Defining a Digital System for the Pedestrian Network as a Conceptual Implementation Framework
Abstract
:1. Introduction
2. Integrative Approaches for Creating a Smart Pedestrian Network
3. Concept of Study
4. Methodology
4.1. Desk Approach to Understand Cities
4.2. Digitalization Approach
4.3. Business Approach
5. Discussion and Final Remarks
5.1. Integrating Policies and Citizens’ Demands in Strategic Urban Planning via Collaborative Participation
5.2. Increasing Knowledge and Understanding of Pedestrian Network as New Structure
5.3. Digitalization of a Smart Pedestrian Network and Assessment in Terms of the Urban Environment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmadi, Z. Moderating effects on the market orientation and strategic performance relationship in public housing. Balt. J. Manag. 2019, 14, 559–577. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Annan-Noonoo, P.; Acheampong, B.; Budu, J.; Entee, E. A review of dominant issues, multi-dimensions, and future research directions for smart cities. In Digital Innovations, Business and Society in Africa: New Frontiers and a Shared Strategic Vision; Boateng, R., Boateng, S.L., Anning-Dorson, T., Babatope, L.O., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 281–310. [Google Scholar]
- Axelsson, K.; Granath, M. Stakeholders’ stake and relation to smartness in smart city development: Insights from a Swedish city planning project. Gov. Inf. Q. 2018, 35, 693–702. [Google Scholar] [CrossRef]
- Bahrainy, H.; Khosravi, H. The impact of urban design features and qualities on walkability and health in under-construction environments: The case of Hashtgerd New Town in Iran. Cities J. 2013, 31, 17–28. [Google Scholar] [CrossRef]
- Balogun, A.-L.; Marks, D.; Sharma, R.; Shekhar, H.; Balmes, C.; Maheng, D.; Salehi, P. Assessing the potentials of digitalization as a tool for climate change adaptation and sustainable development in urban centres. Sustain. Cities Soc. 2020, 53, 101888. [Google Scholar] [CrossRef]
- Cambra, P.; Gonçalves, A.; Moura, F. The digital pedestrian network in complex urban contexts: A primer discussion on typological specifications. FPlinisterra 2019, 54, 155–170. [Google Scholar]
- Castanho, R.A.; Naranjo Gómez, J.M.; Kurowska-Pysz, J. How to reach the eurocities? A retrospective review of the evolution dynamics of urban planning and management on the Iberian peninsula territories. Sustainability 2019, 11, 602. [Google Scholar] [CrossRef] [Green Version]
- Cherradi, G.; Boulmakoul, A.; Karim, L.; Mandar, M. Toward a safe pedestrian walkability: A real-time reactive microservice oriented ecosystem. In Networking, Intelligent Systems and Security; Springer: Berlin/Heidelberg, Germany, 2022; pp. 439–451. [Google Scholar]
- Colding, J.; Barthel, S.; Ljung, R.; Eriksson, F.; Sjöberg, S. Urban commons and collective action to address climate Change. Soc. Incl. 2021, 10, 1. [Google Scholar] [CrossRef]
- Delmelle, E.C.; Haslauer, E.; Prinz, T. Social satisfaction, commuting and neighborhoods. J. Transp. Geogr. 2013, 30, 110–116. [Google Scholar] [CrossRef]
- Dembski, F.; Wössner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban digital twins for smart cities and citizens: The case study of Herrenberg, Germany. Sustainability 2020, 12, 2307. [Google Scholar] [CrossRef] [Green Version]
- Di Dio, S.; Massa, F.; Nucara, A.; Peri, G.; Rizzo, G.; Schillaci, D. Pursuing softer urban mobility behaviors through game-based apps. Heliyon 2020, 6, e03930. [Google Scholar] [CrossRef]
- Ericson, J.D.; Chrastil, E.R.; Warren, W.H. Space syntax visibility graph analysis is not robust to changes in spatial and temporal resolution. Environ. Plan. B Urban Anal. City Sci. 2020, 48, 1478–1494. [Google Scholar] [CrossRef]
- Farrington, T.; Alizadeh, A. On the impact of digitalization on R&D. Res. Technol. Manag. 2017, 60, 24–30. [Google Scholar] [CrossRef]
- Ferrera, M.; Miró, J.; Ronchi, S. Walking the road together? EU polity maintenance during the COVID-19 crisis. West Eur. Politics 2021, 44, 1329–1352. [Google Scholar] [CrossRef]
- Fonseca, D.; Sanchez-Sepulveda, M.; Necchi, S.; Peña, E. Towards smart city governance. Case study: Improving the interpretation of quantitative traffic measurement data through citizen participation. Sensors 2021, 21, 5321. [Google Scholar] [CrossRef]
- Fonseca, F.; Conticelli, E.; Papageorgiou, G.; Ribeiro, P.; Jabbari, M.; Tondelli, S.; Ramos, R. Levels and characteristics of utilitarian walking in the central areas of the cities of Bologna and Porto. Sustainability 2021, 13, 3064. [Google Scholar] [CrossRef]
- Fonseca, F.; Conticelli, E.; Papageorgiou, G.; Ribeiro, P.; Jabbari, M.; Tondelli, S.; Ramos, R. Use and perceptions of pedestrian navigation apps: Findings from Bologna and Porto. ISPRS Int. J. Geo Inf. 2021, 10, 446. [Google Scholar] [CrossRef]
- Fonseca, F.; Ribeiro, P.; Jabbari, M.; Petrova, E.; Papageorgiou, G.; Conticelli, E.; Ramos, R. Smart Pedestrian Network: An Integrated Conceptual Model for Improving Walkability. In Proceedings of the Society with Future: Smart and Liveable Cities, Braga, Portugal, 4–6 December 2019; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Gago, D.; Mendes, P.; Murta, P.; Cabrita, N.; Teixeira, M.R. Stakeholders perceptions of new digital energy management platform in municipality of Loule, Southern Portugal: A SWOT-AHP analysis. Sustainability 2022, 14, 1445. [Google Scholar] [CrossRef]
- Garau, C.; Annunziata, A.; Yamu, C. A walkability assessment tool coupling multi-criteria analysis and space syntax: The case study of Iglesias, Italy. Eur. Plan. Stud. 2020, 1, 1–23. [Google Scholar] [CrossRef]
- Gil, J. City information modelling: A conceptual framework for research and practice in digital urban planning. Built Environ. 2020, 46, 501–527. [Google Scholar] [CrossRef]
- Graham, S. Bridging urban digital divides? Urban polarisation and information and communications technologies (ICTs). Urban Stud. 2002, 39, 33–56. [Google Scholar] [CrossRef]
- Hooi, E.; Pojani, D. Urban design quality and walkability: An audit of suburban high streets in an Australian city. J. Urban Des. 2020, 25, 155–179. [Google Scholar] [CrossRef]
- Hootsuite. Digital 2021: Global Digital Overview; Hootsuite: Vancouver, BC, Canada, 2021. [Google Scholar]
- Inac, H.; Oztemel, E. An assessment framework for the transformation of mobility 4.0 in smart cities. Systems 2022, 10, 1. [Google Scholar] [CrossRef]
- Jabbari, M.; Fonseca, F.; Ramos, R. Combining multi-criteria and space syntax analysis to assess a pedestrian network: The case of Oporto. J. Urban Des. 2018, 23, 23–41. [Google Scholar] [CrossRef]
- Jabbari, M.; Fonseca, F.; Ramos, R. Assessing the pedestrian network conditions in two cities: The cases of Qazvin and Porto. In Urban Heritage Along the Silk Roads: A Contemporary Reading of Urban Transformation of Historic Cities in the Middle East and Beyond; Arefian, F.F., Moeini, S.H.I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 229–245. [Google Scholar]
- Jabbari, M.; Fonseca, F.; Ramos, R. Accessibility and connectivity criteria for assessing walkability: An application in Qazvin, Iran. Sustainability 2021, 13, 3648. [Google Scholar] [CrossRef]
- Jaller, M.; Pahwa, A. Evaluating the environmental impacts of online shopping: A behavioral and transportation approach. Transp. Res. Part D Transp. Environ. 2020, 80, 102223. [Google Scholar] [CrossRef]
- Jamal, S.; Chowdhury, S.; Newbold, K.B. Transport preferences and dilemmas in the post-lockdown (COVID-19) period: Findings from a qualitative study of young commuters in Dhaka, Bangladesh. Case Stud. Transp. Policy 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Kane, G.C.; Palmer, D.; Phillips, A.N.; Kiron, D.; Buckley, N. Strategy, not technology, drives digital transformation. MIT Sloan Manag. Rev. Deloitte Univ. Press 2015, 14, 1–25. [Google Scholar]
- Kasemsuppakorn, P.; Karimi, H. A pedestrian network construction algorithm based on multiple GPS traces. Transp. Res. Part C 2013, 26, 285–300. [Google Scholar] [CrossRef]
- Khalifa, M.A. A critical review on current practices of the monitoring and evaluation in the preparation of strategic urban plans within the Egyptian context. Habitat Int. 2012, 36, 57–67. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.; Lee, S. Meso- or micro-scale? Environmental factors influencing pedestrian satisfaction. Transp. Res. Part D 2014, 30, 10–20. [Google Scholar] [CrossRef]
- Li, H.; Cebe, J.; Khoeini, S.; Xu, Y.A.; Dyess, C.; Guensler, R. A semi-automated method to generate GIS-based sidewalk networks for asset management and pedestrian accessibility assessment. Transp. Res. Rec. 2018, 2672, 1–9. [Google Scholar] [CrossRef]
- Liao, D.; Sun, G.; Li, H.; Yu, H.; Chang, V. The framework and algorithm for preserving user trajectory while using location-based services in IoT-cloud systems. Clust. Comput. 2017, 20, 2283–2297. [Google Scholar] [CrossRef]
- Liimatainen, H.; Mladenović, M.N. Developing mobility as a service—User, operator and governance perspectives. Eur. Transp. Res. Rev. 2021, 13, 37. [Google Scholar] [CrossRef]
- Linder, N.; Giusti, M.; Samuelsson, K.; Barthel, S. Pro-environmental habits: An underexplored research agenda in sustainability science. Ambio 2022, 51, 546–556. [Google Scholar] [CrossRef]
- Lu, X.; Ota, K.; Dong, M.; Yu, C.; Jin, H. Predicting transportation carbon emission with urban big data. IEEE Trans. Sustain. Comput. 2017, 2, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Sofwan, M.; Tanjung, M.H. Evaluation study of walkability index in central business district (CBD) area Pekanbaru city. J. Geosci. Eng. Environ. Technol. 2020, 5, 175–185. [Google Scholar] [CrossRef]
- Mattogno, C.; Romano, R. Rome and the intermediate territories: The connective ability of the green areas. Procedia—Soc. Behav. Sci. 2016, 223, 812–817. [Google Scholar] [CrossRef] [Green Version]
- Nässén, N.; Rambaree, K. Greta Thunberg and the generation of moral authority: A systematic literature review on the characteristics of Thunberg’s leadership. Sustainability 2021, 13, 11326. [Google Scholar] [CrossRef]
- Nogueira, G.P.M.; de Assis Rangel, J.J.; Shimoda, E. Sustainable last-mile distribution in B2C e-commerce: Do consumers really care? Clean Responsible Consum. 2021, 3, 100021. [Google Scholar] [CrossRef]
- Novotný, R.; Kuchta, R.; Kadlec, J. Smart city concept, applications and services. Telecommun. Syst. Manag. 2014, 3, 1–5. [Google Scholar]
- Pascual-Garrido, A. Scars on plants sourced for termite fishing tools by chimpanzees: Towards an archaeology of the perishable. Am. J. Primatol. 2018, 80, e22921. [Google Scholar] [CrossRef] [PubMed]
- Ramakreshnan, L.; Fong, C.S.; Sulaiman, N.M.; Aghamohammadi, N. Motivations and built environment factors associated with campus walkability in the tropical settings. Sci. Total Environ. 2020, 749, 141457. [Google Scholar] [CrossRef] [PubMed]
- Rześny-Cieplińska, J.; Szmelter-Jarosz, A.; Moslem, S. Priority-based stakeholders analysis in the view of sustainable city logistics: Evidence for Tricity, Poland. Sustain. Cities Soc. 2021, 67, 102751. [Google Scholar] [CrossRef]
- Sanchez-Sepulveda, M.; Fonseca, D.; Franquesa, J.; Redondo, E. Virtual interactive innovations applied for digital urban transformations. Mixed approach. Future Gener. Comput. Syst. 2019, 91, 371–381. [Google Scholar] [CrossRef]
- Searle, G.; Bunker, R. Metropolitan strategic planning: An Australian paradigm? Plan. Theory 2010, 9, 163–180. [Google Scholar] [CrossRef]
- Sgibnev, W.; Rekhviashvili, L. Marschrutkas: Digitalisation, sustainability and mobility justice in a low-tech mobility sector. Transp. Res. Part A Policy Pract. 2020, 138, 342–352. [Google Scholar] [CrossRef]
- Shach-Pinsly, D.; Bindreiter, S.; Porat, I.; Sussman, S.; Forster, J.; Rinnerthaler, M. Multiparametric analysis of urban environmental quality for estimating neighborhood renewal alternatives. Urban Plan. 2021, 6, 172–188. [Google Scholar] [CrossRef]
- Sjödin, D.R.; Parida, V.; Leksell, M.; Petrovic, A. Smart factory implementation and process innovation. Res. Technol. Manag. 2018, 61, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Sörensen, J.; Persson, A.S.; Olsson, J.A. A data management framework for strategic urban planning using blue-green infrastructure. J. Environ. Manag. 2021, 299, 113658. [Google Scholar] [CrossRef]
- Sundström, A.; Westerlund, O.; Kotyrlo, E. Marital status and risk of dementia: A nationwide population-based prospective study from Sweden. BMJ Open 2016, 6, e008565. [Google Scholar] [CrossRef] [Green Version]
- Van Cauwenberg, J.; de Donder, L.; Clarys, P.; de Bourdeaudhuij, I.; Buffel, T.; De Witte, N.; Deforche, B. Relationships between the perceived neighborhood social environment and walking for transportation among older adults. Soc. Sci. Med. 2014, 104, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, P.; Sharmeen, F.; Weijs-Perrée, M. On the subjective quality of social Interactions: Influence of neighborhood walkability, social cohesion and mobility choices. Transp. Res. Part A Policy Pract. 2017, 106, 309–319. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Gundersen, V.; Figari, H.; Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020, 15, 104075. [Google Scholar] [CrossRef]
- Weijs-Perrée, M.; van den Berg, P.; Arentze, T.; Kemperman, A. Factors influencing social satisfaction and loneliness: A path analysis. J. Transp. Geogr. 2015, 45, 24–31. [Google Scholar] [CrossRef]
- Xu, Y.; Qin, T.; Wu, Y.; Yu, C.; Dong, W. How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? Cartogr. Geogr. Inf. Sci. 2022, 1, 1–17. [Google Scholar] [CrossRef]
- Yang, W.; Lam, P.T.I. An evaluation of ICT benefits enhancing walkability in a smart city. Landsc. Urban Plan. 2021, 215, 104227. [Google Scholar] [CrossRef]
- Zadobrischi, E. Analysis and experiment of wireless optical communications in applications dedicated to mobile devices with applicability in the field of road and pedestrian safety. Sensors 2022, 22, 1023. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, P. Rethinking the relationship between urban development, local health and global sustainability. Curr. Opin. Environ. Sustain. 2017, 25, 14–19. [Google Scholar] [CrossRef]
- Zhao, Y.; Chung, P.-K. Neighborhood environment walkability and health-related quality of life among older adults in Hong Kong. Arch. Gerontol. Geriatr. 2017, 73, 182–186. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabbari, M.; Ahmadi, Z.; Ramos, R. Defining a Digital System for the Pedestrian Network as a Conceptual Implementation Framework. Sustainability 2022, 14, 2528. https://doi.org/10.3390/su14052528
Jabbari M, Ahmadi Z, Ramos R. Defining a Digital System for the Pedestrian Network as a Conceptual Implementation Framework. Sustainability. 2022; 14(5):2528. https://doi.org/10.3390/su14052528
Chicago/Turabian StyleJabbari, Mona, Zahra Ahmadi, and Rui Ramos. 2022. "Defining a Digital System for the Pedestrian Network as a Conceptual Implementation Framework" Sustainability 14, no. 5: 2528. https://doi.org/10.3390/su14052528
APA StyleJabbari, M., Ahmadi, Z., & Ramos, R. (2022). Defining a Digital System for the Pedestrian Network as a Conceptual Implementation Framework. Sustainability, 14(5), 2528. https://doi.org/10.3390/su14052528