Adopting Carbon Pricing Tools at the Local Level: A City Case Study in Portugal
Abstract
:1. Introduction
2. Methods and Materials
3. Concepts and Tools for Estimating the Cost of Carbon
3.1. Social Cost of Carbon and Marginal Abatement Cost
3.2. Integrated Assessment Models
4. Carbon Pricing Initiatives at the Local Level
5. Case Study—Assessment of a CO2 Price to Support City Transportation Mobility Decarbonization
5.1. Case Study Characterization
5.2. TIMES_PT Model
5.3. Low-Carbon Mobility Scenarios
5.4. Case Study Results
6. Discussion
- Static and one-fits-all approach: the platform can apply a CO2 price fixed to all low-carbon mobility choices and with no price evolution across time.
- Progressive and one-fits-all approach: the CO2 price will vary across time but will be fixed to all low-carbon mobility choices.
- Fully dynamic approach: the CO2 price is differentiated by low-carbon mobility choices (e.g., if a citizen chooses to travel by bicycle the CO2 price will be different than if they chose public transportation) and also varies across time (e.g., starting high and decreasing with the rate of adoption).
7. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz-Pont, J. Cities and the governance framing of climate change. Environ. Policy Gov. 2021, 31, 18–30. [Google Scholar] [CrossRef]
- Tang, K.; Liu, Y.; Zhou, D.; Qiu, Y. Urban carbon emission intensity under emission trading system in a developing economy: Evidence from 273 Chinese cities. Environ. Sci. Pollut. Res. 2020, 28, 5168–5179. [Google Scholar] [CrossRef] [PubMed]
- Castán Broto, V.; Westman, L.K. Ten years after Copenhagen: Reimagining climate change governance in urban areas. Wiley Interdiscip. Rev. Clim. Chang. 2020, 11, e643. [Google Scholar] [CrossRef] [Green Version]
- Mokhles, S.; Davidson, K. A framework for understanding the key drivers of cities’ climate actions in city networks. Urban Clim. 2021, 38, 100902. [Google Scholar] [CrossRef]
- GCAP-UNFCCC. GCAP UNFCCC—Home Page. Available online: https://climateaction.unfccc.int/ (accessed on 21 November 2021).
- UNFCCC. Race To Zero Campaign UNFCCC, 2021. Available online: https://unfccc.int/climate-action/race-to-zero-campaign (accessed on 21 November 2021).
- World Bank. Carbon Pricing Dashboard|Up-to-Date Overview of Carbon Pricing Initiatives. 2021. Available online: https://carbonpricingdashboard.worldbank.org/ (accessed on 21 November 2021).
- CMA. Glasgow Climate Pact ADVANCE VERSION. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 21 November 2021).
- Baranzini, A.; van den Bergh, J.C.J.M.; Carattini, S.; Howarth, R.B.; Padilla, E.; Roca, J. Carbon pricing in climate policy: Seven reasons, complementary instruments, and political economy considerations. Wiley Interdiscip. Rev. Clim. Chang. 2017, 8, e462. [Google Scholar] [CrossRef] [Green Version]
- Grandin, J.; Haarstad, H.; Kjærås, K.; Bouzarovski, S. The politics of rapid urban transformation. Curr. Opin. Environ. Sustain. 2018, 31, 16–22. [Google Scholar] [CrossRef]
- Paravantis, J.; Tasios, P.; Dourmas, V.; Andreakos, G.; Velaoras, K.; Kontoulis, N.; Mihalakakou, P. A Regression Analysis of the Carbon Footprint of Megacities. Sustainability 2021, 13, 1379. [Google Scholar] [CrossRef]
- NASEM. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Nordhaus, W.D.; Yang, Z. A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies. Am. Econ. Rev. 1996, 86, 741–765. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Economic aspects of global warming in a post-Copenhagen environment. Proc. Natl. Acad. Sci. USA 2010, 26, 11721–11726. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, W.D. Rolling the ‘DICE’: An Optimal Transition Path for Controlling Greenhouse Gases. Resour. Energy Econ. 1993, 15, 27–50. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Deng, X.; Zhou, H.; Yu, S. Estimates of the social cost of carbon: A review based on meta-analysis. J. Clean. Prod. 2018, 209, 1494–1507. [Google Scholar] [CrossRef]
- Pindyck, R.S. The social cost of carbon revisited. J. Environ. Econ. Manag. 2019, 94, 140–160. [Google Scholar] [CrossRef] [Green Version]
- Pindyck, R.S. Coase Lecture-Taxes, Targets and the Social Cost of Carbon. Economica 2017, 84, 345–364. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Ye, Q.; Zhen, Z. A new assessment model of social cost of carbon and its situation analysis in China. J. Clean. Prod. 2018, 211, 1434–1443. [Google Scholar] [CrossRef]
- Ricke, K.; Drouet, L.; Caldeira, K.; Tavoni, M. Country-level social cost of carbon. Nat. Clim. Chang. 2018, 8, 895–900. [Google Scholar] [CrossRef]
- Tol, l.R.S. A social cost of carbon for (almost) every country. Energy Econ. 2019, 83, 555–566. [Google Scholar] [CrossRef]
- Snyder, B.F. Beyond the social cost of carbon: Negative emission technologies as a means for biophysically setting the price of carbon. Ambio 2019, 49, 1567–1580. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Eds.; IPPC: Geneva, Switzerland, 2018. [Google Scholar]
- Pezzey, J.C.V. Why the social cost of carbon will always be disputed. Wiley Interdiscip. Rev. Clim. Chang. 2018, 10, e558. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, N.; Barron, A.R.; Krawczyk, W.; Marsters, P.; McJeon, H. A near-term to net zero alternative to the social cost of carbon for setting carbon prices. Nat. Clim. Chang. 2020, 10, 1010–1014. [Google Scholar] [CrossRef]
- Stern, N.; Stiglitz, J.E. The Social Cost of Carbon, Risk, Distribution, Market Failures: An Alternative Approach; NBER Working Paper; National Bureau of Economic Research: Cambridge, MA, USA, 2021. [Google Scholar]
- Van den Bijgaart, I.; Gerlagh, R.; Liski, M. A simple formula for the social cost of carbon. J. Environ. Econ. Manag. 2016, 77, 75–94. [Google Scholar] [CrossRef] [Green Version]
- Craven, W.J. The Social Cost of Carbon. In Beyond One Health: From Recognition to Results; Wiley: Hoboken, NJ, USA, 2018; pp. 283–291. [Google Scholar] [CrossRef]
- Best, R.; Burke, P.J.; Jotzo, F. Carbon Pricing Efficacy: Cross-Country Evidence. Environ. Resour. Econ. 2020, 77, 69–94. [Google Scholar] [CrossRef]
- Green, J.F. Does carbon pricing reduce emissions? A review of ex-post analyses. Environ. Res. Lett. 2021, 16, 043004. [Google Scholar] [CrossRef]
- Lilliestam, J.; Patt, A.; Bersalli, G. The effect of carbon pricing on technological change for full energy decarbonization: A review of empirical ex-post evidence. WIREs Clim. Chang. 2020, 12. [Google Scholar] [CrossRef]
- Ibrahim, N.; Kennedy, C. A Methodology for Constructing Marginal Abatement Cost Curves for Climate Action in Cities. Energies 2016, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Weyant, J. Some Contributions of Integrated Assessment Models of Global Climate Change. Rev. Environ. Econ. Policy 2022, 11, 115–137. [Google Scholar] [CrossRef] [Green Version]
- Dowlatabadi, H. Integrated assessment models of climate change: An incomplete overview. Energy Policy 1995, 23, 289–296. [Google Scholar] [CrossRef]
- Robertson, S. Transparency, trust, and integrated assessment models: An ethical consideration for the Intergovernmental Panel on Climate Change. WIREs Clim. Chang. 2020, 12, e679. [Google Scholar] [CrossRef]
- Peng, P.; Zhu, L.; Fan, Y. Performance evaluation of climate policies in China: A study based on an integrated assessment model. J. Clean. Prod. 2017, 164, 1068–1080. [Google Scholar] [CrossRef]
- Kojima, S.; Asakawa, K. Expectations for carbon pricing in Japan in the global climate policy context. In Economics, Law, and Institutions in Asia Pacific; Springer: Singapore, 2021; pp. 1–21. [Google Scholar]
- World Bank. State and Trends of Carbon Pricing 2021; World Bank: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Arimura, T.H.; Abe, T. The impact of the Tokyo emissions trading scheme on office buildings: What factor contributed to the emission reduction? Environ. Econ. Policy Stud. 2021, 23, 517–533. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Chu, C.; Zhang, L.L.; Yu, Y. Optimizing an emission trading scheme for local governments: A Stackelberg game model and hybrid algorithm. Int. J. Prod. Econ. 2017, 193, 172–182. [Google Scholar] [CrossRef]
- Lind, A.; Espegren, K. The use of energy system models for analysing the transition to low-carbon cities—The case of Oslo. Energy Strateg. Rev. 2017, 15, 44–56. [Google Scholar] [CrossRef]
- Abe, T.; Arimura, T.H. An empirical study of the tokyo emissions trading scheme: An ex post analysis of emissions from university buildings. In Carbon Pricing in Japan. Economics, Law, and Institutions in Asia Pacific; Arimura, T.H., Matsumoto, S., Eds.; Springer: Singapore, 2021; pp. 97–116. [Google Scholar] [CrossRef]
- Chu, W.; Chai, S.; Chen, X.; Du, M. Does the Impact of Carbon Price Determinants Change with the Different Quantiles of Carbon Prices? Evidence from China ETS Pilots. Sustainability 2020, 12, 5581. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.; Cao, J. The impact of carbon market pilots on air pollution: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 62274–62291. [Google Scholar] [CrossRef] [PubMed]
- Bulkeley, H.; Betsill, M.M. Revisiting the urban politics of climate change. Environ. Politics 2013, 22, 136–154. [Google Scholar] [CrossRef] [Green Version]
- Fuhr, H.; Hickmann, T.; Kern, K. The role of cities in multi-level climate governance: Local climate policies and the 1.5 °C target. Curr. Opin. Environ. Sustain. 2018, 30, 1–6. [Google Scholar] [CrossRef]
- Salvia, M.; Reckien, D.; Pietrapertosa, F.; Eckersley, P.; Spyridaki, N.-A.; Krook-Riekkola, A.; Olazabal, M.; Hurtado, S.D.G.; Simoes, S.G.; Geneletti, D.; et al. Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renew. Sustain. Energy Rev. 2020, 135, 110253. [Google Scholar] [CrossRef]
- Dias, L.P.; Simões, S.; Gouveia, J.; Seixas, J. City energy modelling—Optimising local low carbon transitions with household budget constraints. Energy Strat. Rev. 2019, 26, 100387. [Google Scholar] [CrossRef]
- Klenert, D.; Mattauch, L.; Combet, E.; Edenhofer, O.; Hepburn, C.; Rafaty, R.; Stern, N. Making carbon pricing work for citizens. Nat. Clim. Chang. 2018, 8, 669–677. [Google Scholar] [CrossRef]
- CEiiA. Are You Ready?|Home. 2021. Available online: https://weayr.com/#/home (accessed on 21 November 2021).
- DGEG. Natural Gas, Oil Products and Electricity Consumption per Sector and Municipality in Portugal for 2015; DGEG: Lisbon, Portugal, 2021.
- EDGAR/JRC. Emission Database for Global Atmospheric Research (EDGAR); EDGAR 4.2, FT2012; EDGAR/JRC: Brussels, Belgium, 2021.
- Matosinhos, M. Matosinhos by AYR, 2021. Available online: https://www.cm-matosinhos.pt/urbanismo/mobilidade-e-transportes/matosinhos-by-ayr (accessed on 3 August 2021).
- Barron, A.R.; Hafstead, M.A.C.; Morris, A.C. Policy Insights from Comparing Carbon Pricing Modeling Scenarios; Climate and Energy Economics Discussion Paper; The Climate and Energy Economics Project, Brookings: Washington, DC, USA, 2019; pp. 1–16. [Google Scholar]
- World Bank. State and Trends of Carbon Pricing October 2020, State and Trends of Carbon Pricing October 2020; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Peng, Y.; Bai, X. Financing urban low-carbon transition: The catalytic role of a city-level special fund in Shanghai. J. Clean. Prod. 2021, 282, 124514. [Google Scholar] [CrossRef]
- Kuokkanen, A.; Sihvonen, M.; Uusitalo, V.; Huttunen, A.; Ronkainen, T.; Kahiluoto, H. A proposal for a novel urban mobility policy: Personal carbon trade experiment in Lahti city. Util. Policy 2019, 62, 100997. [Google Scholar] [CrossRef]
- Goldstein, G.; Lehtilä, A.K.A.; Remme, U.; Wright, E. Documentation for the TIMES model: PART III; Energy Technology Systems Analysis Programme (ETSAP): Paris, France, 2016. [Google Scholar]
- Loulou, R.; Lettila, A.; Kanudia, A.; Remme, U.; Goldstein, G. Documentation for the TIMES model PART II; Energy Technology Systems Analysis Programme (ETSAP): Paris, France, 2016. [Google Scholar]
- Loulou, R.; Goldstein, G.; Kanudia, A.; Lettila, A.; Remme, U. Documentation for the TIMES model: PART I; Energy Technology Systems Analysis Programme (ETSAP): Paris, France, 2016. [Google Scholar]
- Simões, S.; Cleto, J.; Fortes, P.; Seixas, J.; Huppes, G. Cost of energy and environmental policy in Portuguese CO2 abatement—Scenario analysis to 2020. Energy Policy 2008, 36, 3598–3611. [Google Scholar] [CrossRef]
- Fortes, P.; Simoes, S.; Gouveia, J.P.; Seixas, J. Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal. Appl. Energy 2019, 237, 292–303. [Google Scholar] [CrossRef]
- Monjardino, J.; Dias, L.; Fortes, P.; Tente, H.; Ferreira, F.; Seixas, J. Carbon Neutrality Pathways Effects on Air Pollutant Emissions: The Portuguese Case. Atmosphere 2021, 12, 324. [Google Scholar] [CrossRef]
- Seixas, J.; Fortes, P. Evaluation of the impact of CO2 taxes in the Portuguese energy system using TIMES_PT model, Annex III. In Study for the Green Tax Reform Commission; Center for Environmental and Sustainability Research (CENSE), FCT-UNL: Caparica, Portugal, 2014. [Google Scholar]
- Seixas, J.; Fortes, P.; Dias, L.; Barroso, J.E.; Martinho, S.; Gouveia, J.P.; Ferreira, F.; Gomes, P.; Tente, H.; Baptista, P. GHG Emission scenarios and technological options for decarbonization in Portugal in 2020 and 2030 Study for the Portuguese Environmental Agency. In Lasting Values, Lda and CENSE; FCT of NOVA University of Lisbon: Lisbon, Portugal, 2014. [Google Scholar]
- Seixas, J.; Fortes, P.; Ferreira, F.; Tente, H.; Monjardino, J.; Gouveia, J.P.; Dias, L.; Palma, P.; Lopes, R.; Avillez, F.; et al. Complex modelling to achieve Carbon Neutrality in Portugal. In Proceedings of the EU Conference on Modelling for Policy Support, Brussels, Belgium, 26–27 November 2019. [Google Scholar]
- CNR2050. Roadmap for Carbon Neutrality 2050 (RNC2050) Long-Term Strategy for Carbon Neutrality of the Portuguese Economy by 2050; Ministério do Ambiente e da Transição Energética: Lisbon, Portugal, 2019. Available online: https://www.portugal.gov.pt/download-ficheiros/ficheiro.aspx?v=%3d%3dBAAAAB%2bLCAAAAAAABACzMDexBAC4h9DRBAAAAA%3d%3d (accessed on 3 August 2021).
- Pavičević, M.; Mangipinto, A.; Nijs, W.; Lombardi, F.; Kavvadias, K.; Navarro, J.P.J.; Colombo, E.; Quoilin, S. The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models. Appl. Energy 2020, 267, 115100. [Google Scholar] [CrossRef]
- Chiodi, A.; Taylor, P.G.; Seixas, J.; Simões, S.; Fortes, P.; Gouveia, J.P.; Dias, L.; Gallachóir, B. Energy policies influenced by energy systems modelling—Case studies in UK, Ireland, Portugal and G8. Lect. Notes Energy 2015, 30, 15–41. [Google Scholar] [CrossRef]
- Giannakidis, G.; Gargiulo, M.; de Miglio, R.; Chiodi, A.; Seixas, J.; Simões, S.G.; Dias, L.; Gouveia, J.P. Challenges Faced When Addressing the Role of Cities towards a Below 2-Degrees World. In Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development; Lecture Notes in Energy; Giannakidis, G., Karlsson, K., Labriet, M., Gallachóir, B., Eds.; Springer: Cham, Switzerland, 2016; Volume 64, pp. 373–389. [Google Scholar] [CrossRef]
- De Miglio, R.; Chiodi, A.; Burioli, S.; Giovannini, E.; Gargiulo, M. Exploring Integrated Energy Action Plans for a Sustainable Transition of the Municipality of Cesena. Procedia Eng. 2017, 198, 541–548. [Google Scholar] [CrossRef]
- Gargiulo, M.; Chiodi, A.; De Miglio, R.; Simoes, S.; Long, G.; Pollard, M.; Gouveia, J.P.; Giannakidis, G. An Integrated Planning Framework for the Development of Sustainable and Resilient Cities—The Case of the InSMART Project. Procedia Eng. 2017, 198, 444–453. [Google Scholar] [CrossRef]
- Simoes, S.G.; Dias, L.; Gouveia, J.; Seixas, J.; De Miglio, R.; Chiodi, A.; Gargiulo, M.; Long, G.; Giannakidis, G. INSMART—Insights on integrated modelling of EU cities energy system transition. Energy Strat. Rev. 2018, 20, 150–155. [Google Scholar] [CrossRef]
- Paltsev, S.; Capros, P. Cost concepts for climate change mitigation. Clim. Chang. Econ. 2013, 4, 1340003. [Google Scholar] [CrossRef] [Green Version]
- Tente, H.; Dias, P.L.; Monjardino, J.; Fortes, P.; Ferreira, F.; Seixas, J. Decarbonising transports in Portugal up to 2050: Possible pathways. In Proceedings of the EU Conference on Modelling for Policy Support, Brussels, Belgium, 26–27 November 2019. [Google Scholar]
- Pinho, P.; Silva, C.; Lopes, M.; Altiery, M.; Pimentel, M. Plano de Mobilidade e Transportes de Matosinhos; Câmara Municipal de Matosinhos: Matosinhos, Portugal, 2018; Available online: https://www.cm-matosinhos.pt/cmmatosinhos2020/uploads/document/file/7123/2_a_fase___prioridades_e_visao_para_o_municipio.pdf (accessed on 3 August 2021).
- Pinho, P.; Silva, C.; Lopes, M.; Altieri, M.; Pimentel, M. Plano de Mobilidade e Transportes de Matosinhos 1a Fase-Anexos; Câmara Municipal de Matosinhos: Matosinhos, Portugal, 2016; Available online: https://www.cm-matosinhos.pt/cmmatosinhos2020/uploads/document/file/7124/1_a_fase___caracterizacao_e_diagnostico.pdf (accessed on 3 August 2021).
- Pinho, P.; Silva, C.; Lopes, M.; Vaz, R. Plano de Mobilidade e Transportes de Matosinhos 3a Fase Outubro 2017 Atualização de Maio 2018; Câmara Municipal de Matosinhos: Matosinhos, Portugal, 2016; Available online: https://www.cm-matosinhos.pt/cmmatosinhos2020/uploads/document/file/7125/3_a_fase___plano_de_acao.pdf (accessed on 3 August 2021).
- PCM. Resolução do Conselho de Ministros n.o 53/2020—Aprova o Plano Nacional Energia e Clima 2030 (PNEC 2030); Presidência do Conselho de Ministros: Lisbon, Portugal, 2020.
- Liu, N.; Song, F. Marginal Abatement Cost of Carbon Emissions under Different Shared Socioeconomic Pathways. Sustainability 2021, 13, 13693. [Google Scholar] [CrossRef]
- Uusitalo, E.; Kuokkanen, A.; Uusitalo, V.; von Wright, T.; Huttunen, A. Personal carbon trading in mobility may have positive distributional effects. Case Stud. Transp. Policy 2021, 9, 315–323. [Google Scholar] [CrossRef]
- Wagner, G.; Anthoff, D.; Cropper, M.; Dietz, S.; Gillingham, K.T.; Groom, B.; Kelleher, J.P.; Moore, F.C.; Stock, J.H. Eight priorities for calculating the social cost of carbon. Nature 2021, 590, 548–550. [Google Scholar] [CrossRef] [PubMed]
- Carleton, T.; Greenstone, M. Updating the United States Government’s Social Cost of Carbon. University of Chicago, Becker Friedman Institute for Economics Working Paper No. 2021-04. Available online: https://ssrn.com/abstract=3764255 (accessed on 3 August 2021).
Boulder (USA) | New York City (USA) | Oslo (Norway) | Aradippou (Cyprus) | Bologna (Italy) | Lahti (Finland) | Tokyo (Japan) | Beijing, Tianjin, Shanghai, Shenzhen, Chongqing (Cities), Fujian, Guangdong, and Hubei (Provinces) (China) | Singapore | |
---|---|---|---|---|---|---|---|---|---|
Administrative level | City | Megacity | City | City | City | City | Megacity/ region | City and province | City-state |
Population | 100,000 | 8,400,000 | 634,000 | 20,000 | 380,000 | 13,300,000 | 92,200,000 (cities) 63,200,000 (provinces) | 5,700,000 | |
Start year | 2007 | 2024 | 2016 | 2016 | 2015–2018 | 120,000 | 2010 | 2013 | 2019/2021 |
Current climate policy instrument (Carbon Tax/ETS/Other/None) | Other: CAP tax | None | Other: electricity fee | ETS: Local auction rewarding mechanism and international offset market | ETS: | 2020 | Cap-and-trade (ETS) | ETS city-level until June 2021 | Carbon tax/ETS |
If ETS, No. of trades | N/A | N/A | N/A | N/A | N/A | Cap-and-trade | 30 (until 2020) | N/A | N/A |
Planned policy instrument | Comprehensive carbon tax in 2023 | Carbon trading program (ETS) credit system-based with no auctions | N/A | N/A | None | N/A | N/A | ETS (city level turned national scheme) | N/A |
Current covered sectors | Buildings electricity consumption (residential, commercial and industrial) | None | N/A | Residential buildings: energy efficiency and renewable energy | Active urban mobility (cycling) | Personal Cap and Trading | 1200 buildings (1000 commercial and services plus 200 factories) | Industry, active urban mobility (bike-sharing) | Industry ≥25,000 tCO2/year; forests |
% share of total city GHG emissions | 70% | 70% | N/A | 25% | N/A | N/A | ~20% | 40% | N/A |
Planned covered sectors | N/A | 50,000 buildings (commercial and residential) | N/A | N/A | N/A | Transport and mobility | N/A | N/A | N/A |
Revenue destination | N/A | N/A | Local fund for GHG emissions mitigation action funding | Local fund for GHG emissions mitigation action funding | N/A | 25% | N/A | N/A | N/A |
Initiative (Experimental/Mandatory) | Mandatory | Mandatory | Mandatory | Experimental | Experimental | Transport and mobility | Mandatory | Experimental/Mandatory | Mandatory |
Average price (a) $/kWh or (b) $/gCO2/kWh or (c) $/tCO2) or (d) Other | (a) 0.0020 $/kWh (of which 0.0049 residential tax) | ETS (NA); Carbon tax: $55/tCO2 | One cent fee in electricity bill | N/A | (d) Other: ~€17/tCO2 | Lahti (Finland) | $5.06/tCO2 | ~€6–~€7.5 tCO2 | Carbon tax: $5/tCO2 |
Carbon cost approach adopted for carbon pricing setting (SCC/MAC/other/NA) | N/A | N/A | N/A | N/A | N/A | Experimental | N/A | N/A | N/A |
City carbon neutral deadline | 80% carbon reduction by 2050 compared to 2005 | 80% reduction by 2050, compared to 2005 levels | 95% reduction by 2030 compared to 2009 | 28% reduction by 2020 | 55% reduction 2030 and net zero emissions 2050 | €27/tCO2eq | Net-zero by 2050 | Net-zero by 2060 | As soon as viable after 2050 |
Country carbon neutral deadline | 2050 | 2030 | 2050 | 2050 | €100/tCO2eq | 2050 | 2060 | ||
Country prevailing carbon price signal (% of emissions priced ≥ €60/tCO2) * | USA: 22% | Norway: 68% | Cyprus: N/A | Italy: 51% | €1000/tCO2eq | Japan: 24% | China: 9% | Singapore: N/A | |
GDP per capita PPP, current international $ (17,100 $, World) ** | 63,500 $ | 63,100 $ | 38,400 $ | 41,800 $ | 51,000 $ | 42,100 $ | 17,300 $ |
Sector | Scope 1 | Scope 2 | Total | Share |
---|---|---|---|---|
Transportation | 772.1 | 0.3 | 772.4 | 63% |
Industry a | 31.7 | 56.9 | 88.6 | 7% |
Residential | 88.4 | 79.0 | 167.4 | 14% |
Services | 40.3 | 109.3 | 149.7 | 12% |
Agriculture and fisheries | 43.2 | 2.7 | 45.9 | 4% |
Other sectors b | 0.0 | 1.2 | 1.2 | 0% |
Total | 975.7 | 249.5 | 1225.2 |
Scenario Category | Scenario Description | Key Variables | Unit |
---|---|---|---|
Reference (REF) | Serves as the basis for benchmark analysis from the sustainable mobility scenarios. | Not applicable | Not applicable |
Public transportation (PT) | Aims to test the effect of a gradual modal shift from private vehicles to public transportation modes. | Public transportation share (include urban and intercity bus, train, and tram). | Percentage of passenger mobility satisfied by public transportation. |
Active mobility (AM) | Aims to test the effect of a gradual modal shift from private vehicle use to non-motorized transportation (NMT)/active mobility (covering principally walking and cycling). | Short-distance passenger mobility demand satisfied by soft modes (e.g., bike or walking). | Percentage of short-distance passenger mobility covered by pedestrian and cycling modes. |
Shared mobility (SM) | Aims to reflect a gradual increase in the use of sharing vehicle schemes for short-distance passenger demand. | Passenger short-distance demand met using shared vehicles. Sharing schemes considering small and medium vehicles. | Percentage of short-distance passenger mobility covered by sharing vehicles. |
Intermodal (IM) | Aims to assess the combined effect of active modes and public transportation. | Both variables associated with AM and TP scenarios. | Equal to AM and TP scenarios. |
Scenario Category and Name | Scenario Code | Increase from REF 1 | 2030 Value | |
---|---|---|---|
Reference | |||
Representing base-case conditions | REF | - | |
Public transportation | |||
Public Transportation: 17.5% | PT_17.5% | +3.9% | 18% |
Public Transportation: 20.6% | PT_20.6% | +7.1% | 21% |
Public Transportation: 23.7% | PT_23.7% | +10.2% | 24% |
Public Transportation: 26.8% | PT_26.8% | +13.3% | 27% |
Public Transportation: 30% | PT_30.0% | +16.4% | 30% |
Active mobility | |||
Active modes: 7% | AM_7% | +3.7% | 7% |
Active modes: 8.3% | AM_8.3% | +5.0% | 8% |
Active modes: 13% | AM_13% | +10.0% | 13% |
Active modes: 18% | AM_18% | +15.0% | 18% |
Active modes: 25% | AM_25% | +21.7% | 25% |
Shared mobility | |||
Shared mobility: 3.5% | SM_3.5% | +1.5% | 4% |
Shared mobility: 5.1% | SM_5.1% | +3.1% | 5% |
Shared mobility: 6.8% | SM_6.8% | +4.8% | 7% |
Shared mobility: 8.4% | SM_8.4% | +6.4% | 8% |
Shared mobility: 10% | SM_10.0% | +8.0% | 10% |
Intermodal: PT + MS | |||
PT 23.7% and AM 13% | IM_PTAM | Equal to PT 23.7% | Equal to AM 13% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, L.J.; Dias, L.P.; Liu, J. Adopting Carbon Pricing Tools at the Local Level: A City Case Study in Portugal. Sustainability 2022, 14, 1812. https://doi.org/10.3390/su14031812
Ferreira LJ, Dias LP, Liu J. Adopting Carbon Pricing Tools at the Local Level: A City Case Study in Portugal. Sustainability. 2022; 14(3):1812. https://doi.org/10.3390/su14031812
Chicago/Turabian StyleFerreira, Lurdes Jesus, Luís Pereira Dias, and Jieling Liu. 2022. "Adopting Carbon Pricing Tools at the Local Level: A City Case Study in Portugal" Sustainability 14, no. 3: 1812. https://doi.org/10.3390/su14031812
APA StyleFerreira, L. J., Dias, L. P., & Liu, J. (2022). Adopting Carbon Pricing Tools at the Local Level: A City Case Study in Portugal. Sustainability, 14(3), 1812. https://doi.org/10.3390/su14031812