Bond Behavior of Basalt Fiber Reinforced Polymer Bars in Recycled Coarse Aggregate Concrete
Abstract
:1. Introduction
2. Research Objectives
3. Test Experiments
3.1. Material Specifications
3.2. Specimens Tested
3.3. Test Setup
4. Experimental Results and Discussions
4.1. Bond Stress–Slip Relationships
4.2. Failure Modes
4.3. Parameters That Influence Bond Resistance
4.3.1. Strength of Concrete
4.3.2. Bond Length
4.3.3. BFRP Bar Diameter
4.3.4. FRP Elastic Modulus
4.3.5. Bond Energy
5. Theoretical Predictions
5.1. Bond Resistance
5.2. Bond Stress–Slip Analytical Approaches
6. Conclusions
- In general, using recycled coarse aggregate concrete does not have a detrimental effect on the pull-out bond performance of the BFRP bar. Equal results were obtained for both the early stage stiffness and ultimate bond stress for normal and recycled aggregate concrete;
- Increasing the concrete strength or giving a longer bond length enhances the bond resistance and avoids the pull-out failure mode. When a sufficient bond length is supplied, the experimental results emphasize the bar’s tendency to fail via rupture;
- The introduction of BFRP bars in recycled coarse aggregate concrete caused a fluctuation in the bond stress–slip relation beyond the ultimate stress magnitude. In contrast, BFRP bars with larger diameters (12 mm) demonstrated greater bond resistance than those with lower diameters (8 mm);
- The experimental findings revealed that the surface treatment had a considerable impact on the FRP bond resistance rather than the fiber type. This is because the bar pull-out failure mechanism is detected at the contact of the bar’s outer surface layer and no failure is found inside the bar;
- In recycled coarse aggregate concrete, Orangun et al. equation’s accurately predicted the bond resistance for BFRP and GFRP bars; reasonable precision findings were achieved when implementing the CMR and BPE analytical approaches to predict the bond stress–slip relationships for BFRP and GFRP bars in recycled coarse aggregate concrete. The curve fitting parameters sr, β, α, and ρ are suggested to be 0.8, 0.5, 0.1, and 0.025, respectively. The bond stress–slip models proposed in this study can be used in finite element analysis to simulate the bar/concrete interfacial behavior of basalt reinforced concrete flexural members. However, these models can not be suggested for real practitioners because of the limited number of data on this subject;
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faza, S.; GangaRao, H. Glass FRP reinforcing bars for concrete. In Fiber Reinforced Plastic (FRP) for Concrete Structures: Properties and Applications; Elsevier Science: Amsterdam, The Netherlands, 1993; pp. 167–188. [Google Scholar]
- Ehsani, M.R. Glass-fiber reinforcing bars. In Alternative Materials for the Reinforcement and Prestressing of Concrete; Blackie Academic & Professional: London, UK, 1993; pp. 35–54. [Google Scholar]
- Mallic, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd ed.; CRC Press: New York, NY, USA, 2007. [Google Scholar]
- Palmieri, A.; Matthys, S.; Tierens, M. Basalt fibers: Mechanical properties and applications for concrete structures. In Proceedings of the International Conference on Concrete Solutions, Padua, Italy, 22–25 June 2009; CRC Press: London, UK, 2009; pp. 165–169. [Google Scholar]
- Nanni, A.; De Luca, A.; Zaded, H.J. Reinforced Concrete with FRP Bars: Mechanics and Design; CRC Press: New York, NY, USA, 2014. [Google Scholar]
- Militky, J.; Kovacic, V.; Rubnerova, J. Influence of thermal treatment on tensile failure of basalt fibers. Eng. Fract. Mech. 2002, 69, 1025–1033. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010, 31, 4244–4250. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Degradation of basalt fiber and glass fiber/epxy resin composites in seawater. Corros. Sci. 2011, 53, 426–431. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Iwashita, K.; Sasaki, T.; Hamaguchi, Y. Tensile fatigue behavior of FRP and hybrid FRP sheets. Compos. Part B 2010, 41, 396–402. [Google Scholar] [CrossRef]
- Mahroug, M.; Ashour, A.; Lam, D. Experimental response and code modelling of continuous concrete slabs reinforced with BFRP bars. Compos. Struct. 2014, 107, 664–674. [Google Scholar] [CrossRef]
- Ge, W.; Zhang, J.; Cao, D.; Tu, Y. Flexural behaviors of hybrid concrete beams reinforced with BFRP bars and steel bars. Constr. Build. Mater. 2015, 87, 28–37. [Google Scholar] [CrossRef]
- High, C.; Seliem, H.M.; Rizkallal, S.H. Use of basalt fibers for concrete structures. Constr. Build. Mater. 2015, 96, 37–46. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Peng, G.; Luo, Y.; Ying, Q. Experimental study on bond behavior between BFRP bar and engineered cementitious composite. Constr. Build. Mater. 2015, 95, 448–456. [Google Scholar] [CrossRef]
- Elgabbas, F.; Vincent, P.; Ahmed, E.A.; Benmokrane, B. Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams. Compos. Part B 2016, 91, 205–218. [Google Scholar] [CrossRef]
- El Refai, A.; Abed, F. Concrete contribution to shear strength of beams reinforced with basalt fiber-reinforced bars. Compos. Constr. 2016, 20, 04015082. [Google Scholar] [CrossRef]
- Hamad, R.; Johari, M.A.; Haddad, R. Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures. Constr. Build. Mater. 2017, 142, 521–535. [Google Scholar] [CrossRef]
- Li, L.; Hou, B.; Lu, Z.; Liu, F. Fatigue behavior of sea sand concrete beams reinforced with basalt fiber-reinforced polymer bars. Constr. Build. Mater. 2018, 179, 160–171. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, L.; Xia, L.; Luo, Y.; Taylor, S. Investigation of the behavior of SCC bridge deck slabs reinforced with BFRP bars under concentrated loads. Eng. Struct. 2018, 171, 500–515. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, S.; Gao, D.; Neaz, S.; Li, C. Flexural behavior of partially fiber-reinforced high-strength concrete beams reinforced with FRP bars. Compos. Struct. 2018, 161, 587–597. [Google Scholar] [CrossRef]
- Wang, L.; Song, Z.; Yi, J.; Li, J.; Fu, F.; Qian, K. Experimental studies on bond performance of BFRP bars reinforced coral aggregate concrete. Int. J. Concr. Struct. Mater. 2019, 13, 52. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, Y.; Song, G.; Chen, D.; Ye, Y. Identification of flexural damage mechanism of BFRP bars reinforced concrete beams using smart transducers based on time reversal method. Constr. Build. Mater. 2019, 220, 615–627. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, Y.; Kong, X.; Zhang, B.; Liu, S.; Feng, J.; Zhu, N.; Fan, H.; Jin, F. Blast response of one-way sea-sand seawater concrete slabs reinforced with BFRP bars. Constr. Build. Mater. 2020, 232, 117254. [Google Scholar] [CrossRef]
- Lu, Z.; Su, L.; Xian, G.; Lu, B.; Xie, J. Durability study of concrete-covered basalt fiber-reinforced polymer (BFRP) bars in marine environment. Compos. Struct. 2020, 234, 111650. [Google Scholar] [CrossRef]
- Chao, S.H.; Naaman, A.E.; Parra-Montesinos, G.J. Bond behavior of reinforcing bars in tensile strain-hardening fiber-reinforced cement composites. ACI Struct. J. 2009, 106, 897–906. [Google Scholar]
- Bandelt, M.J.; Billington, S.L. Bond behavior of steel reinforcement in high-performance fiber-reinforced cementitious composite flexural memebrs. Mater. Struct. 2016, 49, 71–86. [Google Scholar] [CrossRef]
- Bandelt, M.J.; Billington, S.L. Simulation of deformation capacity in reinforced high-performnace fiber-reinforced cementitious composite flexural members. J. Struct. Eng. 2018, 144, 04018188. [Google Scholar] [CrossRef]
- El Refai, A.; Ammar, M.; Masmoudi, R. Bond performance of basalt fiber-reinforced polymer bars to concrete. Compos. Constr. 2015, 19, 04014050. [Google Scholar] [CrossRef]
- Shen, D.; Ojha, B.; Shi, X.; Zhang, H.; Shen, J. Bond stress–slip relationship between basalt fiber-reinforced polymer bars and concrete using a pull-out test. Reinf. Plast. Compos. 2016, 35, 747–763. [Google Scholar] [CrossRef]
- ACI Committee. Guide for the Design and Construction for Structural Concrete Reinforced with FRP Bars; Report No. 440 1R-15; American Concrete Institute: Framington Hills, MI, USA, 2015. [Google Scholar]
- Altalmas, A.; El Refai, A.; Abed, F. Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions. J. Constr. Build. Mater. 2015, 81, 162–171. [Google Scholar] [CrossRef]
- El Refai, A.; Abed, F.; Altalmas, A. Bond durability of basalt fiber-reinforced polymer bars embedded in concrete under direct pullout conditions. Compos. Constr. 2015, 19, 04014078. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, G.; Xu, B.; Wang, X.; Taerwe, L. Bond durability of BFRP bars embedded in concrete under seawater conditions and long-term bond strength prediction. Mater. Des. 2016, 92, 552–562. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, G.; Zhao, X.L.; Zhu, H.; Lian, J.L. Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars. Constr. Build. Mater. 2018, 192, 671–682. [Google Scholar] [CrossRef]
- Hassan, M.; Benmokrane, B.; Elsafty, A.; Fam, A. Bond durability of basalt-fiber-reinforced (BFRP) bars embedded in concrete in aggressive environments. Compos. Part B 2016, 106, 262–272. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.L.; Xian, G.; Wu, G.; Singh, R.K.; Al-Saadi, S.; Haque, A. Long-term durability of basalt- and glass-fiber reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Constr. Build. Mater. 2017, 139, 467–489. [Google Scholar] [CrossRef]
- Bi, Q.; Wang, Q.; Wang, H. Study on bond properties of BFRP bars to basalt fiber reinforced concrete. Adv. Mater. Res. 2010, 163–167, 1251–1256. [Google Scholar] [CrossRef]
- Li, C.; Gao, D.; Wang, Y.; Tang, J. Effect of high temperature on the bond performance between basalt fiber reinforced polymer (BFRP) bars and concrete. Constr. Build. Mater. 2017, 141, 44–51. [Google Scholar] [CrossRef]
- Khanfour, M.A.; El Refai, A. Effect of freez-thaw cycles on concrete reinforced with basalt-fiber reinforced polymers (BFRP) bars. Constr. Build. Mater. 2017, 145, 135–146. [Google Scholar] [CrossRef]
- Sonawane, T.R.; Pimplikar, S.S. Use of recycled aggregate concrete. In Proceedings of the Second International Conference on Emerging Trends in Engineering (ICETET-09), Nagpur, India, 16–18 December 2009. [Google Scholar]
- Poon, C.S.; Shui, Z.H.; Lam, L.; Fok, H.; Kou, S.C. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem. Concr. Res. 2004, 34, 31–36. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cem. Concr. Compos. 2013, 37, 12–19. [Google Scholar] [CrossRef]
- Fonseca, N.; Brito, J.; Evangelista, L. The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cem. Concr. Compos. 2011, 33, 637–643. [Google Scholar] [CrossRef]
- Butler, L.; West, J.S.; Tighe, S.L. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem. Concr. Res. 2011, 41, 1037–1049. [Google Scholar] [CrossRef]
- Mefteh, H.; Kebaïli, O.; Oucief, H.; Berredjem, L.; Arabi, N. Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. J. Clean Prod. 2013, 54, 282–288. [Google Scholar] [CrossRef]
- Evangelista, L.; Brito, J. Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2007, 29, 397–401. [Google Scholar] [CrossRef]
- Gomes, M.; Brito, J. Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: Durability performance. Mater. Struct. 2009, 42, 663–675. [Google Scholar] [CrossRef]
- Kim, S.W.; Yun, H.D. Evaluation of the bond behavior of steel reinforcing bars in recycled fine aggregate concrete. Cem. Concr. Compos. 2014, 46, 8–18. [Google Scholar] [CrossRef]
- Guerra, M.; Ceia, F.; Brito, J.; Júlio, E. Anchorage of steel rebars to recycled aggregates concrete. Constr. Build. Mater. 2014, 72, 113–123. [Google Scholar] [CrossRef]
- Baena, M.; Torres, L.; Turon, A.; Llorens, M.; Barris, C. Bond behaviour between recycled aggregate concrete and glass fibre reinforced polymer bars. Constr. Build. Mater. 2016, 106, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yang, J.; Wang, X. Bond behavior between BFRP bars and recycled aggregate concrete reinforced with basalt fiber. Constr. Build. Mater. 2017, 135, 477–483. [Google Scholar] [CrossRef] [Green Version]
- American Concrete Institute. ACI E1-16; Aggregate for Concrete, ACI Committee E-701; American Concrete Institute: Farmington Hills, MI, USA, 2016. [Google Scholar]
- British Standards Institution. BS 8500-1 Complementary British Standard to BS EN206; Part 1-Methods of Specifying and Guidance for the Specifier; British Standards Institution: London, UK, 2015. [Google Scholar]
- PCA. High-Performance Concrete, 16th ed.; Design and Control of Concrete Mixtures; PCA: Washington, DC, USA, 2016. [Google Scholar]
- ASTM. ASTM Standard D7205/D7205M; Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars; ASTM: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM. ASTM Standard D7913/D7913M; Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete by Pullout Testing; ASTM: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Achillides, Z.; Pilakoutas, K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions. Compos. Constr. 2004, 2, 173–181. [Google Scholar] [CrossRef]
- Godat, A.; L’Hady, A.; Chaallal, O.; Neale, K.W. Bond behavior of the ETS FRP bar shear-strengthening method. Compos. Constr. 2012, 16, 529–539. [Google Scholar] [CrossRef]
- Moreno, D.M.; Trono, W.; Jen, G.; Ostertag, C.; Billington, S.L. Tension stiffening in reinforced high performance fiber reinforced cement-based composites. Cem. Concr. Compos. 2014, 50, 36–46. [Google Scholar] [CrossRef]
- Kang, S.B.; Tan, K.H.; Zhou, X.H.; Yang, B. Influence of reinforcement ratio on tension stiffening of reinforced engineered cementitious composites. Eng. Struct. 2017, 141, 251–262. [Google Scholar] [CrossRef]
- Benmokrane, B.; Xu, H.; Bellavance, E. Bond strength of cement grouted glass fibre reinforced plastic (GFRP) anchor bolts. Int. J. Rock Mech. Min. Sci. Geomech. 1996, 3, 455–465. [Google Scholar] [CrossRef]
- Arias, J.P.; Vazquez, A.; Escobar, M.M. Use of sand coating to improve bonding between GFRP bars and concrete. J. Compos. Mater. 2012, 46, 2271–2278. [Google Scholar] [CrossRef]
- Hu, Z.; Shah, Y.I.; Yao, P. Experimental and Numerical Study on Interface Bond Strength and Anchorage Performance of Steel Bars within Prefabricated Concrete. Materials 2021, 14, 3713. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Guizani, L.; Ouellet-Plamondon, C.M. On bond-slip response and development length of steel bars in pre-cracked concrete. Constr. Buidling Mater. 2019, 199, 560–573. [Google Scholar] [CrossRef]
- International Federation for Structural Concrete. Fib (CEB-FIB); Model Code 10—Fib Bulletin No. 65; Final Draft; International Federation for Structural Concrete: Lausanne, Switzerland, 2010. [Google Scholar]
- Orangun, C.O.; Jirsa, J.O.; Breen, J.E. A reevaluation of test data on development length and splices. J. Am. Concr. Inst. 1977, 74, 114–122. [Google Scholar]
- Darwin, D.; McCabe, S.L.; Idun, E.K.; Schoenekase, S.P. Development length criteria: Bars not confined by transverse reinforcement. ACI Struct. J. 1992, 89, 709–720. [Google Scholar]
- Cosenza, E.; Manfredi, G.; Realfonzo, R. Behavior and modeling of bond of FRP rebars to concrete. J. Compos. Constr. 1997, 1, 40–51. [Google Scholar] [CrossRef]
Mix Strength | Recycled Concrete 30 | Recycled Concrete 45 | Recycled Concrete 60 | Normal Concrete 30 |
---|---|---|---|---|
Cement (Kg/m3) | 448 | 600 | 500 | 448 |
Water (Kg/m3) | 203 | 210 | 135 | 203 |
Sand (Kg/m3) | 610 | 517 | 700 | 610 |
Aggregate (Kg/m3) | 1073 | 1073 | 1100 | 1073 |
Silica fume (Kg/m3) | - | - | 30 | - |
Water plasticizer (Kg/m3) | - | - | 14 | - |
Retarder (L/m3) | - | - | 1.8 | - |
Slump (mm) | 35 | 20 | 15 | 95 |
Bar Material | Tensile Strength (N/mm2) | Ultimate Strain (%) | Elastic Modulus (kN/mm2) |
---|---|---|---|
BFRP | 1017 | 2.12 | 48 |
GFRP | 1270 | 2.2 | 57 |
Specimen | Type of Concrete | Concrete Strength (MPa) | Ultimate Bond Load (kN) | Mean Bond Load (kN) | Mean Bond Strength (N/mm2) | Ultimate Slip (mm) | Mode of Failure |
---|---|---|---|---|---|---|---|
B8-RC30-L5-1 | Recycled-coarse aggregate concrete | 30 | 22.0 | 21.5 | 21.4 | 2.29 | Bar pull-out |
B8-RC30-L5-2 | 20.9 | Bar pull-out | |||||
B10-RC30-L5-1 | 30 | 33.6 | 36.8 | 23.4 | 20.09 | Bar pull-out | |
B10-RC30-L5-2 | 39.4 | Bar pull-out | |||||
B10-RC30-L5-3 | 37.3 | Bar pull-out | |||||
B12-RC30-L5-1 | 30 | 57.7 | 55.9 | 24.7 | 4.19 | Bar pull-out | |
B12-RC30-L5-2 | 57.0 | Bar pull-out | |||||
B12-RC30-L5-3 | 52.9 | Bar pull-out | |||||
B12-RC45-L5-1 | 45 | 61.6 | 62.7 | 27.7 | 9.08 | Block splitting | |
B12-RC45-L5-2 | 62.9 | Block splitting | |||||
B12-RC45-L5-3 | 63.7 | Block splitting | |||||
B12-RC60-L5-1 | 60 | 64.7 | 63.3 | 28.0 | 1.02 | Block splitting | |
B12-RC60-L5-2 | 63.7 | Block splitting | |||||
B12-RC60-L5-3 | 61.6 | Block splitting | |||||
B12-RC30-L10-1 | 30 | 77.3 | 76.6 | 16.9 | 2.90 | Block splitting | |
B12-RC30-L10-2 | 80.3 | Block splitting | |||||
B12-RC30-L10-3 | 72.3 | Block splitting | |||||
B12-RC30-L15-1 | 30 | 93.4 | 91.5 | 13.5 | 4.64 | FRP rupture | |
B12-RC30-L15-2 | 98.0 | FRP rupture | |||||
B12-RC30-L15-3 | 83.2 | Block splitting | |||||
G12-RC30-L5-1 | 30 | 58.5 | 57.1 | 25.2 | 2.17 | Bar pull-out | |
G12-RC30-L5-2 | 51.8 | Bar pull-out | |||||
G12-RC30-L5-3 | 61.0 | Bar pull-out | |||||
G12-RC45-L5-1 | 45 | 56.1 | 52.0 | 23.0 | 2.01 | Bar pull-out | |
G12-RC45-L5-2 | 49.0 | Bar pull-out | |||||
G12-RC45-L5-3 | 51.0 | Bar pull-out | |||||
G12-RC60-L5-1 | 60 | 64.6 | 58.8 | 26.0 | 3.34 | Block splitting | |
G12-RC60-L5-2 | 59.2 | Block splitting | |||||
G12-RC60-L5-3 | 52.6 | Bar pull-out | |||||
B12-NC30-L5-1 | Normal-aggregate concrete | 30 | 52.9 | 54.5 | 24.1 | 2.86 | Bar pull-out |
B12-NC30-L5-2 | 53.5 | Bar pull-out | |||||
B12-NC30-L5-3 | 57.0 | Bar pull-out | |||||
G12-NC30-L5-1 | 30 | 49.5 | 45.9 | 20.3 | 2.21 | Bar pull-out | |
G12-NC30-L5-2 | 42.2 | Bar pull-out | |||||
G12-NC30-L5-3 | 46.1 | Bar pull-out |
Specimen | E1 (N/mm) | E2 (N/mm) | Etot (N/mm) | E1/Etot | E2/Etot |
---|---|---|---|---|---|
B8-RC30-L5 | 40.26 | 105.81 | 146.07 | 0.28 | 0.72 |
B10-RC30-L5 | 377.47 | 0 | 377.47 | 1.00 | 0.00 |
B12-RC30-L5 | 86.04 | 300.13 | 386.17 | 0.22 | 0.78 |
B12-RC45-L5 | 181.74 | 0 | 181.74 | 1.00 | 0.00 |
B12-RC60-L5 | 30.02 | 358.64 | 388.66 | 0.08 | 0.92 |
B12-RC30-L10 | 35.46 | 27.22 | 62.68 | 0.57 | 0.43 |
B12-RC30-L15 | 32.39 | 7.09 | 39.48 | 0.82 | 0.18 |
G12-RC30-L5 | 52.44 | 121.65 | 174.09 | 0.30 | 0.70 |
G12-RC45-L5 | 49.97 | 122.31 | 172.28 | 0.29 | 0.71 |
G12-RC60-L5 | 74.09 | 62.30 | 136.39 | 0.54 | 0.46 |
B12-NC30-L5 | 67.52 | 39.25 | 106.77 | 0.46 | 0.54 |
G12-NC30-L5 | 35.48 | 56.93 | 92.41 | 0.38 | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godat, A.; Alghafri, E.; Al Tamimi, N.; Aljaberi, H.; Aldaweela, S. Bond Behavior of Basalt Fiber Reinforced Polymer Bars in Recycled Coarse Aggregate Concrete. Sustainability 2022, 14, 1374. https://doi.org/10.3390/su14031374
Godat A, Alghafri E, Al Tamimi N, Aljaberi H, Aldaweela S. Bond Behavior of Basalt Fiber Reinforced Polymer Bars in Recycled Coarse Aggregate Concrete. Sustainability. 2022; 14(3):1374. https://doi.org/10.3390/su14031374
Chicago/Turabian StyleGodat, Ahmed, Ebtesam Alghafri, Noura Al Tamimi, Hamda Aljaberi, and Shaima Aldaweela. 2022. "Bond Behavior of Basalt Fiber Reinforced Polymer Bars in Recycled Coarse Aggregate Concrete" Sustainability 14, no. 3: 1374. https://doi.org/10.3390/su14031374
APA StyleGodat, A., Alghafri, E., Al Tamimi, N., Aljaberi, H., & Aldaweela, S. (2022). Bond Behavior of Basalt Fiber Reinforced Polymer Bars in Recycled Coarse Aggregate Concrete. Sustainability, 14(3), 1374. https://doi.org/10.3390/su14031374