How OFDI Promotes High-Technology Multinationals’ Innovation: From the Perspective of a Cross-Border Business Model
Abstract
:1. Introduction
2. Theory and Hypotheses
2.1. Outward Foreign Direct Investment
- The difference between the OFDI of developing and developed countries.
- 2.
- The analysis of Chinese enterprises’ OFDI.
2.2. Innovation Quality of High-Tech Enterprises
2.3. OFDI and Innovation Quality of Chinese High-Tech Enterprises
2.4. OFDI, Knowledge Absorptive Capacity and Innovation Quality
- OFDI and knowledge absorptive capacity
- 2.
- The non-linear mediating effect of knowledge absorptive capacity
3. Data and Methods
3.1. Sample
3.2. Variables and Definitions
3.3. Methods
4. Results
4.1. Measure Validation and Descriptive Statistics
4.2. Inter-Group Heteroscedasticity, Autocorrelation, and Simultaneous Correlation Tests
4.3. Hypotheses Tests
4.4. Post Hoc Analysis
4.5. Endogeneity Test
5. Discussion and Conclusions
5.1. Research Conclusions
5.2. Theoretical Implications and Contributions
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haner, U.-E. Innovation quality—A conceptual framework. Int. J. Prod. Econ. 2002, 80, 31–37. [Google Scholar] [CrossRef]
- Voss, G.B.; Sirdeshmukh, D.; Voss, Z.G. The effects of slack resources and environmental threat on product exploration and exploitation. Acad. Manag. J. 2008, 51, 147–164. [Google Scholar] [CrossRef] [Green Version]
- Bernard, A.; Jensen, J.B.; Schott, P. Importers, Exporters, and Multinationals: A Portrait of Firms in the U.S. That Trade Goods. In Producer Dynamics: New Evidence from Micro Data; National Bureau of Economic Research: Cambridge, UK, 2005; pp. 513–552. [Google Scholar]
- Wang, C.; Hong, J.; Kafouros, M.; Boateng, A. What drives outward FDI of Chinese firms? Testing the explanatory power of three theoretical frameworks. Int. Bus. Rev. 2012, 21, 425–438. [Google Scholar] [CrossRef]
- Jordan, J.; Lowe, J.; Taylor, P. Strategy and Financial Policy in UK Small Firms. J. Bus. Financ. Account. 1998, 25, 1–27. [Google Scholar] [CrossRef]
- Lichtenthaler, U. Open Innovation: Past Research, Current Debates and Future Directions. Acad. Manag. Perspect. 2011, 2, 75–93. [Google Scholar]
- Nonaka, I.; von Krogh, G.; Voelpel, S. Organizational Knowledge Creation Theory: Evolutionary Paths and Future Advances. Organ. Stud. 2006, 27, 1179–1208. [Google Scholar] [CrossRef]
- Bourgeois, L.J. On the Measurement of Organizational Slack. Acad. Manag. Rev. 1981, 6, 29–39. [Google Scholar] [CrossRef]
- Hymer, S. The Efficiency (Contradictions) of Multinational Corporations. Am. Econ. Rev. 1970, 60, 441–448. [Google Scholar]
- Fan, H.; Lin, F.; Tang, L. Minimum Wage and Outward FDI from China. J. Dev. Econ. 2018, 135, 1–19. [Google Scholar] [CrossRef]
- Caves, R.E. International Corporations: The Industrial Economics of Foreign Investment. Economica 1971, 38, 1–27. [Google Scholar] [CrossRef]
- Bailey, M.A.; Strezhnev, A.; Voeten, E. Estimating Dynamic State Preferences from United Nations Voting Data. J. Confl. Resolut. 2016, 61, 430–456. [Google Scholar] [CrossRef]
- Rugman, A.M.; Li, J. Will China’s Multinationals Succeed Globally or Regionally? Eur. Manag. J. 2007, 25, 333–343. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Adams, S.; Leirvik, T. Foreign direct investment and renewable energy in climate change mitigation: Does governance matter? J. Clean. Prod. 2020, 263, 121262. [Google Scholar] [CrossRef]
- Desbordes, R.; Wei, S.-J. The effects of financial development on foreign direct investment. J. Dev. Econ. 2017, 127, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Isaksson, A.-S.; Kotsadam, A. Chinese aid and local corruption. J. Public Econ. 2018, 159, 146–159. [Google Scholar] [CrossRef]
- Juran, J.M. On Quality by Design: The New Steps for Planning Quality into Goods and Services; Free Press: New York, NY, USA, 1992. [Google Scholar]
- Dhahri, S.; Omri, A. Are international capital flows really matter for achieving SDGs 1 and 2: Ending poverty and hunger? Rev. World Econ. 2020, 156, 731–767. [Google Scholar] [CrossRef]
- Wells, L.T. Third World Multinationals: The Rise of Foreign Investments from Developing Countries; The MIT Press: Cambridge, MA, USA, 1983. [Google Scholar]
- Sarkodie, S.A.; Strezov, V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Sci. Total Environ. 2019, 646, 862–871. [Google Scholar] [CrossRef]
- Wiklund, J.; Shepherd, D. Entrepreneurial orientation and small business performance: A configurational approach. J. Bus. Ventur. 2005, 20, 71–91. [Google Scholar] [CrossRef]
- Deng, P. What determines performance of cross-border M&As by Chinese companies? An absorptive capacity perspective. Thunderbird Int. Bus. Rev. 2010, 52, 509–524. [Google Scholar] [CrossRef]
- Wang, C.L. Entrepreneurial Orientation, Learning Orientation and Firm Performance. Entrep. Theory Pract. 2008, 32, 63–657. [Google Scholar] [CrossRef]
- Zhang, F.; Gallagher, K.S. Innovation and technology transfer through global value chains: Evidence from China’s PV industry. Energy Policy 2016, 94, 191–203. [Google Scholar] [CrossRef]
- Liu, T.; Wang, X.; Wing, T.W. The road to international currency: Global perspective and Chinese experience. Emerg. Mark. Rev. 2019, 38, 73–101. [Google Scholar] [CrossRef]
- Cheng, L.K.; Ma, Z. China’s Outward Foreign Direct Investment. In China’s Growing Role in World Trade; Feenstra, R.C., Wei, S.J., Eds.; University of Chicago Press: Chicago, IL, USA, 2010; pp. 545–578. [Google Scholar] [CrossRef]
- Thomas, L.S. Financing the Sustainable Development Goals. Sustainability 2020, 12, 2775. [Google Scholar]
- Bezuidenhout, H.; Kleynhans, E.P.J. Modern Trends in Chinese Foreign Direct Investment in Africa: An OLI Approach. Manag. Glob. Transit. 2018, 16, 279–300. [Google Scholar] [CrossRef]
- Bloom, N.; Reenen, J.V. Measuring and Explaining Management Practices Across Firms and Countries. Q. J. Econ. 2007, 122, 1351–1408. [Google Scholar] [CrossRef]
- Manova, K. Credit constraints, equity market liberalizations and international trade. J. Int. Econ. 2008, 76, 33–47. [Google Scholar] [CrossRef]
- Li, P.; Lu, Y.; Wang, J. Does flattening government improve economic performance? Evidence from China. J. Dev. Econ. 2016, 123, 18–37. [Google Scholar] [CrossRef]
- Nocke, V.; Yeaple, S. Cross-border mergers and acquisitions vs. greenfield foreign direct investment: The role of firm heterogeneity. J. Int. Econ. 2007, 72, 336–365. [Google Scholar] [CrossRef]
- Chesbrough, H.; Crowther, A.K. Beyond high tech: Early adopters of open innovation in other industries. R&D Manag. 2006, 36, 229–236. [Google Scholar] [CrossRef]
- Conconi, P.; Sapir, A.; Zanardi, M. The internationalization process of firms: From exports to FDI. J. Int. Econ. 2016, 99, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Daniel, F.; Lohrke, F.T.; Fornaciari, C.J.; Turner, R. Slack resources and firm performance: A meta-analysis. J. Bus. Res. 2004, 57, 565–574. [Google Scholar] [CrossRef]
- West, J.; Gallagher, S. Challenges of open innovation: The paradox of firm investment in open-source software. R&D Manag. 2006, 36, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.W.; Lien, Y.C.; Chen, H. R&D internationalization and innovation performance. Int. Bus. Rev. 2015, 24, 187–195. [Google Scholar]
- DeAngelo, H.; DeAngelo, L.; Whited, T.M. Capital structure dynamics and transitory debt. J. Financ. Econ. 2011, 99, 235–261. [Google Scholar] [CrossRef]
- Globerman, S.; Shapiro, D. Global Foreign Direct Investment Flows: The Role of Governance Infrastructure. World Dev. 2002, 30, 1899–1919. [Google Scholar] [CrossRef]
- Mansfield, E.D.; Pevehouse, J.C. Trade Blocks, Trade Flows, and International Conflict. Int. Organ. 2000, 54, 775–808. [Google Scholar] [CrossRef]
- Pradhan, J.P. Emerging Multinationals: A Comparison of Chinese and Indian Outward Foreign Direct Investment. Inst. Econ. 2011, 3, 113–148. [Google Scholar]
- Zahra, S.A.; George, G. Absorptive capacity: A review, reconceptualization, and extension. Acad. Manag. Rev. 2002, 27, 185–203. [Google Scholar] [CrossRef]
- Harford, J. Corporate Cash Reserves and Acquisitions. J. Finance 1999, 54, 1969–1997. [Google Scholar] [CrossRef]
- Nohria, N.; Gulati, R. Is slack good or bad for innovation. Acad. Manag. J. 1996, 39, 1245–1264. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, W.-T.; Cheng, K.-Y. Family Ownership and the International Involvement of Taiwan’s High-Technology Firms: The Moderating Effect of High-Discretion Organizational Slack. Manag. Organ. Rev. 2011, 7, 201–222. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.G.; Collins, C.J.; Clark, K.D. Existing Knowledge, Knowledge Creation Capability, and the Rate of New Product Introduction in High-Technology Firms. Acad. Manag. J. 2005, 48, 346–357. [Google Scholar] [CrossRef]
- Cohen, W.M.; Levinthal, D.A. Absorptive capacity: A new perspective on learning and innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Scott, J. Absorptive Capacity and the Efficiency of Research Partnerships. Technol. Anal. Strat. Manag. 2003, 15, 247–253. [Google Scholar] [CrossRef]
- Romer, P.M. Endogenous Technological Change. J. Political Econ. 1990, 98, 71–102. [Google Scholar] [CrossRef] [Green Version]
- Park, W.G. International Patent Protection:1960-2005. Res. Policy 2008, 37, 761–766. [Google Scholar] [CrossRef]
- Amore, M.; Schneider, C.; Žaldokas, A. Credit supply and corporate innovation. J. Financ. Econ. 2013, 109, 835–855. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.H. Whether does trade liberalization promotes the productive efficiency of manufacturing enterprises. World Econ. 2013, 11, 51–71. [Google Scholar]
- Foster, N. Intellectual property rights and the margins of international trade. J. Int. Trade Econ. Dev. 2012, 23, 1–30. [Google Scholar] [CrossRef]
- James, M.; Thomas, F. Trade and direct investment in producer services and the domestic market for expertise. Can. J. Econ. 2005, 38, 758–777. [Google Scholar]
- Zhong, X.J. Foreign direct investment in service industry and service structure upgrading: An empirical study. JinNan J. 2015, 2005, 155–163. [Google Scholar]
- Ren, H.L.; Liu, H.H. A study on the impact of productive service trade on the international competitiveness of manufacturing industry: An empirical analysis based on China. Technol. Innov. Manag. 2010, 30, 323–326. [Google Scholar]
- Hansen, B.E. Sample Splitting and Threshold Estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W.M.; Goto, A.; Nagata, A.; Nelson, R.; Walsh, J.P. R&D Spillovers, Patents and the Incentives to Innovate in Japan and the United States. Res. Policy 2002, 31, 1349–1367. [Google Scholar]
- Hall, B.; Helmers, C.; Rogers, M.; Sena, V. The Choice between Formal and Informal Intellectual Property: A Literature Review. J. Econ. Lit. 2015, 52, 375–423. [Google Scholar] [CrossRef] [Green Version]
- De Leenheer, P.; Christiaens, S.; Meersman, R. Business semantics management: A case study for competency-centric HRM. Comput. Ind. 2010, 61, 760–775. [Google Scholar] [CrossRef]
- Redding, S.; Venables, A. Economic geography and international inequality. J. Int. Econ. 2004, 62, 53–82. [Google Scholar] [CrossRef] [Green Version]
- Yoo, Y.; Henfridsson, O.; Lyytinen, K. Research Commentary—The New Organizing Logic of Digital Innovation: An Agenda for Information Systems Research. Inf. Syst. Res. 2010, 21, 724–735. [Google Scholar] [CrossRef]
- Teece, D.J. Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world. Res. Pol. 2018, 47, 1367–1387. [Google Scholar] [CrossRef]
- Edwards, J.R.; Lambert, L.S. Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychol. Methods 2007, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Kurmanov, N.; Aliev, U.; Suleimenova, S. Analysis of the Efficiency of Innovation Management in the Countries of the Eurasian Economic Union. Pol. J. Manag. Stud. 2019, 19, 204–214. [Google Scholar] [CrossRef]
- Imran, M.; Jian, Z.; ul Haque, A.; Urbański, M.; Nair, S.L.S. Determinants of firm’s export performance in China’s automobile industry. Sustainability 2018, 10, 4078. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, M.; Lobo, C.A.; Pereira, C.S.; Durão, N.; Maldonado, I. A possible relationship between internationalization and innovation strategies: An analysis of portuguese smes. Pol. J. Manag. Stud. 2021, 23, 74–90. [Google Scholar] [CrossRef]
Variable | Definition |
---|---|
OFDI | The ratio of OFDI to GDP over the same period |
Innovative quality (IQ) | The ratio of patents invented to patents filed |
Knowledge absorptive capacity (KA) | The ratio of R & D expenditure to net assets |
Firm size (Size) | Natural logarithm of total assets at the end of each year |
Firm age (Age) | Natural logarithm of the number of days from the date of incorporation of the parent company to the end of each year (December 31) |
Firm performance (BP) | Total net assets margin |
Operational efficiency (Operation) | Annual total assets turnover rate |
Industry growth rate (Growth) | The growth rate of total assets at the end of the year relative to total assets at the beginning of the year |
Environmental instability (EI) | The variance of ROA (return on assets = net profit after tax/total assets) over the previous three years |
Overseas R&D depth (ORDD) | Number of a firm’s foreign R&D subsidiaries divided by the total number of foreign subsidiaries in a given year |
Overseas R&D breadth (ORDB) | Number of countries or regions in which the company has invested in overseas R&D subsidiaries |
Variable | Obs | Std. Dev. | Mean | Minimum | Maximum |
---|---|---|---|---|---|
OFDI | 2868 | 1.206 | 2.388 | 0.002 | 6.987 |
IQ | 2868 | 0.245 | 0.160 | 0.005 | 1.000 |
KA | 2868 | 1.345 | 3.974 | 0.268 | 7.126 |
Size | 2868 | 1.247 | 12.092 | 6.144 | 17.059 |
Age | 2868 | 1.526 | 12.956 | 8.004 | 18.335 |
FP | 2868 | 1.526 | 6.048 | 1.097 | 11.427 |
Operation | 2868 | 0.406 | 0.679 | 0.006 | 3.835 |
Growth | 2868 | 1.863 | 2.994 | 1.001 | 7.999 |
EI | 2868 | 0.112 | 0.101 | 0.001 | 0.730 |
ORDD | 2868 | 0.400 | 0.145 | 0.000 | 5.690 |
ORDB | 2868 | 0.767 | 2.363 | 0.142 | 6.541 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
---|---|---|---|---|---|---|---|---|---|---|---|
Size | - | ||||||||||
Age | 0.370 *** | - | |||||||||
FP | 0.576 *** | 0.631 *** | - | ||||||||
Operation | −0.199 *** | 0.062 *** | 0.059 *** | - | |||||||
growth | −0.265 *** | −0.394 *** | −0.327 *** | 0.009 | - | ||||||
EI | −0.029 | −0.126 *** | −0.118 *** | −0.136 *** | 0.105 *** | - | |||||
ORDD | 0.139 *** | 0.236 *** | 0.477 *** | 0.216 *** | −0.153 *** | −0.452 *** | - | ||||
ORDB | 0.381 *** | 0.359 *** | 0.360 *** | 0.225 *** | 0.117 *** | 0.461 ** | 0.307 *** | - | |||
IQ | −0.011 | 0.054 *** | 0.063 *** | 0.077 *** | −0.221 *** | −0.216 *** | −0.248 *** | 0.009 | 3.810 | ||
KA | 0.405 *** | 0.328 *** | 0.323 *** | −0.095 | −0.124 *** | 0.535 *** | 0.273 *** | 0.718 *** | 0.346 *** | 4.590 | |
OFDI | 0.504 *** | 0.468 *** | 0.469 *** | −0.138 *** | 0.273 *** | −0.046 *** | −0.180 *** | 0.539 *** | 0.183 *** | 0.413 *** | 5.760 |
H0: Sigma(i)^2 = Sigma^2 for All i | |
---|---|
chi2 (27) | 790.75 |
Prob > chi2 | 0.000 |
Fixed effects | YES |
H0: No First-Order Autocorrelation | |
---|---|
F | 4.920 |
Prob > F | 0.0623 |
Fixed Effects | YES |
Breusch–Pagan LM test of independence | 93.107 |
Pr | 0.0193 |
Fixed effects | YES |
Variable | Innovation Quality (IQ) | ||||
---|---|---|---|---|---|
(OLS) | (AR) | (PSAR) | (PCSE) | (FGLS) | |
Size | −0.046 *** (0.011) | −0.051 *** (0.019) | −0.049 *** (0.023) | −0.062 *** (0.021) | −0.044 *** (0.009) |
Age | −0.227 (0.672) | −0.209 (0.613) | −0.352 (0.592) | −0.209 (0.672) | −0.371 * (0.501) |
FP | 0.038 (0.054) | 0.032 (0.063) | 0.029 (0.092) | 0.002 (0.101) | 0.073 (0.048) |
Operation | −0.126 *** (0.017) | −0.178 *** (0.019) | −0.203 *** (0.020) | −0.217 *** (0.011) | −0.302 *** (0.008) |
Growth | −0.165 *** (0.022) | −0.153 *** (0.019) | −0.187 *** (0.015) | −0.111 *** (0.013) | −0.159 *** (0.021) |
EI | −0.758 *** (0.089) | −0.663 *** (0.084) | −0.715 *** (0.076) | −0.698 *** (0.099) | −0.652 *** (0.071) |
ORDD | −0.099 *** (0.011) | −0.115 *** (0.016) | −0.146 *** (0.019) | −0.194 *** (0.009) | −0.159 *** (0.012) |
ORDB | 0.238 (0.017) | 0.241 ** (0.020) | 0.257 ** (0.016) | 0.236 ** (0.025) | 0.279 *** (0.019) |
OFDI | −0.031 (0.014) | −0.056 (0.016) | −0.062 (0.013) | −0.071 (0.020) | −0.126 ** (0.018) |
OFDI2 | −0.025 * (0.001) | −0.086 ** (0.002) | −0.071 ** (0.001) | −0.112 ** (0.001) | −0.096 ** (0.002) |
KA | −0.023 * (0.006) | −0.029 ** (0.004) | −0.026 ** (0.002) | −0.031 ** (0.003) | −0.037 *** (0.001) |
KA*OFDI | 0.013 * (0.005) | 0.024 *** (0.001) | 0.033 *** (0.003) | 0.021 *** (0.002) | 0.034 *** (0.001) |
Adjusted-R2 | 0.217 | 0.358 | 0.416 | 0.559 | 0.623 |
Fixed effects | YES | YES | YES | YES | YES |
Variable | Knowledge Absorptive Capacity (KA) | ||||
---|---|---|---|---|---|
(OLS) | (AR) | (PSAR) | (PCSE) | (FGLS) | |
Size | −0.091 (0.131) | −0.102 (0.090) | −0.093 (0.251) | −0.112 (0.096) | −0.136 * (0.087) |
Age | 14.249 (4.163) | 13.176 (4.098) | 12.091 * (2.997) | 14.794 ** (2.655) | 12.315 ** (1.963) |
FP | −1.327 *** (0.418) | −1.019 *** (0.551) | −1.465 ** (1.451) | −2.072 *** (1.643) | −1.618 *** (0.832) |
Operation | −0.468 *** (0.126) | −0.453 *** (0.130) | −0.427 *** (0.247) | −0.596 *** (0.265) | −0.537 *** (0.118) |
Growth | −0.095 (0.246) | −0.087 (0.201) | −0.108 * (0.176) | −0.115 ** (0.143) | −0.109 ** (0.152) |
EI | −2.334 *** (0.617) | −2.118 *** (0.599) | −1.942 *** (0.608) | −2.681 *** (0.507) | −1.993 *** (0.492) |
ORDD | 0.252 * (0.138) | 0.241 *** (0.133) | 0.317 *** (0.152) | 0.208 *** (0.179) | 0.291 *** (0.107) |
ORDB | 1.095 * (0.102) | 1.378 *** (0.091) | 1.491 *** (0.096) | 2.015 *** (0.132) | 1.534 *** (0.083) |
OFDI | 0.332 * (0.088) | 0.318 ** (0.076) | 0.297 ** (0.092) | 0.372 ** (0.128) | 0.405 *** (0.079) |
OFDI2 | −0.128 ** (0.014) | −0.107 ** (0.033) | −0.086 ** (0.102) | −0.119 *** (0.084) | −0.219 *** (0.009) |
Adjusted-R2 | 0.322 | 0.393 | 0.573 | 0.541 | 0.619 |
Fixed effects | YES | YES | YES | YES | YES |
Variable | Comprehensive FGIS Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Low-Degree OFDI Group(N = 240) | High-Degree OFDI Group(N = 238) | |||||||||
KA | KA | IQ | IQ | IQ | KA | KA | IQ | IQ | IQ | |
Size | 0.056 (0.080) | 0.061 (0.082) | −0.088 *** (0.019) | −0.091 *** (0.020) | −0.103 ** (0.017) | −0.109 (0.142) | −0.128 (0.143) | 0.035 ** (0.017) | 0.03 6** (0.017) | 0.041 ** (0.018) |
Age | 9.521 * (5.076) | 9.677 * (4.861) | −2.120 * (1.193) | −2.239 * (1.186) | −2.568 * (1.180) | 16.498 * (2.142) | 12.993 (2.502) | 2.635** (0.980) | 2.712 *** (1.001) | 2.840 *** (1.002) |
FP | −0.938 ** (0.405) | −0.887 ** (0.407) | 0.176 * (0.096) | 0.183 ** (0.095) | 0.177 (0.090) | −1.533 ** (0.791) | −1.670 * (0.730) | −0.195 *** (0.075) | −0.213 *** (0.077) | −0.228 *** (0.080) |
Operation | −0.754 *** (0.127) | −0.801 *** (0.131) | −0.093 *** (0.030) | −0.101 *** (0.029) | −0.104 *** (0.031) | −0.482 ** (0.173) | −0.524 ** (0.182) | −0.181 *** (0.022) | −0.183 *** (0.024) | −0.188 *** (0.024) |
Growth | −0.134 ** (0.006) | −0.206 ** (0.008) | −0.182 *** (0.013) | −0.186 *** (0.012) | −0.191 *** (0.012) | −0.177 ** (0.003) | −0.180 ** (0.003) | 0.096 *** (0.088) | 0.121 *** (0.089) | 0.128 *** (0.095) |
EI | −2.618 *** (0.600) | −2.792 *** (0.581) | −0.349 ** (0.140) | −0.355 *** (0.141) | −0.438 *** (0.143) | −2.233 ** (1.056) | −2.327 ** (1.073) | −0.865 *** (0.107) | −0.887 *** (0.109) | −0.901 *** (0.110) |
ORDD | 0.084 * (0.046) | 0.138 *** (0.050) | −0.041 *** (0.010) | −0.038 * (0.011) | −0.022 (0.011) | −1.217 *** (0.606) | −1.358 *** (0.608) | −0.320 *** (0.066) | −0.322 *** (0.067) | −0.326 *** (0.067) |
ORDB | 1.553 *** (0.109) | 1.549 *** (0.089) | 0.151 *** (0.025) | 0.147 *** (0.025) | 0.159 *** (0.027) | 1.286 *** (0.230) | 1.351 *** (0.231) | 0.270 *** (0.026) | 0.278 *** (0.028) | 0.281 *** (0.029) |
OFDI | −0.144 ** (0.051) | 0.048 (0.090) | 0.009 (0.018) | 0.028 ** (0.026) | 0.075 *** (0.023) | −0.657 *** (0.130) | −0.241 (0.472) | −0.140 *** (0.018) | −0.148 *** (0.042) | −0.177 *** (0.044) |
OFDI2 | −0.090 *** (0.031) | −0.025 *** (0.009) | −0.037 *** (0.010) | −0.099 (0.064) | 0.012 (0.009) | 0.015 (0.008) | ||||
KA | −0.042 *** (0.020) | 0.062 * (0.017) | ||||||||
OFDI*KA | 0.051 *** (0.008) | 0.083 ** (0.005) | ||||||||
Adjusted-R2 | 0.516 | 0.532 | 0.465 | 0.574 | 0.607 | 0.401 | 0.503 | 0.427 | 0.569 | 0.611 |
Fixed effects | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Variable | Instrumental Variable | |
---|---|---|
(1) | (2) | |
Innovation Quality | Innovation Quality | |
OFDI | −0.087 ** (0.021) | −0.046 ** (0.013) |
OFDI2 | −0.025 * (0.001) | −0.017 ** (0.003) |
Kleibergen-Paap Rk Wald F statistic | 111.34 | 71.39 |
Time | 6 | 6 |
Control | YES | YES |
Year | Fixed | Fixed |
R2 | 0.432 | 0.514 |
N | 478 | 478 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, D.; Yang, M.; Chen, Q.; Sun, Y.; Cillo, G.; Usai, A.; Wang, X. How OFDI Promotes High-Technology Multinationals’ Innovation: From the Perspective of a Cross-Border Business Model. Sustainability 2022, 14, 1417. https://doi.org/10.3390/su14031417
Xiong D, Yang M, Chen Q, Sun Y, Cillo G, Usai A, Wang X. How OFDI Promotes High-Technology Multinationals’ Innovation: From the Perspective of a Cross-Border Business Model. Sustainability. 2022; 14(3):1417. https://doi.org/10.3390/su14031417
Chicago/Turabian StyleXiong, Deping, Mengyuan Yang, Qian Chen, Yilei Sun, Giuseppe Cillo, Antonio Usai, and Xiang Wang. 2022. "How OFDI Promotes High-Technology Multinationals’ Innovation: From the Perspective of a Cross-Border Business Model" Sustainability 14, no. 3: 1417. https://doi.org/10.3390/su14031417
APA StyleXiong, D., Yang, M., Chen, Q., Sun, Y., Cillo, G., Usai, A., & Wang, X. (2022). How OFDI Promotes High-Technology Multinationals’ Innovation: From the Perspective of a Cross-Border Business Model. Sustainability, 14(3), 1417. https://doi.org/10.3390/su14031417