Impact of Land Use Changes on the Surface Runoff and Nutrient Load in the Three Gorges Reservoir Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis of LULC Change
2.2.1. The LULC Change Rate Model
2.2.2. Regression Analysis Model
2.2.3. LULC Transfer Matrix
2.3. SWAT Model
2.3.1. Model Input
2.3.2. Model Setup
2.3.3. Model Calibration and Verification
2.4. Contribution Model
3. Results
3.1. LULC Change Characteristics
3.1.1. Spatial Characteristics
3.1.2. Temporal Tendency
3.1.3. Relationships between LULC Change and Topographic Factor
3.1.4. LULC Transfer Analysis
3.2. Temporal Tendency and Spatial Variation of Runoff and Nutrient Load
3.2.1. Temporal Tendency
3.2.2. Spatial Variation Characteristic
3.3. Impact and Contribution of Different Type LULC
3.3.1. Runoff Depth
3.3.2. Total Nitrogen
3.3.3. Total Phosphorus
4. Discussion
4.1. Spatial Pattern and Temporal Trends of LULC Change
4.2. Hydrological and Environmental Response to LULC Changes
4.3. Future Perspective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [Green Version]
- Zare, M.; Samani, A.A.N.; Mohammady, M. The impact of land use change on runoff generation in an urbanizing watershed in the north of Iran. Environ. Earth Sci. 2016, 75, 1–20. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 1002527. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.X.; Leslie, L.M.; Yu, Q. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. J. Hydrol. 2020, 585, 124822. [Google Scholar] [CrossRef]
- Napoli, M.; Massetti, L.; Orlandini, S. Hydrological response to land use and climate changes in a rural hilly basin in Italy. Catena 2017, 157, 1–11. [Google Scholar] [CrossRef]
- Mishra, A.; Alnahit, A.; Campbell, B. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis. J. Hydrol. 2021, 596, 125707. [Google Scholar] [CrossRef]
- Camara, M.; Jamil, N.R.; Bin Abdullah, A.F. Impact of land uses on water quality in Malaysia: A review. Ecol. Process. 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Da Silva, V.D.P.R.; Silva, M.T.; Singh, V.P.; de Souza, E.P.; Braga, C.C.; de Holanda, R.M.; Almeida, R.S.R.; de Sousa, F.D.A.S.; Braga, A.C.R. Simulation of stream flow and hydrological response to land-cover changes in a tropical river basin. Catena 2018, 162, 166–176. [Google Scholar] [CrossRef]
- Delkash, M.; Al-Faraj, F.A.M.; Scholz, M. Impacts of anthropogenic land use changes on nutrient concentrations in surface waterbodies: A review. Clean-Soil Air Water 2018, 46, 1800051. [Google Scholar] [CrossRef] [Green Version]
- Liang, K.; Jiang, Y.; Qi, J.; Fuller, K.; Nyiraneza, J.; Meng, F.R. Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada. Sci. Total Environ. 2020, 729, 138793. [Google Scholar] [CrossRef] [PubMed]
- Risal, A.; Parajuli, P.B.; Dash, P.; Ouyang, Y.; Linhoss, A. Sensitivity of hydrology and water quality to variation in land use and land cover data. Agric. Water Manag. 2020, 241, 106366. [Google Scholar] [CrossRef]
- Me, W.; Hamilton, D.P.; McBride, C.G.; Abell, J.M.; Hicks, B.J. Modelling hydrology and water quality in a mixed land use catchment and eutrophic lake: Effects of nutrient load reductions and climate change. Environ. Model. Softw. 2018, 109, 114–133. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2015, 161, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.C.; Tian, H.Q.; Friedrichs, M.A.M.; Liu, M.L.; Li, X.; Yang, J. Hydrological responses to climate and land-use changes along the North American east coast: A 110-year historical reconstruction. J. Am. Water Resour. Assoc. 2015, 51, 47–67. [Google Scholar] [CrossRef]
- Xia, Y.; Ti, C.; She, D.; Yan, X. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China. Sci. Total Environ. 2016, 566, 1094–1105. [Google Scholar] [CrossRef]
- Li, W.; Zhai, L.; Lei, Q.; Wollheim, W.M.; Liu, J.; Liu, H.; Hu, W.; Ren, T.; Wang, H.; Liu, S. Influences of agricultural land use composition and distribution on nitrogen export from a subtropical watershed in China. Sci. Total Environ. 2018, 642, 21–32. [Google Scholar] [CrossRef]
- Álvarez, X.; Valero, E.; Santos, R.M.; Varandas, S.; Fernandes, L.S.; Pacheco, F.A.L. Anthropogenic nutrients and eutrophication in multiple land use watersheds: Best management practices and policies for the protection of water resources. Land Use Policy 2017, 69, 1–11. [Google Scholar] [CrossRef]
- Gao, H.K.; Sabo, J.L.; Chen, X.H.; Liu, Z.Y.; Yang, Z.J.; Ren, Z.; Liu, M. Landscape heterogeneity and hydrological processes: A review of landscape-based hydrological models. Landsc. Ecol. 2018, 33, 1461–1480. [Google Scholar] [CrossRef]
- Erlandsen, H.B.; Beldring, S.; Eisner, S.; Hisdal, H.; Huang, S.C.; Tallaksen, L.M. Constraining the HBV model for robust water balance assessments in a cold climate. Hydrol. Res. 2021, 52, 356–372. [Google Scholar] [CrossRef]
- Birhanu, A.; Masih, I.; van der Zaag, P.; Nyssen, J.; Cai, X. Impacts of land use and land cover changes on hydrology of the Gumara catchment, Ethiopia. Phys. Chem. Earth Parts A/B/C 2019, 112, 165–174. [Google Scholar] [CrossRef]
- Graham, L.; Bergström, S. Water balance modelling in the Baltic Sea drainage basin—Analysis of meteorological and hydrological approaches. Meteorol. Atmos. Phys. 2001, 77, 45–60. [Google Scholar] [CrossRef]
- Bai, X.Y.; Shen, W.; Wang, P.; Chen, X.H.; He, Y.H. Response of non-point source pollution loads to land use change under different precipitation scenarios from a future perspective. Water Resour. Manag. 2020, 34, 3987–4002. [Google Scholar] [CrossRef]
- Yazdi, M.N.; Ketabchy, M.; Sample, D.J.; Scott, D.; Liao, H. An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. Environ. Model. Softw. 2019, 118, 211–225. [Google Scholar] [CrossRef]
- Liu, Y.; Theller, L.O.; Pijanowski, B.C.; Engel, B.A. Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: An application to the Trail Creek Watershed, Indiana. Sci. Total. Environ. 2016, 553, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.; Nikam, B.R.; Thakur, P.K.; Aggarwal, S.P.; Gupta, P.K.; Srivastav, S.K. Human-induced land use land cover change and its impact on hydrology. HydroResearch 2019, 1, 48–56. [Google Scholar] [CrossRef]
- Chawla, I.; Mujumdar, P.P. Isolating the impacts of land use and climate change on streamflow. Hydrol. Earth Syst. Sci. 2015, 19, 3633–3651. [Google Scholar] [CrossRef] [Green Version]
- Wagner, P.D.; Bhallamudi, S.M.; Narasimhan, B.; Kumar, S.; Fohrer, N.; Fiener, P. Comparing the effects of dynamic versus static representations of land use change in hydrologic impact assessments. Environ. Model. Softw. 2019, 122, 103987. [Google Scholar] [CrossRef]
- Mancosu, E.; Gago-Silva, A.; Barbosa, A.; De Bono, A.; Ivanov, E.; Lehmann, A.; Fons, J. Future land-use change scenarios for the Black Sea catchment. Environ. Sci. Policy 2015, 46, 26–36. [Google Scholar] [CrossRef]
- Anand, J.; Gosain, A.K.; Khosa, R. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci. Total Environ. 2018, 644, 503–519. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A review on hydrological models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Dwarakish, G.S.; Ganasri, B.P. Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geosci. 2015, 1, 1115691. [Google Scholar] [CrossRef]
- Krysanova, V.; Arnold, J.G. Advances in ecohydrological modelling with SWAT-a review. Hydrol. Sci. J. 2008, 53, 939–947. [Google Scholar] [CrossRef]
- Aawar, T.; Khare, D. Assessment of climate change impacts on streamflow through hydrological model using SWAT model: A case study of Afghanistan. Modeling Earth Syst. Environ. 2020, 6, 1427–1437. [Google Scholar] [CrossRef]
- Jeon, D.J.; Ligaray, M.; Kim, M.; Kim, G.; Lee, G.; Pachepsky, Y.A.; Cha, D.H.; Cho, K.H. Evaluating the influence of climate change on the fate and transport of fecal coliform bacteria using the modified SWAT model. Sci. Total Environ. 2019, 658, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Himanshu, S.K.; Pandey, A.; Yadav, B.; Gupta, A. Evaluation of best management practices for sediment and nutrient loss control using SWAT model. Soil Tillage Res. 2019, 192, 42–58. [Google Scholar] [CrossRef]
- Halecki, W.; Kruk, E.; Ryczek, M. Loss of topsoil and soil erosion by water in agricultural areas: A multi-criteria approach for various land use scenarios in the Western Carpathians using a SWAT model. Land Use Policy 2018, 73, 363–372. [Google Scholar] [CrossRef]
- Zhang, T.; Ni, J.; Xie, D. Assessment of the relationship between rural non-point source pollution and economic development in the Three Gorges Reservoir Area. Environ. Sci. Pollut. Res. Int. 2016, 23, 8125–8132. [Google Scholar] [CrossRef]
- Shen, Z.; Qiu, J.; Hong, Q.; Chen, L. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Sci. Total Environ. 2014, 493, 138–146. [Google Scholar] [CrossRef]
- Teng, M.; Huang, C.; Wang, P.; Zeng, L.; Zhou, Z.; Xiao, W.; Huang, Z.; Liu, C. Impacts of forest restoration on soil erosion in the Three Gorges Reservoir area, China. Sci. Total Environ. 2019, 697, 134164. [Google Scholar] [CrossRef]
- Bao, Y.H.; He, X.B.; Wen, A.B.; Gao, P.; Tang, Q.; Yan, D.C.; Long, Y. Dynamic changes of soil erosion in a typical disturbance zone of China’s Three Gorges Reservoir. Catena 2018, 169, 128–139. [Google Scholar] [CrossRef]
- Guan, D.; Zhao, Z.; Tan, J. Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: A case study in three gorges reservoir area of Chongqing, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 20669–20688. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, P.A.; Chen, J.; Bing, J.P.; Xu, D.H.; Wang, M.L. Impacts of climate change and human activities on the Three Gorges Reservoir inflow. Water 2017, 9, 957. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wang, G.; Wang, L.; Zheng, B. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir. Environ. Sci. Pollut. Res. Int. 2016, 23, 11448–11460. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhou, J.Z.; Chen, L.; Jia, B.J.; Sun, N.; Tian, M.Q.; Hu, G.H. Land use pattern and vegetation cover dynamics in the Three Gorges Reservoir (TGR) intervening basin. Water 2020, 12, 2036. [Google Scholar] [CrossRef]
- Hao, B.; Ma, M.; Li, S.; Li, Q.; Hao, D.; Huang, J.; Ge, Z.; Yang, H.; Han, X. Land use change and climate variation in the Three Gorges Reservoir catchment from 2000 to 2015 based on the Google Earth Engine. Sensors 2019, 19, 2118. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.B.; Huang, X.; Peng, C.H.; Zhou, Z.X.; Teng, M.J.; Wang, P.C. Land use/cover change in the Three Gorges Reservoir area, China: Reconciling the land use conflicts between development and protection. Catena 2019, 175, 388–399. [Google Scholar] [CrossRef]
- Chen, D.C.; Elhadj, A.; Xu, H.L.; Xu, X.L.; Qiao, Z. A study on the relationship between land use change and water quality of the Mitidja Watershed in Algeria based on GIS and RS. Sustainability 2020, 12, 3510. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.Y.; Dong, R.Z.; Jiang, C.S.; Ni, M.F. Influences of land use metrics at multi-spatial scales on seasonal water quality: A case study of river systems in the Three Gorges Reservoir Area, China. J. Clean. Prod. 2019, 206, 76–85. [Google Scholar] [CrossRef]
- Huang, Z.; Han, L.; Zeng, L.; Xiao, W.; Tian, Y. Effects of land use patterns on stream water quality: A case study of a small-scale watershed in the Three Gorges Reservoir Area, China. Environ. Sci. Pollut. Res. Int. 2016, 23, 3943–3955. [Google Scholar] [CrossRef]
- Ye, L.; Cai, Q.-H.; Liu, R.-Q.; Cao, M. The influence of topography and land use on water quality of Xiangxi River in Three Gorges Reservoir region. Environ. Geol. 2008, 58, 937–942. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, L.; Hong, Q.; Qiu, J.; Xie, H.; Liu, R. Assessment of nitrogen and phosphorus loads and causal factors from different land use and soil types in the Three Gorges Reservoir Area. Sci. Total Environ. 2013, 454, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, G.; Zhang, W.; Peng, H.; Xia, H.; Zhang, X.; Ke, Q.; Wan, J. Spatial variation pattern analysis of hydrologic processes and water quality in three gorges reservoir area. Water 2019, 11, 2608. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.X.; Liu, Z.J.; Sun, X.X. Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: Land use/land cover, vegetation cover changes estimated using multi-source satellite data. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 403–412. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. Swat: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Xin-liang, X.; Jiyuan, L.; Dafang, Z. Remote sensing monitoring methods of land use/cover change in national scale. J. Anhui Agric. Sci. 2012, 4, 2365–2369. [Google Scholar]
- Shi, Y.Y.; Xu, G.H.; Wang, Y.G.; Engel, B.A.; Peng, H.; Zhang, W.S.; Cheng, M.L.; Dai, M.L. Modelling hydrology and water quality processes in the Pengxi River basin of the Three Gorges Reservoir using the soil and water assessment tool. Agric. Water Manag. 2017, 182, 24–38. [Google Scholar] [CrossRef]
- Wang, H.J.; Xiao, W.H.; Zhao, Y.; Wang, Y.C.; Hou, B.D.; Zhou, Y.Y.; Yang, H.; Zhang, X.L.; Cui, H. The spatiotemporal variability of evapotranspiration and its response to climate change and land use/land cover change in the Three Gorges Reservoir. Water 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Bryan, B.; Hugo, G. Development, land-use change and rural resettlement capacity: A case study of the Three Gorges Project, China. Aust. Geogr. 2005, 36, 201–220. [Google Scholar] [CrossRef]
- Long, H.; Wu, X.; Wang, W.; Dong, G. Analysis of urban-rural land-use change during 1995–2006 and its policy dimensional driving forces in Chongqing, China. Sensors 2008, 8, 681–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiu, J.; Wu, H.; Li, S. The implication of land-use/land-cover change for the declining soil erosion risk in the Three Gorges Reservoir region, China. Int. J. Environ. Res. Public Health 2019, 16, 1856. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.Y.; Li, Y.B. Identification of spatial coupling between cultivated land functional transformation and settlements in Three Gorges Reservoir Area, China. Habitat Int. 2020, 104, 102236. [Google Scholar] [CrossRef]
- Li, S.C.; Bing, Z.L.; Jin, G. Spatially explicit mapping of soil conservation service in monetary units due to land use/cover change for the Three Gorges Reservoir Area, China. Remote Sens. 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Wu, L.; Hou, X.Y.; Zheng, B.H.; Li, H.; Norra, S. Role of reservoir construction in regional land use change in Pengxi River basin upstream of the Three Gorges Reservoir in China. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Long, T.Y.; Liu, X.; Guo, J.S. Impacts of climate and land-use changes on the migration of non-point source nitrogen and phosphorus during rainfall-runoff in the Jialing River Watershed, China. J. Hydrol. 2012, 475, 26–41. [Google Scholar] [CrossRef]
- Wu, L.; Long, T.Y.; Li, C.M. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area. Water Sci. Technol. 2010, 61, 1601–1616. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Zhang, M.; Zheng, F.; Du, S. Assessment and analysis of non-point source nitrogen and phosphorus loads in the Three Gorges Reservoir Area of Hubei Province, China. Sci. Total Environ. 2011, 412, 154–161. [Google Scholar] [CrossRef]
- Wang, W.; Wu, X.H.; Yin, C.M.; Xie, X.L. Nutrition loss through surface runoff from slope lands and its implications for agricultural management. Agric. Water Manag. 2019, 212, 226–231. [Google Scholar] [CrossRef]
- Meng, Q.H.; Fu, B.J.; Yang, L.Z. Effects of land use on soil erosion and nutrient loss in the Three Gorges Reservoir Area, China. Soil Use Manag. 2001, 17, 288–291. [Google Scholar] [CrossRef]
- Tian, Y.W.; Huang, Z.L.; Xiao, W.F. Reductions in non-point source pollution through different management practices for an agricultural watershed in the Three Gorges Reservoir Area. J. Environ. Sci. 2010, 22, 184–191. [Google Scholar] [CrossRef]
- Kumwimba, M.N.; Zhu, B.; Dong, Z.; Tang, J.; Wang, T.; Xiao, L.; Muyembe, D.K. Assessing nutrient, biomass, and sediment transport of drainage ditches in the Three Gorges Reservoir Area. Clean-Soil Air Water 2017, 45, 1501012. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Z.H.; Wang, T.; Dong, Z.X. Non-point-source nitrogen and phosphorus loadings from a small watershed in the Three Gorges Reservoir Area. J. Mt. Sci. 2012, 9, 10–15. [Google Scholar] [CrossRef]
- Strehmel, A.; Schmalz, B.; Fohrer, N. Evaluation of land use, land management and soil conservation strategies to reduce non-point source pollution loads in the Three Gorges Region, China. Environ. Manag. 2016, 58, 906–921. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Li, Y.; Li, B.L.; Han, W.Y.; Liu, D.B.; Gan, X.Z. Nitrogen and phosphorus losses by runoff erosion: Field data monitored under natural rainfall in Three Gorges Reservoir Area, China. Catena 2016, 147, 797–808. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Gong, Y.W.; Li, Y.H.; Liu, R.M. Analysis and modeling of soil conservation measures in the Three Gorges Reservoir Area in China. Catena 2010, 81, 104–112. [Google Scholar] [CrossRef]
Data Name | Data Type | Data Scale | Sources |
---|---|---|---|
Meteorological data | DBF | - | National Meteorological Science Data Sharing Center (http://data.cma.cn/ accessed on 15 January 2022) |
Hydrological and water quality data | text | - | Hydrological Bureau, Yangtze River Water Resources Commission |
DEM | GDEM raster | 30 m | Chinese Academy of Sciences Data Mirror (http://www.resdc.cn/ accessed on 15 January 2022) |
LULC | GDEM raster | 100 m | CNLUCC |
Soil | SHAPE file | 1:250,000 | Institute of Soil Science, Chinese Academy of Science |
Point source data | SHAPE file | - | Chongqing Academy of Environmental Science, Hubei Environmental Monitoring Center Station |
Social and economic data | Text | - | Spot investigation; statistics yearbooks |
Categories | Definition/Description |
---|---|
Cropland | Paddy field, dry land and other agricultural lands |
Forestland | Forest of coniferous, broad-leaved, mixed and shrub trees |
Grassland | Grass and meadow |
Water area | Rivers, lakes and ponds |
Construction land | Residential land, industrial land, commercial land, transportation land, etc. |
Unused land | Lands unused or difficult to use, such as bare rocks, riparian zones, etc. |
Time Period | Cropland | Forestland | Grassland | Construction Land | Water Area | Unused |
---|---|---|---|---|---|---|
1980–1990 | −0.02% | 0.01% | −0.02% | 0.65% | 0.13% | −0.11% |
1990–1995 | −0.05% | 0.04% | −0.08% | 1.29% | 0.05% | 0.06% |
1995–2000 | −0.04% | −0.10% | 0.29% | 2.98% | 0.07% | 0.04% |
2000–2005 | −0.21% | 0.21% | −0.38% | 1.61% | 1.33% | −7.28% |
2005–2010 | −0.26% | 0.07% | −0.09% | 4.35% | 2.16% | −0.30% |
2010–2015 | −0.35% | −0.04% | −0.05% | 9.72% | 0.51% | 0.96% |
2015–2018 | −0.02% | −0.07% | 0.11% | 2.15% | −1.54% | −1.31% |
1980–2018 | −0.12% | 0.02% | −0.04% | 0.47% | 0.47% | −0.98% |
LULC | Runoff Contribution | |||
---|---|---|---|---|
Cropland | Forestland | Construction Land | Grassland | |
LU1980 | 33.21 | 55.61 | 0.20 | 10.99 |
LU1990 | 33.13 | 55.66 | 0.23 | 10.97 |
LU1995 | 33.03 | 55.78 | 0.26 | 10.93 |
LU2000 | 33.03 | 55.41 | 0.29 | 11.26 |
LU2005 | 32.66 | 56.04 | 0.33 | 10.97 |
LU2010 | 32.25 | 56.13 | 0.61 | 11.02 |
LU2015 | 31.72 | 56.01 | 1.30 | 10.97 |
LU2018 | 31.73 | 55.91 | 1.46 | 10.91 |
Average | 32.60 | 55.82 | 0.58 | 11.00 |
LULC | TN Load Contribution (%) | |||
---|---|---|---|---|
Cropland | Forestland | Construction Land | Grassland | |
LU1980 | 56.53 | 41.78 | 0.06 | 1.63 |
LU1990 | 56.57 | 41.74 | 0.06 | 1.63 |
LU1995 | 56.48 | 41.83 | 0.07 | 1.62 |
LU2000 | 56.57 | 41.69 | 0.07 | 1.68 |
LU2005 | 56.09 | 42.21 | 0.07 | 1.63 |
LU2010 | 55.73 | 42.51 | 0.10 | 1.65 |
LU2015 | 55.14 | 43.00 | 0.20 | 1.67 |
LU2018 | 55.01 | 43.11 | 0.22 | 1.66 |
Average | 56.02 | 42.23 | 0.11 | 1.65 |
LULC | TP Load Contribution (%) | |||
---|---|---|---|---|
Cropland | Forestland | Construction Land | Grassland | |
LU1980 | 82.05 | 9.47 | 0.13 | 8.35 |
LU1990 | 81.93 | 9.54 | 0.15 | 8.38 |
LU1995 | 81.88 | 9.58 | 0.17 | 8.37 |
LU2000 | 81.85 | 9.55 | 0.20 | 8.41 |
LU2005 | 81.76 | 9.77 | 0.23 | 8.25 |
LU2010 | 81.37 | 9.87 | 0.41 | 8.35 |
LU2015 | 80.74 | 9.94 | 0.92 | 8.40 |
LU2018 | 80.81 | 9.87 | 1.04 | 8.29 |
Average | 81.55 | 9.70 | 0.40 | 8.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, X.; Zhang, W.; Peng, H.; Xu, G.; Zhao, Y.; Shen, Z. Impact of Land Use Changes on the Surface Runoff and Nutrient Load in the Three Gorges Reservoir Area, China. Sustainability 2022, 14, 2023. https://doi.org/10.3390/su14042023
Zhang X, Chen X, Zhang W, Peng H, Xu G, Zhao Y, Shen Z. Impact of Land Use Changes on the Surface Runoff and Nutrient Load in the Three Gorges Reservoir Area, China. Sustainability. 2022; 14(4):2023. https://doi.org/10.3390/su14042023
Chicago/Turabian StyleZhang, Xiao, Xiaomin Chen, Wanshun Zhang, Hong Peng, Gaohong Xu, Yanxin Zhao, and Zhenling Shen. 2022. "Impact of Land Use Changes on the Surface Runoff and Nutrient Load in the Three Gorges Reservoir Area, China" Sustainability 14, no. 4: 2023. https://doi.org/10.3390/su14042023
APA StyleZhang, X., Chen, X., Zhang, W., Peng, H., Xu, G., Zhao, Y., & Shen, Z. (2022). Impact of Land Use Changes on the Surface Runoff and Nutrient Load in the Three Gorges Reservoir Area, China. Sustainability, 14(4), 2023. https://doi.org/10.3390/su14042023