Factors That Attract the Population: Empirical Research by Multiple Regression Analysis Using Data by Prefecture in Japan
Abstract
:1. Introduction
2. Examination of Previous Research and Presentation of Hypothesis
2.1. Economic Factors
2.2. Climatic Factors
2.3. Amenity Factors
2.4. Human Factors
2.5. Examining a Model That Includes Multiple Factors
3. Analytical Model
4. Data
5. Result
5.1. Economic Factors
5.2. Climatic Factors
5.3. Amenity Factors
5.4. Human Factors
5.5. Multiple Regression Analysis
6. Discussion
7. Implication
8. Limitation
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirata, S.; Kawabata, Y.; Fujii, S. A Study on the effect of investment in road infrastructures on the population concentration into Tokyo. J. Jpn. Soc. Civil Eng. 2019, 75, 967–978. [Google Scholar] [CrossRef]
- Porter, M. The Competitive Advantage of Nations; Free Press: New York, NY, USA, 1990. [Google Scholar]
- Buch, T.; Hamann, S.; Niebuhr, N. What makes cities attractive? The determinants of urban labor migration in Germany. Urban Stud. 2014, 51, 1960–1978. [Google Scholar] [CrossRef]
- Clark, W.A. What matters for internal migration, jobs or amenities? Migr. Lett. 2014, 11, 377–386. [Google Scholar]
- Yu, Z.; Zhang, H.; Tao, Z.; Liang, J. Amenities, economic opportunities and patterns of migration at the city level in China. Asian Pac. Migr. J. 2019, 28, 3–27. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, J. Spatial patterns and determinants of skilled internal migration in China, 2000–2005. Pap. Reg. Sci. 2014, 93, 749–771. [Google Scholar] [CrossRef]
- Arntz, M. What attracts human capital? Understanding the skill composition of interregional job matches in Germany. Reg. Stud. 2010, 44, 423–441. [Google Scholar] [CrossRef]
- Asada, Y. Interregional Migration in the Postwar Japan: Economic Analysis Using Regional Income Data; Departmental Bulletin Paper; Osaka Prefecture University: Osaka, Japan, 1996; Volume 41, pp. 91–125. [Google Scholar] [CrossRef]
- Attanasio, O.; Padoa-Schioppa, F. Regional Inequalities, Migration and Mismatch in Italy, 1960–1986. In Mismatch and Labour Mobility; Padoa-Schioppa, F., Ed.; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Faggian, A.; McCann, P.; Sheppard, S. Human capital, higher education and graduate migration: An analysis of Scottish and Welsh students. Urban Stud. 2007, 44, 2511–2528. [Google Scholar] [CrossRef]
- Ferguson, M.; Ali, K.; Olfert, M.R.; Partridge, M. Voting with their feet: Jobs versus amenities. Growth Chang. 2007, 38, 77–110. [Google Scholar] [CrossRef]
- Herzog, H.W.; Schlottmann, A.M. The metro rating game: What can be learned from the recent migrants? Growth Chang. 1986, 17, 37–50. [Google Scholar] [CrossRef]
- Higuchi, Y. Nihon Keizai to Shugyo Kodo (Japanese Economy and Job Search Behavior); Toyo Keizai: Tokyo, Japan, 1991. (In Japanese) [Google Scholar]
- Ito, K. An analysis of income growth effect on the long-distance migration in postwar Japan. J. Popul. Stud. 2006, 38, 89–98. [Google Scholar] [CrossRef]
- Lee, Y. Economic gains youth receive from inter- regional migration. In Tokyoni Deru Wakamonotachi (The Brain Drain: Why Japanese Youth Move to Tokyo), Ishiguro, I.; Lee, Y.J., Sugiura, H., Yamaguti, K., Eds.; Minerva Shobo: Tokyo, Japan, 2012; pp. 47–90. (In Japanese) [Google Scholar]
- Ohta, S.; Ohkusa, Y. Regional Labor Mobility and Wage Curve in Japan. JCER Econ. J. 1996, 32, 111–132. [Google Scholar]
- Scott, A.J. Jobs or amenities? Destination choices of migrant engineers in the USA. Pap. Reg. Sci. 2010, 89, 43–63. [Google Scholar] [CrossRef]
- Storper, M.; Scott, A.J. Rethinking human capital, creativity and urban growth. J. Econ. Geogr. 2009, 9, 147–167. [Google Scholar] [CrossRef] [Green Version]
- Tachi, M. Shotoku no chiiki bunseki to kokunai jinkō idō: Demogurafi no kenchi kara, Guranto shohan hakkō san hyaku-nen o kinen shite (Regional analysis of income and domestic migration: From a demographic point of view, to commemorate the 300th anniversary of the publication of Grant’s first edition). Hitotsubashi Univ. Res. Series. Econ. 1963, 7, 179–246. (In Japanese) [Google Scholar] [CrossRef]
- Tanioka, K. Study on regional income disparity and population migration. J. Reg. Soc. 2001, 4, 58. Available online: https://core.ac.uk/download/pdf/233904962.pdf (accessed on 26 December 2021). (In Japanese).
- Toyoda, T. Changes in regional income inequality and migration in Japan: Using estimated household income adjusted for household size and age compositions. Ann. Assoc Econ Geogr. 2013, 59, 4–26. [Google Scholar] [CrossRef]
- Vakulenko, E.S. Econometric analysis of factors of internal migration in Russia. Reg. Res. Russ. 2016, 6, 344–356. [Google Scholar] [CrossRef]
- Watanabe, M. Chiiki Keizai to Jinkō (Regional Economy and Population); Nippon Hyoron Sha: Tokyo, Japan, 1994. [Google Scholar]
- Zhou, J.; Hui, E.C.M. Housing prices, migration, and self-selection of migrants in China. Habitat Int. 2022, 119, 102479. [Google Scholar] [CrossRef]
- Kondo, S. How has service economy and de-industrialization affected the overconcentration of Japan’s labor force and population in Tokyo and other large city areas? Reg. Anal. 2020, 58, 45–65. [Google Scholar]
- Watanabe, M. Internal migration and regional economic differentials in postwar Japan. J. Popul. Stud. 1989, 12, 11–24. [Google Scholar] [CrossRef]
- Mitsuta, N.; Goto, K.; Shishido, S. A study on demographic shift from regional areas to large metropolitan areas. Stud. Reg. Sci. 2011, 41, 705–719. [Google Scholar] [CrossRef]
- Morikawa, H. Seeking revitalization of declining small and medium-sized cities in non-metropolitan regions of Japan: A comparison with German cities. Geogr. Sci. 2016, 71, 1–18. [Google Scholar] [CrossRef]
- Graves, P.E. Migration and climate. J. Reg. Sci. 1980, 20, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomioka, T.; Sasaki, K. Jinkō idō o kōryo shita toshi it sui no it su-teki hyōka (Economic evaluation of urban amenities considering population migration). J. Appl. Reg. Sci. 2003, 8, 33–44. [Google Scholar]
- Goto, S.; Fukai, T. A population analysis of the specific district in Japan. Bull. Aichi Inst. Technol. 1997, 32, 67–76. [Google Scholar]
- Ye, K.R.; Kiuchi, N.; Kozuka, K. About the direction of the winter life support in a Hilly, Mountainous and heavy snowfall area, based on a characteristic of space and member of community. J. Constr. Manag. 2007, 14, 299–310. [Google Scholar] [CrossRef]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–60. [Google Scholar] [CrossRef]
- Etzo, I. Determinants of interregional migration in Italy: A panel data analysis. SSRN 2008. [Google Scholar] [CrossRef] [Green Version]
- Baum-Snow, N.; Brandt, L.; Henderson, J.V.; Turner, M.A.; Zhang, Q. Roads, railroads, and decentralization of Chinese cities. Rev. Econ. Stat. 2017, 99, 435–448. [Google Scholar] [CrossRef]
- Zhang, J.; Seya, H.; Kaneshige, H.; Chikaraishi, M. Longitudinal analysis of factors affecting inter-prefecture population mobility based on a discrete choice model with spatial context dependency. Geogr. Sci. 2016, 71, 118–132. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Ketterer, T.D. Do local amenities affect the appeal of regions in Europe for migrants? J. Reg. Sci. 2012, 52, 535–561. [Google Scholar] [CrossRef]
- Hayashi, N.; Saito, S.; Takahashi, T. Migration for the young and improvement in the infrastructure in rural areas of Kyoto prefectures: Mainly from 1990 to 2000. J. Rural Plan. Assoc. 2005, 24, 115–122. [Google Scholar] [CrossRef]
- Rees, P.; Bell, M.; Kupiszewski, M.; Kupiszewska, D.; Ueffing, P.; Bernard, A.; Charles-Edwards, E.; Stillwell, J. The impact of internal migration on population redistribution: An international comparison. Popul. Space Place 2017, 23, e2036. [Google Scholar] [CrossRef]
- Aoyama, Y.; Kondo, A. A Migration Model Based on the Difference in Utility between Regions. Infrastruct. Plan. Rev. 1992, 10, 151–158. [Google Scholar] [CrossRef]
- Palkama, J. The Determinants of Internal Migration in Finland. 2018. Available online: https://aaltodoc.aalto.fi/handle/123456789/35572 (accessed on 26 December 2021).
- Isoda, N. Higher education and population concentration into Tokyo metropolitan area in Japan. Fukuoka Univ. Review Lit. Humanit. 2009, 41, 1029–1052. [Google Scholar]
- Betz, M.R.; Partridge, M.D.; Fallah, B. Smart cities and attracting knowledge workers: Which cities attract highly-educated workers in the 21st century? Pap. Reg. Sci. 2016, 95, 819–841. [Google Scholar] [CrossRef]
- Gottlieb, P.D.; Joseph, G. College-to-work migration of technology graduates and holders of doctorates within the United States. J. Reg. Sci. 2006, 46, 627–659. [Google Scholar] [CrossRef]
- Waldorf, B.S. Brain Drain in Rural America. In Proceedings of the American Agricultural Economics Association Annual Meeting, Portland, OR, USA, 28–30 July 2007. [Google Scholar]
- Abe, S.; Kondo, A.; Kondo, A. Factors analysis of “UIJ-turn” migration and policies of population inflow. Infrastruct. Plan. Rev. 2010, 27, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.E.; Hunter, W.J. The impact of economic opportunity, amenities and fiscal factors on age-specific migration rates. J. Reg. Sci. 1992, 32, 349–365. [Google Scholar] [CrossRef]
- Chen, Y.; Rosenthal, S.S. Local amenities and life-cycle migration: Do people move for jobs or fun? J. Urban Econ. 2008, 64, 519–537. [Google Scholar] [CrossRef]
- Niedomysl, T.; Hansen, H.K. What matters more for the decision to move: Jobs versus amenities. Environ. Plan A 2010, 42, 1636–1649. [Google Scholar] [CrossRef]
- Niedomysl, T. Residential preferences for interregional migration in Sweden: Demographic, socioeconomic, and geographical determinants. Environ. Plan A 2008, 40, 1109–1131. [Google Scholar] [CrossRef]
- Frenkel, A.; Bendit, E.; Kaplan, S. Residential location choice of knowledge-workers: The role of amenities, workplace and lifestyle. Cities 2013, 35, 33–41. [Google Scholar] [CrossRef]
- Kokubun, K. Education, organizational commitment, and rewards within Japanese manufacturing companies in China. Empl. Relat. 2018, 40, 458–485. [Google Scholar] [CrossRef]
- Kokubun, K. Organizational commitment, rewards and education in the Philippines. Int. J. Organ. Anal. 2019, 27, 1605–1630. [Google Scholar] [CrossRef]
- Kokubun, K.; Yasui, M. The difference and similarity of the organizational commitment–rewards relationship among ethnic groups within Japanese manufacturing companies in Malaysia. Int. J. Sociol. Soc. Policy 2020, 40, 1391–1421. [Google Scholar] [CrossRef]
- Kokubun, K.; Yasui, M. Gender differences in organizational commitment and rewards within Japanese manufacturing companies in China. Cross Cult. Strateg. Manag. 2020, 28, 501–529. [Google Scholar] [CrossRef]
- Greenwood, M.J.; Hunt, G.L. The early history of migration research. Int. Reg. Sci. Rev. 2003, 26, 3–37. [Google Scholar] [CrossRef]
- Haynes, K.; Fotheringhrum, A. Gravity and Spatial Interaction Models; Sage: Beverly Hills, CA, USA, 1984. [Google Scholar]
- Ravenstein, E.G. The laws of migration. J. R. Stat. Soc. 1885, 48, 167–235. [Google Scholar] [CrossRef]
- Ito, K. Kokunai chōkyori jinkō idō ni ataeru seikatsu suijun no eikyō it suite–shin kokumin seikatsu shihyō to 1990-nen kokusei chōsa shūkei kekka o riyō shite (Impact of living standards on domestic long-distance migration-using the New National Living Index and the results of the 1990 National Survey). Rev. Econ. Inf. Stud. 2004, 4, 662–692. (In Japanese) [Google Scholar]
- Ito, K. Sengonihon no jinkō idō ni taisuru shotokukakusa-setsu no setsumei-ryoku to kongo no kadai (Explanatory power of income disparity theory for postwar Japan’s migration and future issues). J. Reg. Soc. 2001, 4, 9–38. Available online: https://core.ac.uk/download/pdf/233904961.pdf (accessed on 26 December 2021). (In Japanese).
- Statistics Bureau, Ministry of Internal Affairs and Communications. Jūmin Kihon Daichō Jinkō Idō Hōkoku (Basic Resident Register Population Migration Report). Available online: https://www.stat.go.jp/data/idou/index2.html#kekka (accessed on 18 January 2022).
- Statistics Bureau, Ministry of Internal Affairs and Communications. Census. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200521&tstat=000001049104&cycle=0&tclass1=000001049105 (accessed on 6 September 2020).
- Cabinet Office. Prefectural Accounts. Available online: https://www.esri.cao.go.jp/jp/sna/data/data_list/kenmin/files/contents/main_h28.html (accessed on 18 January 2022).
- Statistics Bureau, Ministry of Internal Affairs and Communications. Labor Force Survey. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200531&tstat=000000110001&cycle=0&tclass1=000001011635&tclass2=000001011637 (accessed on 6 September 2020).
- Ministry of Land, Infrastructure, Transport, and Tourism. Todōfuken Chika Chōsa (Prefectural Land Price Survey). Available online: https://www.mlit.go.jp/totikensangyo/totikensangyo_fr4_000044.html (accessed on 6 September 2020). (In Japanese).
- Geographical Survey Institute, Ministry of Land, Infrastructure, Transport and Tourism. Todōfuken-Chō-Kan no Kyori (Distance between Prefectures). Available online: https://www.gsi.go.jp/KOKUJYOHO/kenchokan.html (accessed on 6 September 2020). (In Japanese).
- Japan Transport and Tourism Research Institute. Chiiki Kōtsū Nenpō (Regional Transportation Annual Report); Japan Transport and Tourism Research Institute: Tokyo, Japan, 2015. (In Japanese) [Google Scholar]
- Statistics Bureau, Ministry of Internal Affairs and Communications. Jinkō Suikei (Population Estimation). Available online: http://www.stat.go.jp/data/jinsui/index2.html (accessed on 6 September 2020).
- Statistics Bureau, Ministry of Internal Affairs and Communications. Social Life Statistical Index. Available online: https://www.stat.go.jp/data/shihyou/naiyou.html (accessed on 6 September 2020).
- Statistics Bureau, Ministry of Internal Affairs and Communications. Social/Demographic System. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200502&tstat=000001137306&cycle=0&tclass1=000001137307&result_page=1 (accessed on 6 September 2020).
- Putnam, R.D. Bowling Alone: The Collapse and Revival of American Community; Simon & Schuster: New York, NY, USA, 2000. [Google Scholar]
- Cabinet Office National Living Bureau. Sōsharu Kyapitaru: Yutakana Ningen Kankei to Shimin Katsudō no kō Junkan o Motomete (Social Capital: Seeking a Virtuous Cycle of Rich Relationships and Civic Activities). 2003. Available online: https://www.npo-homepage.go.jp/toukei/2009izen-chousa/2009izen-sonota/2002social-capital (accessed on 6 September 2020).
- Ministry of Internal Affairs and Communications. Explanation of Indicators. Available online: https://www.soumu.go.jp/main_content/000264701.pdf (accessed on 6 September 2020).
- Coleman, J.S. Social capital in the creation of human capital. Am. J. Sociol. 1988, 94, S95–S120. [Google Scholar] [CrossRef]
- Portes, A. Social capital: Its origins and applications in modern sociology. Annu. Rev. Sociol. 1998, 24, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Alesina, A.; La Ferrara, E. Who trusts others? J. Public Econ. 2002, 85, 207–234. [Google Scholar] [CrossRef]
- Costa, D.L.; Kahn, M.E. Civic engagement and community heterogeneity: An economist’s perspective. Perspect Politics 2003, 1, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Putnam, R.D. E pluribus unum: Diversity and community in the twenty-first century the 2006 Johan Skytte Prize Lecture. Scand. Polit. Stud. 2007, 30, 137–174. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Tranmer, M.; Murphy, J.; Elliot, M.; Pampaka, M. Multiple Linear Regression, 2nd ed.; Cathie Marsh Institute Working Paper 2020–01; Cathie Marsh Institute for Social Research: Manchester, UK, 2020; Available online: https://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/2020/2020-1-multiple-linear-regression.pdf (accessed on 18 January 2022).
- Hicks, J. The Theory of Wages; Macmillan: London, UK, 1932. [Google Scholar]
- Tamura, K.; Sakamoto, H. Nihon no todōfuken-kan jinkō idō no sedai-kan hikaku (Intergenerational comparison of Japan’s inter-prefectural migration). AGI Working Paper Ser. 2016, 2016–2017, 1–11. Available online: http://id.nii.ac.jp/1270/00000114/ (accessed on 26 December 2021). (In Japanese).
- He, Z.; Zhai, G.; Asami, Y.; Tsuchida, S. Migration intentions and their determinants: Comparison of college students in China and Japan. Asian Pac. Migr. J. 2016, 25, 62–84. [Google Scholar] [CrossRef]
- Okubo, T.; Tomiura, E. Industrial relocation policy, productivity and heterogeneous plants: Evidence from Japan. Reg. Sci. Urban Econ. 2012, 42, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Takagishi, M.; Kiminami, L. I-Turn Promotion in Rural Areas: Case Study from Chichibu City, Saitama Prefecture. Bull. Fac. Agric. Niigata Univ. 2012, 65, 1–14. Available online: https://agriknowledge.affrc.go.jp/RN/2010834121.pdf (accessed on 26 December 2021).
- Economidou, C.; Karamanis, D.; Kechrinioti, A.; Xesfingi, S. The Role of Social Capital in Shaping Europeans’ Immigration Sentiments. IZA J. Dev. Migr. 2020, 11, 20200003. [Google Scholar] [CrossRef] [Green Version]
- Herreros, F.; Criado, H. Social trust, social capital and perceptions of immigration. Polit. Stud. 2009, 57, 337–355. [Google Scholar] [CrossRef]
- Rustenbach, E. Sources of negative attitudes toward immigrants in Europe: A multi-level analysis. Int. Migr. Rev. 2010, 44, 53–77. [Google Scholar] [CrossRef]
- Sakuno, H. The Increase of Migrants into Local Areas and Regional Correspondence: What does “Return to the Country” Mean for Local Areas? Ann. Jpn. Assoc. Geogr. 2016, 62, 324–345. Available online: https://www.jstage.jst.go.jp/article/jaeg/62/4/62_324/_pdf (accessed on 26 December 2021).
- Takeda, Y.; Kaga, A. A study of the policy at migration and settlement in regional hub cities and dweller’s characteristics. J. City Plann. Inst. Jpn. 2018, 53, 1153–1160. [Google Scholar] [CrossRef]
- Kokubun, K.; Yamakawa, Y. Social capital mediates the relationship between social distancing and COVID-19 prevalence in Japan. Inquiry. 2021, 58, 00469580211005189. [Google Scholar] [CrossRef]
- Kokubun, K.; Ino, Y.; Ishimura, K. Social and psychological resources moderate the relation between anxiety, fatigue, compliance, and turnover intention during the COVID-19 pandemic. Int. J. Workplace Health Manag 2022. ahead of print. [Google Scholar] [CrossRef]
Item | Unit | Mean | SD | Annual Average Population Inflow Rate, 2010–2017 | Annual Average Population Net Inflow Rate, 2010–2017 | Annual Average Population Inflow Rate, 2020 | Annual Average Population Net Inflow Rate, 2020 |
---|---|---|---|---|---|---|---|
Annual average population inflow rate, 2010–2017 | % | 1.568 | 0.390 | 1 | 0.732 ** | 0.963 ** | 0.650 ** |
Annual average population net inflow rate, 2010–2017 | % | −0.121 | 0.174 | 0.732 ** | 1 | 0.802 ** | 0.902 ** |
Annual average population inflow rate, 2020 | % | 1.674 | 0.414 | 0.963 ** | 0.802 ** | 1 | 0.760 ** |
Annual average population net inflow rate, 2020 | % | −0.137 | 0.179 | 0.650 ** | 0.902 ** | 0.760 ** | 1 |
Economic factors | |||||||
Gross domestic product per capita | 1000 yen | 3803.125 | 747.833 | 0.323 * | 0.522 ** | 0.370 * | 0.263 |
Prefectural income per person | 1000 yen | 2810.404 | 472.841 | 0.475 ** | 0.663 ** | 0.526 ** | 0.427 ** |
Monthly wages and salaries of household head per household | 1000 yen | 405.687 | 43.086 | 0.396 ** | 0.436 ** | 0.419 ** | 0.351 * |
Cash salary (1 month per person) | 1000 yen | 299.468 | 31.796 | 0.561 ** | 0.746 ** | 0.649 ** | 0.607 ** |
Unemployment rate | % | 3.605 | 0.656 | 0.299 * | 0.208 | 0.271 | 0.349 * |
Regional Difference Index of Consumer Prices (All items, less imputed rent) | Total = 100 | 98.876 | 1.657 | 0.474 ** | 0.493 ** | 0.484 ** | 0.423 ** |
Average land price of residential area (per 1 m2) | yen | 51,340.426 | 53,438.780 | 0.714 ** | 0.751 ** | 0.733 ** | 0.634 ** |
Percentage of primary industry workers | % | 6.017 | 3.329 | −0.494 ** | −0.703 ** | −0.594 ** | −0.636 ** |
Percentage of secondary industry workers | % | 25.618 | 4.952 | −0.364 * | −0.094 | −0.235 | −0.165 |
Percentage of tertiary industry workers | % | 68.366 | 5.091 | 0.677 ** | 0.551 ** | 0.617 ** | 0.576 ** |
Financial strength index | - | 0.503 | 0.198 | 0.602 ** | 0.799 ** | 0.687 ** | 0.702 ** |
Climatic factors | |||||||
The yearly average of air temperature | °C | 15.619 | 2.307 | 0.373 ** | 0.246 | 0.360 * | 0.214 |
Highest temperature among monthly averages of the highest daily temperatures | °C | 32.826 | 1.374 | 0.247 | 0.103 | 0.250 | 0.050 |
Lowest temperature among monthly averages of the lowest daily temperatures | °C | 0.872 | 3.162 | 0.353 * | 0.252 | 0.327 * | 0.239 |
The yearly average of relative humidity | % | 69.181 | 4.390 | −0.316 * | −0.377 ** | −0.385 ** | −0.355 * |
Yearly sunshine hours | hours | 1938.755 | 212.743 | 0.285 | 0.330 * | 0.335 * | 0.259 |
Yearly precipitation | mm | 1748.000 | 469.135 | −0.140 | −0.098 | −0.170 | −0.165 |
Yearly clear days | days | 24.223 | 11.798 | 0.354 * | 0.320 * | 0.406 ** | 0.252 |
Yearly rainy days | days | 120.649 | 30.122 | −0.426 ** | −0.264 | −0.421 ** | −0.227 |
Yearly snowy days | days | 31.692 | 32.978 | −0.461 ** | −0.344 * | −0.473 ** | −0.259 |
Amenity factors | |||||||
General hospitals (per 100 km2 of inhabitable area) | hospitals | 7.949 | 7.693 | 0.633 ** | 0.615 ** | 0.628 ** | 0.536 ** |
General clinics (per 100 km2 of inhabitable area) | clinics | 112.688 | 160.298 | 0.654 ** | 0.654 ** | 0.662 ** | 0.564 ** |
Dental clinics (per 100 km2 of inhabitable area) | clinics | 75.317 | 125.162 | 0.674 ** | 0.686 ** | 0.679 ** | 0.582 ** |
Number of beds in general hospitals/clinics (per 100 km2 of inhabitable area) | beds | 17.336 | 17.191 | 0.660 ** | 0.647 ** | 0.665 ** | 0.584 ** |
The diffusion rate of sewerage | % | 65.511 | 18.001 | 0.367 * | 0.577 ** | 0.437 ** | 0.584 ** |
Total length of roadbed (per 1 km2) | km | 10.343 | 9.223 | 0.677 ** | 0.706 ** | 0.695 ** | 0.658 ** |
Total real length of roads (per 1 km2) | km | 4.373 | 2.304 | 0.624 ** | 0.735 ** | 0.681 ** | 0.704 ** |
Total real length of major roads (per 1 km2) | km | 0.632 | 0.180 | 0.525 ** | 0.535 ** | 0.533 ** | 0.485 ** |
The ratio of major roads paved | % | 97.745 | 1.961 | 0.424 ** | 0.391 ** | 0.414 ** | 0.393 ** |
The ratio of local roads paved | % | 81.660 | 9.902 | 0.332 * | 0.224 | 0.283 | 0.115 |
Public parks (per 100 km2 of inhabitable area) | parks | 105.617 | 122.740 | 0.683 ** | 0.687 ** | 0.700 ** | 0.661 ** |
Persons killed or injured by traffic accidents (per 100,000 persons) | persons | 581.783 | 237.643 | 0.084 | 0.021 | 0.084 | 0.022 |
Persons killed by traffic accidents (per 100,000 persons) | persons | 4.094 | 1.168 | −0.545 ** | −0.514 ** | −0.543 ** | −0.576 ** |
Police men (per 1000 persons) | persons | 1.909 | 0.309 | 0.365 * | 0.249 | 0.316 * | 0.113 |
Distance from Tokyo | km | 456.651 | 322.065 | −0.132 | −0.331 * | −0.240 | −0.264 |
Distance from Aichi | km | 368.130 | 261.304 | −0.049 | −0.208 | −0.129 | −0.068 |
Distance from Osaka | km | 367.287 | 262.428 | −0.068 | −0.109 | −0.093 | 0.038 |
Human factors | |||||||
Population | 1000 persons | 2710.489 | 2718.212 | 0.608 ** | 0.768 ** | 0.650 ** | 0.739 ** |
Population density of the inhabitable area | Persons/km2 | 1364.245 | 1750.799 | 0.687 ** | 0.709 ** | 0.711 ** | 0.648 ** |
Average age | years old | 46.556 | 1.643 | −0.578 ** | −0.726 ** | −0.684 ** | −0.716 ** |
Population ratio under 15 years old | % | 13.072 | 0.991 | 0.098 | 0.146 | 0.172 | 0.199 |
Population ratio 15–64 years old | % | 60.511 | 2.284 | 0.668 ** | 0.815 ** | 0.755 ** | 0.787 ** |
Population ratio over 65 years old | % | 26.417 | 2.687 | −0.604 ** | −0.747 ** | −0.705 ** | −0.742 ** |
The ratio of people having completed up to college and university | % | 14.747 | 3.908 | 0.691 ** | 0.773 ** | 0.735 ** | 0.670 ** |
Social capital | - | 0.000 | 0.621 | −0.211 | −0.425 ** | −0.248 | −0.415 ** |
Population sex ratio (male per 100 females) | persons | 93.108 | 3.750 | 0.354 * | 0.634 ** | 0.517 ** | 0.618 ** |
Variable | Annual Average Population Inflow Rate, 2010–2017 | Annual Average Population Net Inflow Rate, 2010–2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | |
Economic factors | ||||||||||
Percentage of tertiary industry workers | 0.543 ** | 0.543 ** | 0.337 ** | |||||||
Financial strength index | 0.434 ** | 0.414 ** | 0.695 ** | |||||||
Climatic factors | ||||||||||
Yearly snowy days | −0.461 ** | |||||||||
The yearly average of relative humidity | −0.377 ** | |||||||||
Amenity factors | ||||||||||
The ratio of major roads paved | 0.332 ** | 0.247 ** | 0.185 * | |||||||
The total real length of roads | 0.521 ** | 0.229 * | ||||||||
Public parks (per 100 km2 of inhabitable area) | 0.635 ** | |||||||||
The diffusion rate of sewerage | 0.374 ** | |||||||||
Human factors | ||||||||||
Population density of the inhabitable area | 0.352 * | 0.537 ** | 0.438 ** | |||||||
Population ratio 15–64 years old | 0.368 * | 0.392 ** | 0.277 ** | |||||||
The ratio of people having completed up to college and university | 0.346 * | 0.272 | ||||||||
Social capital | 0.339 ** | 0.352 ** | ||||||||
R2 | 0.629 | 0.213 | 0.574 | 0.655 | 0.730 | 0.741 | 0.142 | 0.695 | 0.741 | 0.812 |
Adjusted R2 | 0.613 | 0.195 | 0.555 | 0.622 | 0.705 | 0.729 | 0.123 | 0.674 | 0.729 | 0.794 |
F | 37.366 ** | 12.168 * | 29.691 ** | 19.940 ** | 28.450 ** | 62.790 ** | 7.445 ** | 32.640 ** | 62.970 ** | 45.264 ** |
Variable | Annual Average Population Inflow Rate, 2020 | Annual Average Population Net Inflow Rate, 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | |
Economic factors | ||||||||||
Percentage of tertiary industry workers | 0.448 ** | 0.168 | 0.397 ** | |||||||
Financial strength index | 0.549 ** | 0.579 ** | ||||||||
Climatic factors | ||||||||||
Yearly snowy days | −0.473 ** | −0.247 ** | ||||||||
The yearly average of relative humidity | −0.355 * | |||||||||
Amenity factors | ||||||||||
The ratio of major roads paved | 0.319 ** | 0.262 ** | 0.220 * | |||||||
The total real length of roads | 0.477 ** | 0.271 * | ||||||||
Public parks (per 100 km2 of inhabitable area) | 0.654 ** | 0.324 ** | ||||||||
The diffusion rate of sewerage | 0.397 ** | |||||||||
Human factors | ||||||||||
Population | 0.320 * | |||||||||
Population density of the inhabitable area | 0.288 * | |||||||||
Population ratio 15–64 years old | 0.504 ** | 0.592 ** | 0.538 ** | 0.573 ** | ||||||
The ratio of people having completed up to college and university | 0.342 ** | |||||||||
Social capital | 0.343 ** | 0.360 ** | ||||||||
R2 | 0.654 | 0.224 | 0.590 | 0.751 | 0.805 | 0.636 | 0.126 | 0.671 | 0.660 | 0.728 |
Adjusted R2 | 0.638 | 0.207 | 0.572 | 0.728 | 0.782 | 0.619 | 0.107 | 0.648 | 0.644 | 0.709 |
F | 41.527 ** | 12.999 ** | 31.696 ** | 31.724 ** | 33.937 ** | 38.392 ** | 6.507 * | 29.258 ** | 42.617 ** | 38.428 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokubun, K. Factors That Attract the Population: Empirical Research by Multiple Regression Analysis Using Data by Prefecture in Japan. Sustainability 2022, 14, 1595. https://doi.org/10.3390/su14031595
Kokubun K. Factors That Attract the Population: Empirical Research by Multiple Regression Analysis Using Data by Prefecture in Japan. Sustainability. 2022; 14(3):1595. https://doi.org/10.3390/su14031595
Chicago/Turabian StyleKokubun, Keisuke. 2022. "Factors That Attract the Population: Empirical Research by Multiple Regression Analysis Using Data by Prefecture in Japan" Sustainability 14, no. 3: 1595. https://doi.org/10.3390/su14031595
APA StyleKokubun, K. (2022). Factors That Attract the Population: Empirical Research by Multiple Regression Analysis Using Data by Prefecture in Japan. Sustainability, 14(3), 1595. https://doi.org/10.3390/su14031595