHA/(CmmolX.h)) | 0.10 ± 0.03 | 0.36 ± 0.01 |
-qHB (CmmolHB/(CmmolX.h)) | 0.08 ± 0.02 | 0.13 ± 0.02 |
-qHV (CmmolHV/(CmmolX.h)) | 0.09 ± 0.03 | 0.23 ± 0.03 |
YPHA/VFA (CmmolPHA/CmmolVFA) | 0.60 ± 0.01 | 0.75 ± 0.04 |
YX/PHAs (CmmolX/CmmolPHA) | 0.70 ± 0.18 | 0.44 ± 0.03 |
Parameter (Unit) | Average ± Standard Deviation | |
---|---|---|
OLR (CmmolVFA/(L.d)) | 60 | 120 |
FP profile (HAc/HPro/HBut/HVal,% Cmol basis) | 25:25:25:25 | 25:25:25:25 |
X @inoculum (gX/L/CmolX/L) | 2.73/108 | 3.72/147 |
PHAs @inoculum (% wt., VSS basis) | 22.3 | 35.4 |
PHAmax (% wt., VSS basis) | 55.3 | 84.1 |
HB/HV ratio (% wt. basis/Cmol basis) | 49:51/47:53 | 37:63/35:65 |
-qVFAb (CmmolVFA/(C-mmolX.h)) | 0.41 ± 0.02 | 0.45 ± 0.04 |
qPHAb (CmmolPHA/(CmmolX.h)) | 0.24 ± 0.01 | 0.30 ± 0.01 |
YPHA/VFA (CmmolPHA/CmmolVFA) | 0.60 ± 0.05 | 0.67 ± 0.05 |
Volumetric PHA productivity (gPHA/(L.h)) | 0.30 a (0.32 b) | 0.77 a (0.84 b) |
Specific PHA productivity(gPHA/(gX.h)) | 0.11 a (0.12 b) | 0.21 a (0.28 b) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, J.M.; Marreiros, B.C.; Reis, M.A.M. Polyhydroxyalkanoates Production by Mixed Microbial Culture under High Salinity. Sustainability 2022, 14, 1346. https://doi.org/10.3390/su14031346
Carvalho JM, Marreiros BC, Reis MAM. Polyhydroxyalkanoates Production by Mixed Microbial Culture under High Salinity. Sustainability. 2022; 14(3):1346. https://doi.org/10.3390/su14031346
Chicago/Turabian StyleCarvalho, João M., Bruno C. Marreiros, and Maria A. M. Reis. 2022. "Polyhydroxyalkanoates Production by Mixed Microbial Culture under High Salinity" Sustainability 14, no. 3: 1346. https://doi.org/10.3390/su14031346
APA StyleCarvalho, J. M., Marreiros, B. C., & Reis, M. A. M. (2022). Polyhydroxyalkanoates Production by Mixed Microbial Culture under High Salinity. Sustainability, 14(3), 1346. https://doi.org/10.3390/su14031346