Assessing Effectiveness of Humanitarian Activities against COVID-19 Disruption: The Role of Blockchain-Enabled Digital Humanitarian Network (BT-DHN)
Abstract
:1. Introduction
- RQ1. What critical factors contribute to the development of effective HAs in COVID-19?
- RQ2. What interrelationship and hierarchy exist between these critical factors (CFs)?
- RQ3. To what extent do these critical factors have cause-and-effect interrelationships?
2. Literature
Humanitarian Activities (HAs) in Enhancing Operational Effectiveness during the Pandemic
3. Research Methodology
3.1. Fuzzy Set Theory
- AB: =
- AB: =
- AB:
- ʎ (AB): =
- AB:
3.2. Fuzzy–Delphi Method
- Step 1:
- It includes the extraction of HAs from the existing literature. The extraction is exhibited in Figure 1.
- Step 2:
- The identified HAs were shared with the experts. With the help of the linguistic scale (Table 3), the HAs are evaluated. Assuming fuzzy number to be the jth evaluation of barriers of the ith expert of n experts,Then, the fuzzy weights of barriers are given as follows: , where:
- Step 3:
- This final step uses mean method Sj through Equation (4).The evaluation of critical factors is based on the following condition:
- a)
- Acceptance of factor: When the value of is greater or equal to the threshold value (α)
- b)
- Rejection of the factor: When the value of is less than a threshold value (α)
3.3. Fuzzy DEMATEL
- Step 1:
- Goal setting and criteria identification
- Step 2:
- Factors identification to evaluate effect between factors using pairwise comparison.
- Step 3:
- Define the fuzzy linguistic scale. Table 3 explains the linguistic terms used in the study.
- Step 4:
- Development of fuzzy direct-relation matrix Zk. Zk = [Zkij] where Z is a n × n non-negative matrix; Zij represents the direct impact of factor i on factor j, and, when i = j, the diagonal elements Zij = 0.
- Step 5:
- Establishment of the cause-and-effect model: Compute the total-relation matrix T using the formula in Equation (5), where n × n identity matrix is represented with I. Upper, and lower values are calculated separately
- Step 6:
- The cause-and-effect group factors provides the visualization of the complex interrelationships among factors and are highly significant for decision-makers.
4. Research Framework
4.1. Phase 1: Identification and Validation of Critical Factors for HAs through Brainstorming
4.2. Fuzzy–DEMATEL for Cause-and-Effect Analysis
5. Discussion of Findings
6. Implications
7. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sharma, M.; Luthra, S.; Joshi, S.; Kumar, A. Developiforng a framework for enhancing survivability of sustainable supply chains during and post-COVID-19 pandemic. Int. J. Logist. Res. Appl. 2020, 1–21. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Bryde, D.J.; Dwivedi, Y.; Papadopoulos, T. Blockchain technology for enhancing swift-trust, collaboration and resilience within a humanitarian supply chain setting. Int. J. Prod. Res. 2020, 58, 3381–3398. [Google Scholar] [CrossRef]
- Wagner, S.M.; Thakur-Weigold, B.; Gatti, F.; Stumpf, J. Measuring and improving the impact of humanitarian logistics consulting. Prod. Plan. Control 2021, 32, 83–103. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Fosso Wamba, S.; De Bourmont, M.; Telles, R. Blockchain adoption in operations and supply chain man-agement: Empirical evidence from an emerging economy. Int. J. Prod. Res. 2021, 59, 6087–6103. [Google Scholar] [CrossRef]
- Dash, M.; Shadangi, P.Y.; Muduli, K.; Luhach, A.K.; Mohamed, A. Predicting the motivators of telemedicine acceptance in COVID-19 pandemic using multiple regression and ANN approach. J. Stat. Manag. Syst. 2021, 24, 319–339. [Google Scholar] [CrossRef]
- Sahoo, K.K.; Muduli, K.K.; Luhach, A.K.; Poonia, R.C. Pandemic COVID-19: An empirical analysis of impact on Indian higher education system. J. Stat. Manag. Syst. 2021, 24, 341–355. [Google Scholar] [CrossRef]
- Baveja, A.; Kapoor, A.; Melamed, B. Stopping Covid-19: A pandemic-management service value chain approach. Ann. Oper. Res. 2020, 289, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Bag, S.; Yadav, G.; Wood, L.C.; Dhamija, P.; Joshi, S. Industry 4.0 and the circular economy: Resource melioration in logistics. Resour. Policy 2020, 68, 101776. [Google Scholar] [CrossRef]
- Schiffling, S.; Hannibal, C.; Fan, Y.; Tickle, M. Coopetition in temporary contexts: Examining swift trust and swift distrust in humanitarian operations. Int. J. Oper. Prod. Manag. 2020, 40, 1449–1473. [Google Scholar] [CrossRef]
- Chou, K.P.; Prasad, M.; Lin, Y.Y.; Joshi, S.; Lin, C.-T.; Chang, J.Y. Takagi-Sugeno-Kang type collaborative fuzzy rule based system. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Orlando, FL, USA, 9–12 December 2014; pp. 315–320. [Google Scholar]
- Zwitter, A.; Boisse-Despiaux, M. Blockchain for humanitarian action and development aid. J. Int. Humanit. Action 2018, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Banomyong, R.; Varadejsatitwong, P.; Oloruntoba, R. A systematic review of humanitarian operations, humanitarian logistics and humanitarian supply chain performance literature 2005 to 2016. Ann. Oper. Res. 2019, 283, 71–86. [Google Scholar] [CrossRef]
- Gupta, P.K.; Kumar, A.; Joshi, S. A review of knowledge, attitude, and practice towards COVID-19 with future directions and open challenges. J. Public Aff. 2020, 21, e2555. [Google Scholar] [CrossRef]
- Joshi, S. E-Supply Chain Collaboration and Integration: Implementation Issues and Challenges. In E-Logistics and E-Supply Chain Management: Applications for Evolving Business; IGI Global: Hershey, PA, USA, 2013. [Google Scholar]
- Joshi, R.; Joshi, S. Assessing the Readiness of Farmers towards Cold Chain Management: Evidences from India. In Designing and Implementing Global Supply Chain Management; IGI Global: Hershey, PA, USA, 2016; pp. 219–235. [Google Scholar]
- Joshi, S. Designing and Implementing Global Supply Chain Management; IGI Global: Hershey, PA, USA, 2015. [Google Scholar]
- Joshi, S.; Singh, R.K.; Sharma, M. Sustainable Agri-food Supply Chain Practices: Few Empirical Evidences from a Developing Economy. Glob. Bus. Rev. 2020, 0972150920907014. [Google Scholar] [CrossRef]
- Kovács, G.; SigalaI, F. Lessons learned from humanitarian logistics to manage supply chain disruptions. J. Supply Chain Manag. 2021, 57, 41–49. [Google Scholar] [CrossRef]
- Kusumastuti, R.D.; Arviansyah, A.; Nurmala, A.; Wibowo, S.S. Knowledge management and natural disaster preparedness: A systematic literature review and a case study of East Lombok, Indonesia. Int. J. Disaster Risk Reduct. 2021, 58, 102223. [Google Scholar] [CrossRef]
- Ab Malik, M.H.; Omar, E.N.; Maon, S.N. Humanitarian Logistics: A Disaster Relief Operations Framework During Pandemic Covid-19 in Achieving Healthy Communities. Adv. Bus. Res. Int. J. 2020, 6, 101–113. [Google Scholar] [CrossRef]
- Joshi, S. Social network analysis in smart tourism-driven service distribution channels: Evidence from tourism supply chain of Uttarakhand, India. Int. J. Digit. Cult. Electron. Tour. 2018, 2, 255–272. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M.; Kler, R. Modeling Circular Economy Dimensions in Agri-Tourism Clusters: Sustainable Performance and Future Research Directions. Int. J. Math. Eng. Manag. Sci. 2020, 5, 1046–1061. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, C.; Jiang, J.; Yang, H.; Shang, H. Reinforcement learning approach for resource allocation in humanitarian logistics. Expert Syst. Appl. 2021, 173, 114663. [Google Scholar] [CrossRef]
- Kunz, N.; Gold, S. Sustainable humanitarian supply chain management—Exploring new theory. Int. J. Logist. Res. Appl. 2017, 20, 85–104. [Google Scholar] [CrossRef]
- Kelman, I. COVID-19: What is the disaster? Soc. Anthropol. 2020, 28, 296–297. [Google Scholar] [CrossRef] [PubMed]
- Seddighi, H. COVID-19 as a Natural Disaster: Focusing on Exposure and Vulnerability for Response. Disaster Med. Public Health Prep. 2020, 14, e42–e43. [Google Scholar] [CrossRef]
- Li, J.; An, Y.; Wang, L.; Zhang, Y. Combating the COVID-19 pandemic: The role of disaster experience. Res. Int. Bus. Finance 2021, 60, 101581. [Google Scholar] [CrossRef] [PubMed]
- Schiffling, S.; Hannibal, C.; Tickle, M.; Fan, Y. The implications of complexity for humanitarian logistics: A complex adaptive systems perspective. Ann. Oper. Res. 2020, 1–32. [Google Scholar] [CrossRef]
- Muggy, L.; Stamm, J.L.H. Decentralized beneficiary behavior in humanitarian supply chains: Models, performance bounds, and coordination mechanisms. Ann. Oper. Res. 2019, 284, 333–365. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M.; Singh, R.K. Performance Evaluation of Agro-tourism Clusters using AHP–TOPSIS. J. Oper. Strat. Plan. 2020, 3, 7–30. [Google Scholar] [CrossRef]
- Charles, A.; Lauras, M.; Van Wassenhove, L.N.; Dupont, L. Designing an efficient humanitarian supply network. J. Oper. Manag. 2016, 47-48, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, M.M.; Ivanov, D.; Dolgui, A.; Wamba, S.F. Impacts of epidemic outbreaks on supply chains: Mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Ann. Oper. Res. 2020, 238, 329–354. [Google Scholar] [CrossRef]
- Thompson, D.D.; Anderson, R. The COVID-19 response: Considerations for future humanitarian supply chain and logistics management research. J. Humanit. Logist. Supply Chain Manag. 2021, 11, 157–175. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Parekh, H.; Joshi, S. Modeling the internet of things adoption barriers in food retail supply chains. J. Retail. Consum. Serv. 2019, 48, 154–168. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A. Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. Int. J. Prod. Res. 2020, 58, 2904–2915. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.; Sharma, M. Impact of sustainable Supply Chain Management on the Performance of SMEs during COVID-19 Pandemic: An Indian Perspective. Int. J. Logist. Econ. Glob. 2021. Available online: http://hdl.handle.net/10453/152609 (accessed on 22 December 2021).
- Joshi, S.; Sharma, M. Prolonging retailer-supplier relationship: A study of retail firms during pandemic COVID-19. Int. J. Logist. Econ. Glob. 2021. Available online: http://hdl.handle.net/10453/152610 (accessed on 22 December 2021).
- Akhtar, P.; Marr, N.; Garnevska, E. Coordination in humanitarian relief chains: Chain coordinators. J. Humanit. Logist. Supply Chain Manag. 2012, 2, 85–103. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M. Digital technologies (DT) adoption in agri-food supply chains amidst COVID-19: An approach to-wards food security concerns in developing countries. J. Glob. Oper. Strateg. Source. 2021. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, S.; Luthra, S.; Kumar, A. Managing disruptions and risks amidst COVID-19 outbreaks: Role of blockchain technology in developing resilient food supply chains. Oper. Manag. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Shanker, S.; Barve, A.; Muduli, K.; Kumar, A.; Garza-Reyes, J.A.; Joshi, S. Enhancing resiliency of perishable product supply chains in the context of the COVID-19 outbreak. Int. J. Logist. Res. Appl. 2021, 1–25. [Google Scholar] [CrossRef]
- Malmir, B.; Zobel, C.W. An applied approach to multi-criteria humanitarian supply chain planning for pandemic response. J. Humanit. Logistics. Supply Chain. Manag. 2021, 11, 320–346. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M. Social capital in the Asia Pacific: Examples from the services industry. Asia Pac. Bus. Rev. 2018, 25, 457–458. [Google Scholar] [CrossRef]
- Tripathi, G.; Joshi, S. Creating Competitive Advantage through Sustainable Supply Chains: A Theoretical Framework for the Assessment of Practices, Dynamic Capabilities, and Enterprise Performance of Manufacturing Firms. Int. J. Recent Technol. Eng. 2019, 8, 7863–7875. [Google Scholar]
- Ivanov, D. Lean resilience: AURA (Active Usage of Resilience Assets) framework for post-COVID-19 supply chain management. Int. J. Logist. Manag. 2021. [Google Scholar] [CrossRef]
- Swain, S.; Peter, O.; Adimuthu, R.; Muduli, K. BlockChain Technology for Limiting the Impact of Pandemic: Challenges and Prospects. In Computational Modelling and Data Analysis in COVID-19 Research; CRC Press: Boca Raton, FL, USA, 2021; pp. 165–186. [Google Scholar]
- Joshi, S.; Sharma, M.; Bisht, P.; Singh, S. Explaining the Factors Influencing Consumer Perception, Adoption Readiness, and Perceived Usefulness toward Digital Transactions: Online Retailing Experience of Millennials in India. J. Oper. Strat. Plan. 2021, 4, 202–223. [Google Scholar] [CrossRef]
- Blecken, A. Humanitarian Logistics: Modelling Supply Chain Processes of Humanitarian Organizations; Haupt Verlag AG: Bern, Switzerland, 2010; p. 18. [Google Scholar]
- Joshi, S.; Sharma, M.; Kumar, S.; Pant, M.K. Co-Creation Among Small Scale Tourism Firm: Role of Information Com-munication and Technology in Productivity and Sustainability. Int. J. Strateg. Inf. Technol. Appl. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M.; Rathi, S. Forecasting in Service Supply Chain Systems: A State-of-the-Art Review Using Latent Semantic Analysis. Adv. Bus. Manag. Forecast. 2017, 12, 181–212. [Google Scholar] [CrossRef]
- Prasad, M.; Li, D.L.; Lin, C.T.; Prakash, S.; Singh, J.; Joshi, S. Designing Mamdani-Type Fuzzy Reasoning for Visualizing Prediction Problems Based on Collaborative Fuzzy Clustering. IAENG Int. J. Comput. Sci. 2015, 42. [Google Scholar]
- Sharma, M.; Joshi, S. Barriers to blockchain adoption in health-care industry: An Indian perspective. J. Glob. Oper. Strat. Sourc. 2021, 14, 134–169. [Google Scholar] [CrossRef]
- Polater, A. Dynamic capabilities in humanitarian supply chain management: A systematic literature review. J. Humanit. Logist. Supply Chain Manag. 2020, 11, 46–80. [Google Scholar] [CrossRef]
- Ertem, M.A.; İşbilir, M.; Arslan, A.Ş. Review of intermodal freight transportation in humanitarian logistics. Eur. Transp. Res. Rev. 2017, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Penna, P.H.V.; Santos, A.C.; Prins, C. Vehicle routing problems for last mile distribution after major disaster. J. Oper. Res. Soc. 2017, 69, 1254–1268. [Google Scholar] [CrossRef]
- De Camargo, J.A.; Mendonça, P.S.M.; Oliveira, J.; Jabbour, C.J.C.; Jabbour, A.B.L.D.S. Giving voice to the silent: A framework for understanding stakeholders’ participation in socially-oriented initiatives, community-based actions and humanitarian operations projects. Ann. Oper. Res. 2019, 283, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Mannakkara, S.; Wilkinson, S.; Potangaroa, R. Resilient Post Disaster Recovery through Building Back Better; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Lopez, A.; de Perez, E.C.; Bazo, J.; Suarez, P.; van den Hurk, B.; van Aalst, M. Bridging forecast verification and human-itarian decisions: A valuation approach for setting up action-oriented early warnings. Weather. Clim. Extrem 2020, 27, 100167. [Google Scholar] [CrossRef]
- Rana, P.; Joshi, S. Management Practices for Sustainable Supply Chain and Its Impact on Economic Performance of SMEs: An Analytical Study of Uttarakhand State, India. Int. J. Manag. 2020, 11, 346–354. [Google Scholar]
- Janssen, M.; Van Der Voort, H. Agile and adaptive governance in crisis response: Lessons from the COVID-19 pandemic. Int. J. Inf. Manage. 2020, 55, 102180. [Google Scholar] [CrossRef] [PubMed]
- Dash, P.; Punia, M. Governance and disaster: Analysis of land use policy with reference to Uttarakhand flood 2013, India. Int. J. Disaster Risk Reduct. 2019, 36, 101090. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, S. Online Advertisement Using Web Analytics Software. Int. J. Bus. Anal. 2020, 7, 13–33. [Google Scholar] [CrossRef]
- Sigala, I.F.; Kettinger, W.J.; Wakolbinger, T. Digitizing the field: Designing ERP systems for Triple-A humanitarian supply chains. J. Humanit. Logist. Supply Chain Manag. 2020, 10, 231–260. [Google Scholar] [CrossRef]
- Gavidia, J.V. A model for enterprise resource planning in emergency humanitarian logistics. J. Humanit. Logist. Supply Chain Manag. 2017, 7, 246–265. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, S. Digital supplier selection reinforcing supply chain quality management systems to enhance firm’s performance. TQM J. 2020. [Google Scholar] [CrossRef]
- Goniewicz, K.; Khorram-Manesh, A.; Hertelendy, A.J.; Goniewicz, M.; Naylor, K.; Burkle, F.M., Jr. Current Response and Management Decisions of the European Union to the COVID-19 Outbreak: A Review. Sustainability 2020, 12, 3838. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, S.; Govindan, K. Issues and solutions of electronic waste urban mining for circular economy transition: An Indian context. J. Environ. Manag. 2021, 290, 112373. [Google Scholar] [CrossRef]
- Meier, P. Digital Humanitarians: How Big Data is Changing the Face of Humanitarian Response; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Sharma, M.; Joshi, S.; Kumar, A. Assessing enablers of e-waste management in circular economy using DEMATEL method: An Indian perspective. Environ. Sci. Pollut. Res. 2020, 27, 13325–13338. [Google Scholar] [CrossRef]
- Gupta, S.; Altay, N.; Luo, Z. Big data in humanitarian supply chain management: A review and further research directions. Ann. Oper. Res. 2019, 283, 1153–1173. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Joshi, S.; Luthra, S.; Kumar, A. Analysing the Impact of Sustainable Human Resource Management Practices and Industry 4.0 Technologies Adoption on Employability Skills. Int. J. Manpow. 2021. Available online: http://repository.londonmet.ac.uk/6738/ (accessed on 16 December 2021).
- Sharma, M.; Luthra, S.; Joshi, S.; Kumar, A. Implementing challenges of artificial intelligence: Evidence from public manufacturing sector of an emerging economy. Gov. Inf. Q. 2021, 101624. [Google Scholar] [CrossRef]
- Hart, O.E.; Halden, R.U. Modeling wastewater temperature and attenuation of sewage-borne biomarkers globally. Water Res. 2020, 172, 115473. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Luthra, S.; Joshi, S.; Kumar, A. Accelerating retail supply chain performance against pandemic disruption: Adopting resilient strategies to mitigate the long-term effects. J. Enterp. Inf. Manag. 2021, 34, 1844–1873. [Google Scholar] [CrossRef]
- Ishiwatari, M.; Koike, T.; Hiroki, K.; Toda, T.; Katsube, T. Managing disasters amid COVID-19 pandemic: Approaches of response to flood disasters. Prog. Disaster Sci. 2020, 6, 100096. [Google Scholar] [CrossRef]
- Singh, R.K.; Joshi, S.; Sharma, M. Modelling Supply Chain Flexibility in the Indian Personal Hygiene Industry: An ISM-Fuzzy MICMAC Approach. Glob. Bus. Rev. 2020, 0972150920923075. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Hasija, S.; Van Wassenhove, L.N. Designing Efficient Infrastructural Investment and Asset Transfer Mechanisms in Humanitarian Supply Chains. Prod. Oper. Manag. 2014, 23, 1511–1521. [Google Scholar] [CrossRef]
- Altay, N.; Narayanan, A. Forecasting in humanitarian operations: Literature review and research needs. Int. J. Forecast. 2020. [Google Scholar] [CrossRef]
- Biswal, J.N.; Muduli, K.; Satapathy, S. Critical Analysis of Drivers and Barriers of Sustainable Supply Chain Management in Indian Thermal Sector. Int. J. Procure. Manag. 2017, 10, 411–430. [Google Scholar] [CrossRef]
- Altay, N.; Kovács, G.; Spens, K. The evolution of humanitarian logistics as a discipline through a crystal ball. J. Humanit. Logist. Supply Chain Manag. 2021, 11, 577–584. [Google Scholar] [CrossRef]
- Peter, O.; Swain, S.; Muduli, K.; Ramasamy, A. IoT in Combating Covid 19 Pandemics: Lessons for Developing Countries, Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis; Springer: Berlin/Heidelberg, Germany, 2021; pp. 113–132. [Google Scholar]
- Sharma, M.; Joshi, S. Brand sustainability among young consumers: An AHP-TOPSIS approach. Young Consum. 2019, 20, 314–337. [Google Scholar] [CrossRef]
- Muduli, K.; Barve, A. Analysis of critical activities for GSCM implementation in mining supply chains in India using fuzzy analytical hierarchy process. Int. J. Bus. Excel. 2015, 8, 767. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, S.; Kannan, D.; Govindan, K.; Singh, R.; Purohit, H.C. Internet of Things (IoT) adoption barriers of smart cities’ waste management: An Indian context. J. Clean. Prod. 2020, 270, 122047. [Google Scholar] [CrossRef]
- Seker, S.; Zavadskas, E.K. Application of Fuzzy DEMATEL Method for Analyzing Occupational Risks on Construction Sites. Sustainability 2017, 9, 2083. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Joshi, S.; Bhatia, T.; Sharma, S.; Samadhiya, D.; Shah, R.R.; Kaiwartya, O.; Prasad, M. Characteristic of enterprise collaboration system and its implementation issues in business management. Int. J. Bus. Intell. Data Min. 2020, 16, 49. [Google Scholar] [CrossRef]
- Kannan, G.; Muduli, K.; Devika, K.; Barve, A. Investigation of influential strength of factors on GSCM adoption in mining in-dustries operating in India. Resour. Conserv. Recycl. 2016, 107, 185–194. [Google Scholar]
- Brem, A.; Viardot, E.; Nylund, P.A. Implications of the coronavirus (COVID-19) outbreak for innovation: Which technologies will improve our lives? Technol. Forecast. Soc. Change 2021, 163, 120451. [Google Scholar] [CrossRef]
- Fernandez-Luque, L.; Imran, M. Humanitarian health computing using artificial intelligence and social media: A narrative literature review. Int. J. Med. Inform. 2018, 114, 136–142. [Google Scholar] [CrossRef]
- Quarshie, A.M.; Leuschner, R. Interorganizational Interaction in Disaster Response Networks: A Government Perspective. J. Supply Chain Manag. 2020, 56, 3–25. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Del Vecchio, P.; Oropallo, E.; Secundo, G. Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Inf. Manag. 2021, 103508. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Del Vecchio, P.; Oropallo, E.; Secundo, G. Blockchain technology design in accounting: Game changer to tackle fraud or technological fairy tale? Account. Audit. Account. J. 2021. [Google Scholar] [CrossRef]
Search Terms | Initial Search | First Screening | Second Screening | Third Screening | Fourth Screening |
---|---|---|---|---|---|
“Humanitarian” AND “Pandemic” | 15 | 11 | 9 | 8 | 5 |
“Humanitarian operations” AND “Pandemic” | 21 | 12 | 11 | 10 | 6 |
Humanitarian Logistics” AND “COVID-19” | 25 | 20 | 18 | 15 | 12 |
Critical Success Factors” AND “Humanitarian” | 27 | 11 | 10 | 9 | 5 |
Total articles | 28 |
Critical Factors | Operational Effectiveness during the Pandemic | References |
---|---|---|
Multi-modal transportation (C-HA1) | Usage of multi-modal transportation can connect all supply nodes, affected areas, and logistics operational areas. | [54] |
Leadership during pandemic crisis (C-HA2) | Communicating with teams, stakeholders, and communities during COVID-19 enhances transparency, demonstrates vulnerability, and builds resilience among humanitarian organizations. | [56] |
Empowering the stakeholders (C-HA3) | Empowerment of the stakeholders helps the humanitarian organizations to identify clear vision, competency, and coordination across all levels. | [29,38] |
Risk communication and community engagement (C-HA4) | Risk communication across stakeholders brings transparency and pro-activeness towards the pandemic situation. | [56] |
Information resource orchestration (C-HA5) | Adoption of information resource activities and information behavior activities can meet the need of humanitarian operations. | [49,64] |
Agile and adaptive governance (C-HA6) | Participation collaboration and governance become more agile and adaptive during the pandemic. | [60,61] |
Information system (C-HA7) | Information system planning should address challenges, value generation processes, and resource base in an effort to improve organizational performance | [63,65,86,87] |
Capacity building of stakeholders (C-HA8) | A competency-based teaching approach can improve the intercultural pandemic training among the stakeholders who can further improve interdisciplinary integration, enhancing the overall operational effectiveness. | [57] |
Blockchain-enabled digital humanitarian network (BT-DHN) (C-HA9) | Blockchain-enabled digital humanitarian network (BT-DHN) ensures participative management and real-time information flow that uses big data for the humanitarian response for effective relief operations. | [2,4] |
Maintaining essential health services (C-HA10) | Adjust governance and coordination mechanisms to support timely action for essential health services and adapt to changing contexts and needs. | [20,26,52] |
Inter-organizational coordination and collaboration (C-HA11) | Collaborative planning for responding the pandemic (through cooperation, interaction, and collaboration among relief agencies). | [29,38] |
Preparedness and pandemic response practices (C-HA12) | Preparedness planning and COVID-19 response practices emerged as the key humanitarian activity among humanitarian actors. | [42,46] |
Surveillance for vulnerable groups (C-HA13) | It aims to limit the spread of the pandemic in vulnerable groups (children, women, and the old-age population) by rapid detection, isolation, testing, and management. | [88,89] |
Prevention and control (C-HA14) | Infection prevention and control (IPC) is the key humanitarian activity. IPC occupies a unique position in the field of patient safety and quality universal health coverage. | [3] |
Human security (C-HA15) | It is protecting human life, especially the vulnerable groups, by involving local government and partners to increase operational effectiveness. | [39] |
Societal response (C-HA16) | It is the collective efforts of humanitarian organizations, the corporate world, government, and the community to fight collectively against the pandemic. Based on the principle of ‘Respond, Recover and Rebuild’, the societal response to the COVID-19 pandemic is a continuous improvement process. | [39,40] |
Terms for Scale | Number | Linguistic Terms |
---|---|---|
Very influential (VI) | 4 | (0.75, 1.0, 1.0) |
High influence (HI) | 3 | (0.5, 0.75, 1.0) |
Low influence (LI) | 2 | (0.25, 0.5, 0.75) |
Very low influence (VLI) | 1 | (0, 0.25, 0.5) |
No influence (NI) | 0 | (0, 0, 0.25) |
Expert Code | Designation | Age (Years) | Industry | Experience (Years) | Expertise |
---|---|---|---|---|---|
E1 | Healthcare professional | >45 | Health care | >15 | Patient care |
E2 | Healthcare professional | >45 | Health care | >15 | Patient care |
E3 | Disaster management expert | >35 | Healthcare | >12 | Healthcare |
E4 | Disaster management expert | >40 | Healthcare | >15 | Healthcare |
E5 | Disaster management expert | >40 | Healthcare | >15 | Healthcare |
E6 | NGO | >40 | Social well being | >15 | Societal issue |
E7 | Manager | >35 | Healthcare | >15 | Healthcare |
E8 | Healthcare staff | >35 | Healthcare | >10 | Patient care |
E9 | Professor | >45 | Higher education | >20 | Healthcare |
E10 | Professor | >45 | Higher education | >20 | Healthcare |
E11 | Healthcare staff | >35 | Healthcare | >10 | Patient care |
S. N | Critical Factors for HAs | l | m | u | S |
---|---|---|---|---|---|
1 | Multi-modal transportation (C-HA1) | 0.25 | 0.89 | 1.00 | 0.712 |
2 | Leadership during pandemic crisis (C-HA2) | 0.25 | 0.80 | 1.00 | 0.682 |
3 | Empowering the stakeholders through information (C-HA3) | 0.25 | 0.84 | 1.00 | 0.697 |
4 | Risk communication and community engagement (C-HA4) | 0.25 | 0.82 | 1.00 | 0.689 |
5 | Information resource orchestration (C-HA5) | 0.30 | 0.82 | 1.00 | 0.706 |
6 | Agile and adaptive governance (C-HA6) | 0.25 | 0.75 | 1.00 | 0.667 |
7 | Information system (C-HA7) | 0.25 | 0.84 | 1.00 | 0.697 |
8 | Capacity building of stakeholders (C-HA8) | 0.25 | 0.86 | 1.00 | 0.705 |
9 | Prevention and control (C-HA9) | 0.25 | 0.82 | 1.00 | 0.689 |
10 | Maintaining essential health services (C-HA10) | 0.25 | 0.80 | 1.00 | 0.682 |
11 | Inter-organizational coordination and collaboration (C-HA11) | 0.25 | 0.75 | 1.00 | 0.667 |
12 | Preparedness and pandemic response practices (C-HA12) | 0.25 | 0.80 | 1.00 | 0.682 |
13 | Surveillance for vulnerable groups (C-HA13) | 0.25 | 0.82 | 1.00 | 0.689 |
14 | Blockchain-enabled digital humanitarian network (BT-DHN) design (C-HA14) | 0.25 | 0.77 | 1.00 | 0.673 |
15 | Human security (C-HA15) | 0.25 | 0.82 | 1.00 | 0.689 |
16 | Societal response (C-HA16) | 0.00 | 0.70 | 1.00 | 0.568 |
(l) | ||||||||||||||||
Factors | C-HA1 | C-HA2 | C-HA3 | C-HA4 | C-HA5 | C-HA6 | C-HA7 | C-HA8 | C-HA9 | C-HA 10 | C-HA11 | C-HA12 | C-HA13 | C-HA14 | C-HA15 | C-HA16 |
C-HA1 | 0 | 0.0162 | 0.0129 | 0.0323 | 0.0356 | 0.0209 | 0.0210 | 0.0339 | 0.0387 | 0.0242 | 0.0355 | 0.0355 | 0.0338 | 0.0388 | 0.0355 | 0.0258 |
C-HA2 | 0.0209 | 0 | 0.0178 | 0.0501 | 0.0162 | 0.0161 | 0.0193 | 0.0388 | 0.0242 | 0.0194 | 0.0258 | 0.0145 | 0.0210 | 0.0194 | 0.0226 | 0.0340 |
C-HA3 | 0.0210 | 0.0194 | 0 | 0.0355 | 0.0323 | 0.0097 | 0.0000 | 0.0388 | 0.0291 | 0.0243 | 0.0323 | 0.0242 | 0.0259 | 0.0275 | 0.0064 | 0.0161 |
C-HA4 | 0.0308 | 0.0194 | 0.0000 | 0 | 0.0533 | 0.0178 | 0.0210 | 0.0323 | 0.0226 | 0.0194 | 0.0242 | 0.0178 | 0.0162 | 0.0178 | 0.0226 | 0.0356 |
C-HA5 | 0.0370 | 0.0032 | 0.0323 | 0.0000 | 0 | 0.0355 | 0.0178 | 0.0323 | 0.0146 | 0.0323 | 0.0388 | 0.0291 | 0.0275 | 0.0290 | 0.0194 | 0.0356 |
C-HA6 | 0.0306 | 0.0243 | 0.0032 | 0.0242 | 0.0355 | 0 | 0.0178 | 0.0355 | 0.0178 | 0.0355 | 0.0307 | 0.0323 | 0.0355 | 0.0211 | 0.0339 | 0.0242 |
C-HA7 | 0.0322 | 0.0194 | 0.0242 | 0.0210 | 0.0178 | 0.0161 | 0 | 0.0291 | 0.0178 | 0.0355 | 0.0501 | 0.0323 | 0.0469 | 0.0356 | 0.0371 | 0.0436 |
C-HA8 | 0.0258 | 0.0226 | 0.0274 | 0.0162 | 0.0178 | 0.0178 | 0.0355 | 0 | 0.0064 | 0.0064 | 0.0112 | 0.0291 | 0.0469 | 0.0339 | 0.0371 | 0.0372 |
C-HA9 | 0.0274 | 0.0177 | 0.0307 | 0.0177 | 0.0194 | 0.0226 | 0.0355 | 0.0355 | 0 | 0.0194 | 0.0340 | 0.0323 | 0.0323 | 0.0501 | 0.0371 | 0.0372 |
C-HA10 | 0.0322 | 0.0193 | 0.0259 | 0.0162 | 0.0113 | 0.0209 | 0.0161 | 0.0178 | 0.0178 | 0 | 0.0533 | 0.0194 | 0.0178 | 0.0226 | 0.0355 | 0.0340 |
C-HA11 | 0.0193 | 0.0323 | 0.0355 | 0.0097 | 0.0259 | 0.0290 | 0.0355 | 0.0290 | 0.0533 | 0.0178 | 0 | 0.0517 | 0.0501 | 0.0210 | 0.0517 | 0.0355 |
C-HA12 | 0.0291 | 0.0307 | 0.0355 | 0.0259 | 0.0323 | 0.0419 | 0.0484 | 0.0484 | 0.0533 | 0.0178 | 0.0533 | 0 | 0.0533 | 0.0226 | 0.0178 | 0.0404 |
C-HA13 | 0.0323 | 0.0371 | 0.0404 | 0.0226 | 0.0355 | 0.0209 | 0.0322 | 0.0323 | 0.0355 | 0.0178 | 0.0355 | 0.0355 | 0 | 0.0194 | 0.0194 | 0.0356 |
C-HA14 | 0.0436 | 0.0485 | 0.0420 | 0.0161 | 0.0388 | 0.0210 | 0.0355 | 0.0469 | 0.0355 | 0.0178 | 0.0355 | 0.0178 | 0.0355 | 0 | 0.0517 | 0.0355 |
C-HA15 | 0.0420 | 0.0452 | 0.0452 | 0.0161 | 0.0259 | 0.0242 | 0.0355 | 0.0533 | 0.0355 | 0.0178 | 0.0242 | 0.0178 | 0.0355 | 0.0178 | 0 | 0.0501 |
C-HA16 | 0.0420 | 0.0307 | 0.0501 | 0.0420 | 0.0194 | 0.0128 | 0.0404 | 0.0371 | 0.0517 | 0.0371 | 0.0436 | 0.0210 | 0.0355 | 0.0211 | 0.0178 | 0 |
(m) | ||||||||||||||||
C-HA1 | 0 | 0.0340 | 0.0307 | 0.0501 | 0.0534 | 0.0387 | 0.0387 | 0.0517 | 0.0565 | 0.0420 | 0.0532 | 0.0533 | 0.0516 | 0.0565 | 0.0533 | 0.0436 |
C-HA2 | 0.0387 | 0 | 0.0355 | 0.0679 | 0.0242 | 0.0339 | 0.0371 | 0.0565 | 0.0420 | 0.0372 | 0.0436 | 0.0323 | 0.0388 | 0.0372 | 0.0404 | 0.0517 |
C-HA3 | 0.0387 | 0.0372 | 0 | 0.0533 | 0.0501 | 0.0274 | 0.0178 | 0.0566 | 0.0469 | 0.0420 | 0.0501 | 0.0419 | 0.0436 | 0.0453 | 0.0242 | 0.0339 |
C-HA4 | 0.0486 | 0.0372 | 0.0178 | 0 | 0.0711 | 0.0355 | 0.0388 | 0.0501 | 0.0404 | 0.0372 | 0.0420 | 0.0356 | 0.0340 | 0.0355 | 0.0404 | 0.0533 |
C-HA5 | 0.0548 | 0.0210 | 0.0501 | 0.0178 | 0 | 0.0533 | 0.0355 | 0.0501 | 0.0324 | 0.0501 | 0.0565 | 0.0468 | 0.0452 | 0.0468 | 0.0371 | 0.0533 |
C-HA6 | 0.0484 | 0.0420 | 0.0210 | 0.0420 | 0.0533 | 0 | 0.0355 | 0.0533 | 0.0355 | 0.0533 | 0.0485 | 0.0501 | 0.0533 | 0.0389 | 0.0517 | 0.0420 |
C-HA7 | 0.0500 | 0.0372 | 0.0420 | 0.0387 | 0.0355 | 0.0339 | 0 | 0.0469 | 0.0355 | 0.0533 | 0.0679 | 0.0501 | 0.0647 | 0.0533 | 0.0549 | 0.0614 |
C-HA8 | 0.0435 | 0.0404 | 0.0452 | 0.0340 | 0.0355 | 0.0355 | 0.0533 | 0 | 0.0242 | 0.0242 | 0.0290 | 0.0469 | 0.0647 | 0.0517 | 0.0549 | 0.0550 |
C-HA9 | 0.0452 | 0.0355 | 0.0484 | 0.0354 | 0.0372 | 0.0403 | 0.0533 | 0.0533 | 0 | 0.0372 | 0.0517 | 0.0501 | 0.0501 | 0.0679 | 0.0549 | 0.0549 |
C-HA10 | 0.0500 | 0.0371 | 0.0436 | 0.0340 | 0.0291 | 0.0386 | 0.0339 | 0.0355 | 0.0355 | 0 | 0.0711 | 0.0372 | 0.0355 | 0.0404 | 0.0533 | 0.0517 |
C-HA11 | 0.0371 | 0.0500 | 0.0533 | 0.0275 | 0.0437 | 0.0468 | 0.0533 | 0.0468 | 0.0711 | 0.0355 | 0 | 0.0695 | 0.0679 | 0.0388 | 0.0695 | 0.0533 |
C-HA12 | 0.0468 | 0.0484 | 0.0533 | 0.0436 | 0.0501 | 0.0597 | 0.0661 | 0.0661 | 0.0711 | 0.0355 | 0.0711 | 0 | 0.0711 | 0.0404 | 0.0355 | 0.0582 |
C-HA13 | 0.0501 | 0.0549 | 0.0581 | 0.0404 | 0.0533 | 0.0387 | 0.0500 | 0.0501 | 0.0533 | 0.0355 | 0.0533 | 0.0533 | 0 | 0.0372 | 0.0371 | 0.0533 |
C-HA14 | 0.0614 | 0.0663 | 0.0598 | 0.0339 | 0.0566 | 0.0388 | 0.0533 | 0.0647 | 0.0533 | 0.0355 | 0.0533 | 0.0355 | 0.0533 | 0 | 0.0695 | 0.0533 |
C-HA15 | 0.0597 | 0.0630 | 0.0630 | 0.0339 | 0.0437 | 0.0420 | 0.0533 | 0.0711 | 0.0533 | 0.0355 | 0.0420 | 0.0355 | 0.0533 | 0.0355 | 0 | 0.0678 |
C-HA16 | 0.0598 | 0.0484 | 0.0679 | 0.0598 | 0.0371 | 0.0306 | 0.0581 | 0.0549 | 0.0695 | 0.0549 | 0.0614 | 0.0387 | 0.0533 | 0.0389 | 0.0355 | 0 |
(u) | ||||||||||||||||
C-HA1 | 0 | 0.0485 | 0.0484 | 0.0679 | 0.0630 | 0.0549 | 0.0565 | 0.0678 | 0.0678 | 0.0598 | 0.0646 | 0.0646 | 0.0613 | 0.0630 | 0.0646 | 0.0598 |
C-HA2 | 0.0533 | 0 | 0.0533 | 0.0711 | 0.0388 | 0.0517 | 0.0533 | 0.0711 | 0.0565 | 0.0549 | 0.0582 | 0.0484 | 0.0566 | 0.0549 | 0.0582 | 0.0614 |
C-HA3 | 0.0533 | 0.0550 | 0 | 0.0711 | 0.0678 | 0.0420 | 0.0355 | 0.0679 | 0.0598 | 0.0566 | 0.0614 | 0.0549 | 0.0582 | 0.0550 | 0.0420 | 0.0517 |
C-HA4 | 0.0598 | 0.0550 | 0.0355 | 0 | 0.0711 | 0.0533 | 0.0565 | 0.0679 | 0.0566 | 0.0550 | 0.0565 | 0.0518 | 0.0518 | 0.0533 | 0.0581 | 0.0662 |
C-HA5 | 0.0629 | 0.0388 | 0.0679 | 0.0355 | 0 | 0.0711 | 0.0533 | 0.0647 | 0.0469 | 0.0679 | 0.0711 | 0.0598 | 0.0598 | 0.0581 | 0.0549 | 0.0662 |
C-HA6 | 0.0565 | 0.0582 | 0.0388 | 0.0565 | 0.0711 | 0 | 0.0533 | 0.0711 | 0.0533 | 0.0711 | 0.0663 | 0.0662 | 0.0695 | 0.0550 | 0.0695 | 0.0598 |
C-HA7 | 0.0629 | 0.0533 | 0.0565 | 0.0549 | 0.0533 | 0.0517 | 0 | 0.0647 | 0.0533 | 0.0711 | 0.0695 | 0.0678 | 0.0679 | 0.0695 | 0.0711 | 0.0711 |
C-HA8 | 0.0597 | 0.0566 | 0.0598 | 0.0485 | 0.0533 | 0.0533 | 0.0711 | 0 | 0.0420 | 0.0420 | 0.0468 | 0.0647 | 0.0679 | 0.0695 | 0.0711 | 0.0663 |
C-HA9 | 0.0613 | 0.0517 | 0.0598 | 0.0516 | 0.0550 | 0.0549 | 0.0711 | 0.0711 | 0 | 0.0549 | 0.0695 | 0.0679 | 0.0679 | 0.0711 | 0.0711 | 0.0630 |
C-HA10 | 0.0630 | 0.0533 | 0.0582 | 0.0485 | 0.0452 | 0.0516 | 0.0517 | 0.0533 | 0.0533 | 0 | 0.0711 | 0.0549 | 0.0533 | 0.0582 | 0.0711 | 0.0663 |
C-HA11 | 0.0501 | 0.0630 | 0.0678 | 0.0453 | 0.0582 | 0.0613 | 0.0711 | 0.0646 | 0.0711 | 0.0533 | 0 | 0.0711 | 0.0711 | 0.0565 | 0.0711 | 0.0646 |
C-HA12 | 0.0614 | 0.0630 | 0.0678 | 0.0614 | 0.0678 | 0.0645 | 0.0678 | 0.0678 | 0.0711 | 0.0533 | 0.0711 | 0 | 0.0711 | 0.0582 | 0.0533 | 0.0647 |
C-HA13 | 0.0662 | 0.0694 | 0.0678 | 0.0582 | 0.0678 | 0.0565 | 0.0678 | 0.0679 | 0.0711 | 0.0533 | 0.0711 | 0.0711 | 0 | 0.0549 | 0.0549 | 0.0647 |
C-HA14 | 0.0711 | 0.0711 | 0.0711 | 0.0517 | 0.0711 | 0.0565 | 0.0711 | 0.0679 | 0.0711 | 0.0533 | 0.0711 | 0.0533 | 0.0711 | 0 | 0.0711 | 0.0678 |
C-HA15 | 0.0694 | 0.0694 | 0.0711 | 0.0517 | 0.0582 | 0.0581 | 0.0711 | 0.0711 | 0.0711 | 0.0533 | 0.0565 | 0.0533 | 0.0711 | 0.0533 | 0 | 0.0695 |
C-HA16 | 0.0711 | 0.0662 | 0.0711 | 0.0711 | 0.0549 | 0.0452 | 0.0711 | 0.0711 | 0.0711 | 0.0711 | 0.0678 | 0.0549 | 0.0711 | 0.0550 | 0.0533 | 0 |
(l) | ||||||||||||||||
Factors | C-HA1 | C-HA2 | C-HA3 | C-HA4 | C-HA5 | C-HA6 | C-HA7 | C-HA8 | C-HA9 | C-HA 10 | C-HA11 | C-HA12 | C-HA13 | C-HA14 | C-HA15 | C-HA16 |
C-HA1 | 0.0240 | 0.0363 | 0.0356 | 0.0481 | 0.0558 | 0.0378 | 0.0428 | 0.0605 | 0.0612 | 0.0407 | 0.0608 | 0.0557 | 0.0595 | 0.0580 | 0.0576 | 0.0521 |
C-HA2 | 0.0396 | 0.0160 | 0.0349 | 0.0628 | 0.0334 | 0.0291 | 0.0364 | 0.0594 | 0.0423 | 0.0328 | 0.0459 | 0.0313 | 0.0416 | 0.0354 | 0.0405 | 0.0544 |
C-HA3 | 0.0385 | 0.0340 | 0.0169 | 0.0475 | 0.0480 | 0.0229 | 0.0171 | 0.0583 | 0.0461 | 0.0364 | 0.0512 | 0.0400 | 0.0453 | 0.0426 | 0.0244 | 0.0361 |
C-HA4 | 0.0491 | 0.0342 | 0.0184 | 0.0133 | 0.0678 | 0.0313 | 0.0379 | 0.0529 | 0.0404 | 0.0332 | 0.0448 | 0.0345 | 0.0371 | 0.0340 | 0.0403 | 0.0557 |
C-HA5 | 0.0566 | 0.0213 | 0.0514 | 0.0157 | 0.0183 | 0.0493 | 0.0363 | 0.0552 | 0.0357 | 0.0468 | 0.0611 | 0.0475 | 0.0506 | 0.0461 | 0.0393 | 0.0570 |
C-HA6 | 0.0514 | 0.0419 | 0.0240 | 0.0391 | 0.0535 | 0.0158 | 0.0375 | 0.0592 | 0.0388 | 0.0500 | 0.0540 | 0.0508 | 0.0585 | 0.0389 | 0.0538 | 0.0481 |
C-HA7 | 0.0561 | 0.0408 | 0.0479 | 0.0389 | 0.0395 | 0.0335 | 0.0231 | 0.0569 | 0.0433 | 0.0524 | 0.0762 | 0.0538 | 0.0731 | 0.0553 | 0.0600 | 0.0698 |
C-HA8 | 0.0457 | 0.0399 | 0.0464 | 0.0316 | 0.0357 | 0.0315 | 0.0530 | 0.0239 | 0.0272 | 0.0216 | 0.0340 | 0.0460 | 0.0679 | 0.0498 | 0.0546 | 0.0586 |
C-HA9 | 0.0512 | 0.0388 | 0.0534 | 0.0354 | 0.0407 | 0.0391 | 0.0570 | 0.0629 | 0.0246 | 0.0367 | 0.0601 | 0.0531 | 0.0591 | 0.0692 | 0.0597 | 0.0631 |
C-HA10 | 0.0506 | 0.0360 | 0.0439 | 0.0306 | 0.0286 | 0.0342 | 0.0338 | 0.0402 | 0.0381 | 0.0142 | 0.0730 | 0.0370 | 0.0397 | 0.0386 | 0.0537 | 0.0545 |
C-HA11 | 0.0457 | 0.0543 | 0.0606 | 0.0300 | 0.0486 | 0.0474 | 0.0594 | 0.0599 | 0.0784 | 0.0370 | 0.0302 | 0.0738 | 0.0786 | 0.0439 | 0.0747 | 0.0646 |
C-HA12 | 0.0569 | 0.0540 | 0.0617 | 0.0469 | 0.0571 | 0.0610 | 0.0732 | 0.0798 | 0.0801 | 0.0391 | 0.0837 | 0.0273 | 0.0844 | 0.0479 | 0.0459 | 0.0714 |
C-HA13 | 0.0549 | 0.0556 | 0.0615 | 0.0405 | 0.0556 | 0.0376 | 0.0529 | 0.0592 | 0.0584 | 0.0353 | 0.0614 | 0.0562 | 0.0271 | 0.0401 | 0.0417 | 0.0610 |
C-HA14 | 0.0695 | 0.0699 | 0.0668 | 0.0369 | 0.0615 | 0.0397 | 0.0591 | 0.0773 | 0.0615 | 0.0376 | 0.0645 | 0.0423 | 0.0652 | 0.0241 | 0.0760 | 0.0652 |
C-HA15 | 0.0658 | 0.0648 | 0.0677 | 0.0363 | 0.0475 | 0.0410 | 0.0573 | 0.0808 | 0.0595 | 0.0364 | 0.0519 | 0.0405 | 0.0630 | 0.0402 | 0.0240 | 0.0763 |
C-HA16 | 0.0663 | 0.0514 | 0.0724 | 0.0605 | 0.0425 | 0.0310 | 0.0623 | 0.0659 | 0.0758 | 0.0551 | 0.0716 | 0.0447 | 0.0635 | 0.0442 | 0.0431 | 0.0292 |
(m) | ||||||||||||||||
C-HA1 | 0.1108 | 0.1327 | 0.1362 | 0.1400 | 0.1529 | 0.1281 | 0.1418 | 0.1709 | 0.1636 | 0.1322 | 0.1696 | 0.1540 | 0.1678 | 0.1548 | 0.1590 | 0.1608 |
C-HA2 | 0.1334 | 0.0866 | 0.1258 | 0.1455 | 0.1128 | 0.1109 | 0.1262 | 0.1591 | 0.1356 | 0.1158 | 0.1447 | 0.1209 | 0.1400 | 0.1236 | 0.1327 | 0.1525 |
C-HA3 | 0.1319 | 0.1209 | 0.0906 | 0.1302 | 0.1355 | 0.1047 | 0.1070 | 0.1577 | 0.1388 | 0.1189 | 0.1495 | 0.1290 | 0.1432 | 0.1302 | 0.1166 | 0.1345 |
C-HA4 | 0.1433 | 0.1221 | 0.1106 | 0.0807 | 0.1558 | 0.1137 | 0.1282 | 0.1536 | 0.1344 | 0.1168 | 0.1444 | 0.1247 | 0.1365 | 0.1228 | 0.1332 | 0.1546 |
C-HA5 | 0.1541 | 0.1130 | 0.1460 | 0.1037 | 0.0940 | 0.1344 | 0.1302 | 0.1597 | 0.1334 | 0.1332 | 0.1641 | 0.1408 | 0.1533 | 0.1380 | 0.1358 | 0.1597 |
C-HA6 | 0.1507 | 0.1343 | 0.1210 | 0.1277 | 0.1467 | 0.0859 | 0.1328 | 0.1652 | 0.1380 | 0.1377 | 0.1588 | 0.1453 | 0.1626 | 0.1325 | 0.1513 | 0.1527 |
C-HA7 | 0.1612 | 0.1389 | 0.1500 | 0.1328 | 0.1389 | 0.1257 | 0.1071 | 0.1695 | 0.1483 | 0.1453 | 0.1866 | 0.1541 | 0.1830 | 0.1540 | 0.1632 | 0.1800 |
C-HA8 | 0.1425 | 0.1299 | 0.1400 | 0.1179 | 0.1270 | 0.1161 | 0.1451 | 0.1108 | 0.1240 | 0.1077 | 0.1366 | 0.1381 | 0.1687 | 0.1405 | 0.1493 | 0.1599 |
C-HA9 | 0.1556 | 0.1361 | 0.1544 | 0.1285 | 0.1392 | 0.1303 | 0.1564 | 0.1743 | 0.1118 | 0.1293 | 0.1700 | 0.1524 | 0.1684 | 0.1665 | 0.1619 | 0.1725 |
C-HA10 | 0.1460 | 0.1250 | 0.1365 | 0.1159 | 0.1190 | 0.1177 | 0.1254 | 0.1427 | 0.1333 | 0.0822 | 0.1730 | 0.1283 | 0.1402 | 0.1285 | 0.1473 | 0.1548 |
C-HA11 | 0.1551 | 0.1555 | 0.1659 | 0.1276 | 0.1512 | 0.1425 | 0.1633 | 0.1764 | 0.1860 | 0.1338 | 0.1287 | 0.1770 | 0.1923 | 0.1465 | 0.1811 | 0.1789 |
C-HA12 | 0.1707 | 0.1597 | 0.1716 | 0.1482 | 0.1639 | 0.1598 | 0.1813 | 0.2008 | 0.1924 | 0.1400 | 0.2029 | 0.1191 | 0.2030 | 0.1549 | 0.1580 | 0.1906 |
C-HA13 | 0.1589 | 0.1520 | 0.1619 | 0.1332 | 0.1532 | 0.1285 | 0.1522 | 0.1704 | 0.1617 | 0.1276 | 0.1710 | 0.1552 | 0.1197 | 0.1382 | 0.1443 | 0.1702 |
C-HA14 | 0.1797 | 0.1722 | 0.1736 | 0.1358 | 0.1652 | 0.1366 | 0.1647 | 0.1952 | 0.1714 | 0.1359 | 0.1811 | 0.1482 | 0.1812 | 0.1116 | 0.1841 | 0.1814 |
C-HA15 | 0.1725 | 0.1638 | 0.1709 | 0.1319 | 0.1481 | 0.1345 | 0.1594 | 0.1945 | 0.1657 | 0.1315 | 0.1650 | 0.1430 | 0.1752 | 0.1411 | 0.1128 | 0.1882 |
C-HA16 | 0.1745 | 0.1523 | 0.1769 | 0.1567 | 0.1450 | 0.1262 | 0.1657 | 0.1818 | 0.1830 | 0.1509 | 0.1857 | 0.1485 | 0.1773 | 0.1465 | 0.1501 | 0.1269 |
(u) | ||||||||||||||||
C-HA1 | 0.6146 | 0.6302 | 0.6464 | 0.6282 | 0.6568 | 0.6060 | 0.6709 | 0.7324 | 0.6748 | 0.6366 | 0.7055 | 0.6654 | 0.7030 | 0.6513 | 0.6834 | 0.6966 |
C-HA2 | 0.6183 | 0.5397 | 0.6046 | 0.5888 | 0.5895 | 0.5604 | 0.6209 | 0.6845 | 0.6181 | 0.5880 | 0.6503 | 0.6048 | 0.6495 | 0.5990 | 0.6303 | 0.6493 |
C-HA3 | 0.6107 | 0.5842 | 0.5470 | 0.5814 | 0.6084 | 0.5456 | 0.5972 | 0.6734 | 0.6134 | 0.5824 | 0.6457 | 0.6032 | 0.6429 | 0.5918 | 0.6080 | 0.6327 |
C-HA4 | 0.6297 | 0.5964 | 0.5944 | 0.5265 | 0.6233 | 0.5674 | 0.6293 | 0.6874 | 0.6233 | 0.5937 | 0.6549 | 0.6132 | 0.6511 | 0.6028 | 0.6358 | 0.6593 |
C-HA5 | 0.6520 | 0.6011 | 0.6429 | 0.5798 | 0.5766 | 0.6008 | 0.6458 | 0.7059 | 0.6348 | 0.6240 | 0.6889 | 0.6402 | 0.6792 | 0.6260 | 0.6528 | 0.6796 |
C-HA6 | 0.6699 | 0.6406 | 0.6397 | 0.6195 | 0.6653 | 0.5558 | 0.6698 | 0.7371 | 0.6635 | 0.6485 | 0.7089 | 0.6687 | 0.7121 | 0.6457 | 0.6896 | 0.6986 |
C-HA7 | 0.6911 | 0.6513 | 0.6708 | 0.6329 | 0.6646 | 0.6184 | 0.6346 | 0.7482 | 0.6794 | 0.6630 | 0.7280 | 0.6850 | 0.7270 | 0.6734 | 0.7065 | 0.7245 |
C-HA8 | 0.6468 | 0.6147 | 0.6330 | 0.5893 | 0.6245 | 0.5823 | 0.6591 | 0.6425 | 0.6279 | 0.5980 | 0.6641 | 0.6412 | 0.6834 | 0.6334 | 0.6639 | 0.6769 |
C-HA9 | 0.6922 | 0.6523 | 0.6763 | 0.6322 | 0.6688 | 0.6237 | 0.7038 | 0.7569 | 0.6312 | 0.6511 | 0.7307 | 0.6879 | 0.7299 | 0.6776 | 0.7092 | 0.7201 |
C-HA10 | 0.6360 | 0.5990 | 0.6184 | 0.5768 | 0.6039 | 0.5687 | 0.6284 | 0.6784 | 0.6248 | 0.5447 | 0.6716 | 0.6195 | 0.6564 | 0.6103 | 0.6508 | 0.6628 |
C-HA11 | 0.6801 | 0.6604 | 0.6815 | 0.6251 | 0.6696 | 0.6276 | 0.7016 | 0.7491 | 0.6956 | 0.6480 | 0.6637 | 0.6889 | 0.7307 | 0.6628 | 0.7069 | 0.7193 |
C-HA12 | 0.7038 | 0.6732 | 0.6945 | 0.6521 | 0.6919 | 0.6430 | 0.7123 | 0.7670 | 0.7091 | 0.6612 | 0.7447 | 0.6362 | 0.7450 | 0.6776 | 0.7053 | 0.7338 |
C-HA13 | 0.7068 | 0.6776 | 0.6934 | 0.6482 | 0.6904 | 0.6348 | 0.7110 | 0.7657 | 0.7079 | 0.6599 | 0.7433 | 0.7013 | 0.6772 | 0.6736 | 0.7054 | 0.7324 |
C-HA14 | 0.7293 | 0.6963 | 0.7141 | 0.6588 | 0.7106 | 0.6509 | 0.7320 | 0.7853 | 0.7259 | 0.6769 | 0.7621 | 0.7031 | 0.7626 | 0.6387 | 0.7380 | 0.7540 |
C-HA15 | 0.7007 | 0.6690 | 0.6872 | 0.6343 | 0.6728 | 0.6275 | 0.7047 | 0.7586 | 0.6987 | 0.6513 | 0.7206 | 0.6764 | 0.7340 | 0.6633 | 0.6440 | 0.7271 |
C-HA16 | 0.7120 | 0.6755 | 0.6967 | 0.6605 | 0.6795 | 0.6250 | 0.7146 | 0.7692 | 0.7086 | 0.6762 | 0.7411 | 0.6876 | 0.7440 | 0.6744 | 0.7049 | 0.6726 |
Di | Ri | Di + Ri | Di − Ri | Crisp Di + Ri | Crisp Di − Ri | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
l | m | u | l | m | u | l | m | u | l | m | u | |||
C-HA1 | 0.7865 | 2.3754 | 10.6020 | 0.8219 | 2.4409 | 10.6942 | 1.6084 | 4.8163 | 21.2962 | −9.9077 | −0.0655 | 9.7801 | 7.4845 | −0.0734 |
C-HA2 | 0.6357 | 2.0659 | 9.7961 | 0.6891 | 2.1950 | 10.1616 | 1.3248 | 4.2609 | 19.9577 | −9.5259 | −0.1291 | 9.1070 | 6.8647 | −0.1523 |
C-HA3 | 0.6053 | 2.0391 | 9.6681 | 0.7634 | 2.3318 | 10.4412 | 1.3686 | 4.3709 | 20.1093 | −9.8359 | −0.2927 | 8.9047 | 6.9706 | −0.3208 |
C-HA4 | 0.6249 | 2.0755 | 9.8886 | 0.6143 | 2.0564 | 9.8343 | 1.2393 | 4.1319 | 19.7229 | −9.2094 | 0.0191 | 9.2742 | 6.7284 | 0.0038 |
C-HA5 | 0.6883 | 2.1934 | 10.2305 | 0.7340 | 2.2485 | 10.3966 | 1.4223 | 4.4419 | 20.6271 | −9.7083 | −0.0551 | 9.4965 | 7.1040 | −0.0798 |
C-HA6 | 0.7154 | 2.2433 | 10.6334 | 0.5821 | 1.9955 | 9.6379 | 1.2975 | 4.2388 | 20.2714 | −8.9226 | 0.2477 | 10.0513 | 6.8942 | 0.2898 |
C-HA7 | 0.8205 | 2.4385 | 10.8986 | 0.7390 | 2.2872 | 10.7361 | 1.5596 | 4.7257 | 21.6347 | −9.9155 | 0.1513 | 10.1596 | 7.4653 | 0.1013 |
C-HA8 | 0.6675 | 2.1542 | 10.1811 | 0.9520 | 2.6826 | 11.6417 | 1.6194 | 4.8368 | 21.8227 | −10.9742 | −0.5285 | 9.2291 | 7.5758 | −0.5656 |
C-HA9 | 0.8040 | 2.4078 | 10.9438 | 0.8113 | 2.4215 | 10.6369 | 1.6153 | 4.8293 | 21.5807 | −9.8329 | −0.0137 | 10.1325 | 7.5354 | 0.0175 |
C-HA10 | 0.6468 | 2.1158 | 9.9505 | 0.6052 | 2.0387 | 10.1036 | 1.2520 | 4.1546 | 20.0542 | −9.4569 | 0.0771 | 9.3453 | 6.7966 | 0.0093 |
C-HA11 | 0.8871 | 2.5618 | 10.9109 | 0.9245 | 2.6316 | 11.2241 | 1.8116 | 5.1934 | 22.1350 | −10.3370 | −0.0698 | 9.9864 | 7.8864 | −0.1082 |
C-HA12 | 0.9704 | 2.7169 | 11.1506 | 0.7345 | 2.2785 | 10.5225 | 1.7049 | 4.9954 | 21.6731 | −9.5521 | 0.4384 | 10.4161 | 7.6732 | 0.3519 |
C-HA13 | 0.7989 | 2.3982 | 11.1290 | 0.9143 | 2.6124 | 11.2279 | 1.7132 | 5.0107 | 22.3570 | −10.4290 | −0.2142 | 10.2147 | 7.7816 | −0.1691 |
C-HA14 | 0.9173 | 2.6178 | 11.4387 | 0.7084 | 2.2302 | 10.3018 | 1.6257 | 4.8480 | 21.7405 | −9.3845 | 0.3876 | 10.7303 | 7.5725 | 0.3926 |
C-HA15 | 0.8528 | 2.4981 | 10.9703 | 0.7892 | 2.3806 | 10.8348 | 1.6420 | 4.8788 | 21.8050 | −9.9820 | 0.1175 | 10.1810 | 7.6048 | 0.0757 |
C-HA16 | 0.8794 | 2.5481 | 11.1423 | 0.9174 | 2.6183 | 11.1395 | 1.7968 | 5.1664 | 22.2818 | −10.2601 | −0.0702 | 10.2249 | 7.8870 | −0.0632 |
Factors | D + R | D − R | Impact |
---|---|---|---|
C-HA1 | 7.4845 | −0.0734 | Effect |
C-HA2 | 6.8647 | −0.1523 | Effect |
C-HA3 | 6.9706 | −0.3208 | Effect |
C-HA4 | 6.7284 | 0.0038 | Cause |
C-HA5 | 7.1040 | −0.0798 | Effect |
C-HA6 | 6.8942 | 0.2898 | Cause |
C-HA7 | 7.4653 | 0.1013 | Cause |
C-HA8 | 7.5758 | −0.5656 | Effect |
C-HA9 | 7.5354 | 0.0175 | Cause |
C-HA10 | 6.7966 | 0.0093 | Cause |
C-HA11 | 7.8864 | −0.1082 | Effect |
C-HA12 | 7.6732 | 0.3519 | Cause |
C-HA13 | 7.7816 | −0.1691 | Effect |
C-HA14 | 7.5725 | 0.3926 | Cause |
C-HA15 | 7.6048 | 0.0757 | Cause |
C-HA16 | 7.8870 | −0.0632 | Effect |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, S.; Sharma, M.; Das, R.P.; Muduli, K.; Raut, R.; Narkhede, B.E.; Shee, H.; Misra, A. Assessing Effectiveness of Humanitarian Activities against COVID-19 Disruption: The Role of Blockchain-Enabled Digital Humanitarian Network (BT-DHN). Sustainability 2022, 14, 1904. https://doi.org/10.3390/su14031904
Joshi S, Sharma M, Das RP, Muduli K, Raut R, Narkhede BE, Shee H, Misra A. Assessing Effectiveness of Humanitarian Activities against COVID-19 Disruption: The Role of Blockchain-Enabled Digital Humanitarian Network (BT-DHN). Sustainability. 2022; 14(3):1904. https://doi.org/10.3390/su14031904
Chicago/Turabian StyleJoshi, Sudhanshu, Manu Sharma, Rashmi Prava Das, Kamalakanta Muduli, Rakesh Raut, B. E. Narkhede, Himanshu Shee, and Abhishek Misra. 2022. "Assessing Effectiveness of Humanitarian Activities against COVID-19 Disruption: The Role of Blockchain-Enabled Digital Humanitarian Network (BT-DHN)" Sustainability 14, no. 3: 1904. https://doi.org/10.3390/su14031904
APA StyleJoshi, S., Sharma, M., Das, R. P., Muduli, K., Raut, R., Narkhede, B. E., Shee, H., & Misra, A. (2022). Assessing Effectiveness of Humanitarian Activities against COVID-19 Disruption: The Role of Blockchain-Enabled Digital Humanitarian Network (BT-DHN). Sustainability, 14(3), 1904. https://doi.org/10.3390/su14031904