Land Use, Land Cover Change and Sustainable Intensification of Agriculture and Livestock in the Amazon and the Atlantic Forest in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Spatial and Temporal Trends in Land Use and Land Cover
- Native forest: land cover with predominance of tree species with continuous high-density canopy; and/or with a tree layer varying in density, distributed over a continuous shrub-herb layer; and/or dense and always green, often flooded by the tide;
- Pasture: referring to pasture areas, natural or planted, linked to livestock activity;
- Agriculture: agricultural cultivation areas, occupied with temporary crops (soybean, sugarcane, rice, and other temporary crops) and perennial crops (coffee, citrus, other perennial crops);
- Planted forest: area with tree species cultivated for commercial purposes;
- Mosaic of agriculture and pasture: areas of agricultural use where we could distinguish between pasture and agriculture, found only in the Atlantic Forest;
- Other land use: several uses outside the interest of this research were grouped. This use was used only to identify the territorial proportion for the years 1985 to 2020 and in the constructed map. It was not considered in the annual historical series.
- -
- Quantification of the area in Mha of each land use and land cover classes for 1985 and 2020. These values were obtained from MapBiomas database.
- -
- Percentage of territorial occupation (%) of each land use and land cover classes for 1985 and 2020 (Equation (1)):
- -
- Difference class area (hectares) between the years (1985 and 2020) to verify the increase or decrease in a specific class in territorial occupation through Equation (2) [43]:
- -
- Quantification of the area (Mha) of each land use and land cover classes (except “other uses”) for all selected years (1985 to 2020). These values were obtained from MapBiomas database.
- -
- Annual land use and land cover change rate (%) for all selected years (1985 to 2020) in each land use and cover classes (except “other uses”), through Equation (3) [43]:
2.3. Animal Stocking Rate over 35-Year Period
3. Results
3.1. Spatial and Temporal Trends in Land Use and Land Cover
3.1.1. Amazon Biome
3.1.2. Atlantic Forest
3.1.3. Land Use and Land Cover Overview
3.2. Animal Stocking Rate over 35 Years
4. Discussion
4.1. Land Use and Land Cover
4.1.1. Amazon Biome
4.1.2. Atlantic Forest Biome
4.2. Sustainable Land Use
4.3. Barriers for the Adoption of ICLF Strategies in the Amazon and Atlantic Forest
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luyssaert, S.; Jammet, M.; Stoy, P.C.; Estel, S.; Pongratz, J.; Ceschia, E.; Churkina, G.; Don, A.; Erb, K.; Ferlicoq, M.; et al. Land Management and Land-Cover Change Have Impacts of Similar Magnitude on Surface Temperature. Nat. Clim. Chang. 2014, 4, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J. Mitigation of Emerging Implications of Climate Change on Food Production Systems. Food Res. Int. 2020, 134, 109256. [Google Scholar] [CrossRef] [PubMed]
- Hertel, T.W. Food Security under Climate Change. Nat. Clim. Chang. 2016, 6, 10–13. [Google Scholar] [CrossRef]
- United Nations. United Nations World Population Prospects 2019: Highlights; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019; ISBN 978-92-1-148316-1. [Google Scholar]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Tabela 5457: Área Plantada ou Destinada à Colheita, Área Colhida, Quantidade Produzida, Rendimento Médio e Valor Da Produção Das Lavouras Temporárias e Permanentes. Available online: https://sidra.ibge.gov.br/tabela/5457 (accessed on 14 September 2020).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Pesquisa Da Pecuária Municipal. Tabela 3939: Efetivo Dos Rebanhos, Por Tipo de Rebanho. Available online: https://sidra.ibge.gov.br/tabela/3939 (accessed on 10 January 2020).
- Souza, C.R.; Fritz Filho, L.F.; Moretto, C.F. Os processos produtivos agrícolas na zona de amortecimento da Floresta Nacional de Passo Fundo. Rev. Econ. E Sociol. Rural. 2021, 60. [Google Scholar] [CrossRef]
- Guedes Pinto, L.F.; Voivodic, M. Reverse the Tipping Point of the Atlantic Forest for Mitigation. Nat. Clim. Chang. 2021, 11, 364–365. [Google Scholar] [CrossRef]
- Tubenchlak, F.; Badari, C.G.; de Freitas Strauch, G.; de Moraes, L.F.D. Changing the Agriculture Paradigm in the Brazilian Atlantic Forest: The Importance of Agroforestry. In The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-Diverse Forest; Marques, M.C.M., Grelle, C.E.V., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 369–388. ISBN 978-3-030-55322-7. [Google Scholar]
- Fearnside, P.M. Deforestation in Brazilian Amazonia: History, Rates, and Consequences; Instituto Nacional de Pesquisas da Amazônia (INPA): Manaus, Brazil, 2020; Volume 1, ISBN 978-85-211-0193-2.
- Poorter, L.; van der Sande, M.T.; Thompson, J.; Arets, E.J.M.M.; Alarcón, A.; Álvarez-Sánchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzmán, G.; Boit, A.; et al. Diversity Enhances Carbon Storage in Tropical Forests. Glob. Ecol. Biogeogr. 2015, 24, 1314–1328. [Google Scholar] [CrossRef]
- Lovejoy, T.E.; Nobre, C. Amazon Tipping Point. Sci. Adv. 2018, 4, eaat2340. [Google Scholar] [CrossRef] [Green Version]
- Morton, D.C.; Noojipady, P.; Macedo, M.M.; Gibbs, H.; Victoria, D.C.; Bolfe, E.L. Reevaluating Suitability Estimates Based on Dynamics of Cropland Expansion in the Brazilian Amazon. Glob. Environ. Chang. 2016, 37, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Meyfroidt, P.; Carlson, K.M.; Fagan, M.E.; Gutiérrez-Vélez, V.H.; Macedo, M.N.; Curran, L.M.; DeFries, R.S.; Dyer, G.A.; Gibbs, H.K.; Lambin, E.F.; et al. Multiple Pathways of Commodity Crop Expansion in Tropical Forest Landscapes. Environ. Res. Lett. 2014, 9, 074012. [Google Scholar] [CrossRef]
- Nehren, U.; Kirchner, A.; Sattler, D.; Turetta, A.P.; Heinrich, J. Impact of Natural Climate Change and Historical Land Use on Landscape Development in the Atlantic Forest of Rio de Janeiro, Brazil. An. Acad. Bras. Ciênc. 2013, 85, 497–518. [Google Scholar] [CrossRef] [Green Version]
- Scarano, F.R.; Ceotto, P. Brazilian Atlantic Forest: Impact, Vulnerability, and Adaptation to Climate Change. Biodivers. Conserv. 2015, 24, 2319–2331. [Google Scholar] [CrossRef]
- Calmon, M.; Brancalion, P.H.S.; Paese, A.; Aronson, J.; Castro, P.; da Silva, S.C.; Rodrigues, R.R. Emerging Threats and Opportunities for Large-Scale Ecological Restoration in the Atlantic Forest of Brazil. Restor. Ecol. 2011, 19, 154–158. [Google Scholar] [CrossRef]
- Marques, M.C.M.; Grelle, C.E.V. The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-Diverse Forest; Springer Nature: Berlin, Germany, 2021; ISBN 978-3-030-55322-7. [Google Scholar]
- Rezende, C.L.; Scarano, F.R.; Assad, E.D.; Joly, C.A.; Metzger, J.P.; Strassburg, B.B.N.; Tabarelli, M.; Fonseca, G.A.; Mittermeier, R.A. From Hotspot to Hopespot: An Opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 2018, 16, 208–214. [Google Scholar] [CrossRef]
- Perosa, B.; Newton, P.; Carrer, M.J. Access to Information Affects the Adoption of Integrated Systems by Farmers in Brazil. Land Use Policy 2021, 106, 105459. [Google Scholar] [CrossRef]
- Stabile, M.C.C.; Guimarães, A.L.; Silva, D.S.; Ribeiro, V.; Macedo, M.N.; Coe, M.T.; Pinto, E.; Moutinho, P.; Alencar, A. Solving Brazil’s Land Use Puzzle: Increasing Production and Slowing Amazon Deforestation. Land Use Policy 2020, 91, 104362. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J.; Hirota, M.M. The Brazilian Atlantic Forest: How Much Is Left, and How Is the Remaining Forest Distributed? Implications for Conservation. Biol. Conserv. 2009, 142, 1141–1153. [Google Scholar] [CrossRef]
- Joly, C.A.; Metzger, J.P.; Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological Findings and Conservation Initiatives. New Phytol. 2014, 204, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Rosa, M.R.; Brancalion, P.H.S.; Crouzeilles, R.; Tambosi, L.R.; Piffer, P.R.; Lenti, F.E.B.; Hirota, M.; Santiami, E.; Metzger, J.P. Hidden Destruction of Older Forests Threatens Brazil’s Atlantic Forest and Challenges Restoration Programs. Sci. Adv. 2021, 7, eabc4547. [Google Scholar] [CrossRef]
- Lira, P.K.; Tambosi, L.R.; Ewers, R.M.; Metzger, J.P. Land-Use and Land-Cover Change in Atlantic Forest Landscapes. For. Ecol. Manag. 2012, 278, 80–89. [Google Scholar] [CrossRef]
- Alves-Pinto, H.N.; Latawiec, A.E.; Strassburg, B.B.N.; Barros, F.S.M.; Sansevero, J.B.B.; Iribarrem, A.; Crouzeilles, R.; Lemgruber, L.; Rangel, M.C.; Silva, A.C.P. Reconciling Rural Development and Ecological Restoration: Strategies and Policy Recommendations for the Brazilian Atlantic Forest. Land Use Policy 2017, 60, 419–426. [Google Scholar] [CrossRef]
- Câmara, G.; Soterroni, A.; Ramos, F.; Carvalho, A.; Andrade, P.; Souza, R.S.C.; Mosnier, A.; Mant, R.; Buurman, M.; Peña, M.; et al. Modelling Land Use Changes in Brazil 2000–2050: A Report by the REDD-PAC Project; HAL Open Science: Lyon, France, 2015. [Google Scholar]
- Strassburg, B.B.N.; Latawiec, A.E.; Barioni, L.G.; Nobre, C.A.; da Silva, V.P.; Valentim, J.F.; Vianna, M.; Assad, E.D. When Enough Should Be Enough: Improving the Use of Current Agricultural Lands Could Meet Production Demands and Spare Natural Habitats in Brazil. Glob. Environ. Chang. 2014, 28, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Adami, M.; Rudorff, B.F.T.; Freitas, R.M.; Aguiar, D.A.; Sugawara, L.M.; Mello, M.P. Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil. Sustainability 2012, 4, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Marchand, S. The Relationship between Technical Efficiency in Agriculture and Deforestation in the Brazilian Amazon. Ecol. Econ. 2012, 77, 166–175. [Google Scholar] [CrossRef]
- Cerri, C.E.P.; Cerri, C.C.; Maia, S.M.F.; Cherubin, M.R.; Feigl, B.J.; Lal, R. Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change. Sustainability 2018, 10, 989. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tilman, D.; Furey, G.; Lehman, C. Soil Carbon Sequestration Accelerated by Restoration of Grassland Biodiversity. Nat. Commun. 2019, 10, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, B.J.R.; Madari, B.E.; Boddey, R.M. Integrated Crop–Livestock–Forestry Systems: Prospects for a Sustainable Agricultural Intensification. Nutr. Cycl. Agroecosyst. 2017, 108, 1–4. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Biomas e Sistema Costeiro-Marinho do Brasil: Compatível Com a Escala 1:250,000; IBGE, Coordenação de Recursos Naturais e Estudos Ambientais: Rio de Janeiro, Brazil, 2019; Volume 45, ISBN 978-85-240-4510-3.
- IBGE—Instituto Brasileiro de Geografia e Estatística. Biomas. Available online: https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-ambientais/15842-biomas.html?=&t=downloads (accessed on 10 January 2022).
- MapBiomas. Série Brasileira de Mapas de Cobertura e Uso da Terra: Coleções MapBiomas. Available online: https://mapbiomas.org/colecoes-mapbiomas-1?cama_set_language=pt-BR (accessed on 10 January 2022).
- MapBiomas. Accuracy Statistics—Collection 6.0. Available online: https://mapbiomas.org/accuracy-statistics?cama_set_language=en (accessed on 13 January 2022).
- MacDicken, K.G. Global Forest Resources Assessment 2015: What, Why and How? For. Ecol. Manag. 2015, 352, 3–8. [Google Scholar] [CrossRef] [Green Version]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Manuais Técnicos de Uso da Terra, 3rd ed.; Instituto Brasileiro de Geografia e Estatística-IBGE: Rio de Janeiro, Brazil, 2013; Volume 7, ISBN 978-85-240-4307-9. [Google Scholar]
- MapBiomas. MapBiomas General “Handbook”—Algorithm Theoretical Basis Document (ATBD). Collection 6. 2022. Available online: https://mapbiomas-br-site.s3.amazonaws.com/Metodologia/ATBD_Collection_6_v1_January_2022.pdf (accessed on 13 January 2022).
- Martínez, S.; Mollicone, D. From Land Cover to Land Use: A Methodology to Assess Land Use from Remote Sensing Data. Remote Sens. 2012, 4, 1024–1045. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, M.C.P.; de Mello, K.; Toppa, R.H. Protected Areas and Agricultural Expansion: Biodiversity Conservation versus Economic Growth in the Southeast of Brazil. J. Environ. Manag. 2017, 188, 73–84. [Google Scholar] [CrossRef]
- Ewert, F.; Rounsevell, M.D.A.; Reginster, I.; Metzger, M.J.; Leemans, R. Future Scenarios of European Agricultural Land Use: I. Estimating Changes in Crop Productivity. Agric. Ecosyst. Environ. 2005, 107, 101–116. [Google Scholar] [CrossRef]
- Grassini; Eskridge, K.M.; Cassman, K.G. Distinguishing between Yield Advances and Yield Plateaus in Historical Crop Production Trends. Nat. Commun. 2013, 2918, 1–12. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Lohani, A.K. Tiwari Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters. Environ. Process. 2015, 2, 729–749. [Google Scholar] [CrossRef] [Green Version]
- Zarenistanak, M. Historical Trend Analysis and Future Projections of Precipitation from CMIP5 Models in the Alborz Mountain Area, Iran. Meteorol. Atmos. Phys. 2019, 131, 1259–1280. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Pesquisas Agropecuárias—Série Relatório Metodológico; IBGE, Coordenação de Agropecuária: Rio de Janeiro, Brazil, 2018; Volume 6, ISBN 978-85-240-4450-2. [Google Scholar]
- Domingues, S.C.O.; Silva, I.C.O.; Santos, J.S.; Yamashita, O.M.; Carvalho, M.A.C. Agricultural Activity: Legal Amazon: Ambiental Degradation. Sci. Electron. Arch. 2020, 13, 104–110. [Google Scholar] [CrossRef]
- Fearnside, P.M. Deforestation in Brazilian Amazonia: History, Rates, and Consequences. Conserv. Biol. 2005, 19, 680–688. [Google Scholar] [CrossRef]
- FAO. Food Outlook—Bianual Report on Global Food Markets; FAO: Rome, Italy, 2020; ISBN 978-92-5-132848-4. [Google Scholar]
- Börner, J.; Wunder, S.; Reimer, F.; Bakkegaard, R.K.; Viana, V.; Tezza, J.; Pinto, T.; Lima, L.; Marostica, S. Promoting Forest Stewardship in the Bolsa Floresta Programme: Local Livelihood Strategies and Preliminary Impacts; Center for International Forestry Research: Bogor Regency, Indonesia, 2013. [Google Scholar]
- Börner, J.; Wunder, S.; Wertz-Kanounnikoff, S.; Hyman, G.; Nascimento, N. Forest Law Enforcement in the Brazilian Amazon: Costs and Income Effects. Glob. Environ. Chang. 2014, 29, 294–305. [Google Scholar] [CrossRef]
- Börner, J.; Kis-Katos, K.; Hargrave, J.; König, K. Post-Crackdown Effectiveness of Field-Based Forest Law Enforcement in the Brazilian Amazon. PLoS ONE 2015, 10, e0121544. [Google Scholar] [CrossRef]
- Hargrave, J.; Kis-Katos, K. Economic Causes of Deforestation in the Brazilian Amazon: A Panel Data Analysis for the 2000s. Environ. Resour. Econ. 2013, 54, 471–494. [Google Scholar] [CrossRef] [Green Version]
- Brasil. Plano de Ação Para Prevenção e Controle Do Desmatamento na Amazônia Legal (PPCDAm). 2004. Available online: http://redd.mma.gov.br/images/publicacoes/PPCDAM_fase1.pdf (accessed on 10 January 2022).
- Arima, E.Y.; Barreto, P.; Araújo, E.; Soares-Filho, B. Public Policies Can Reduce Tropical Deforestation: Lessons and Challenges from Brazil. Land Use Policy 2014, 41, 465–473. [Google Scholar] [CrossRef]
- Assunção, J.; Gandour, C.; Rocha, R.; Rocha, R. The Effect of Rural Credit on Deforestation: Evidence from the Brazilian Amazon. Econ. J. 2020, 130, 290–330. [Google Scholar] [CrossRef] [Green Version]
- Stropp, J.; Umbelino, B.; Correia, R.A.; Campos-Silva, J.V.; Ladle, R.J.; Malhado, A.C.M. The Ghosts of Forests Past and Future: Deforestation and Botanical Sampling in the Brazilian Amazon. Ecography 2020, 43, 979–989. [Google Scholar] [CrossRef] [Green Version]
- MMA—Ministério do Meio Ambiente. Mapa de Vegetação Nativa Na Área de Aplicação Da Lei No. 11.428/2006—Lei Da Mata Atlântica (Ano Base 2009); Ministério do Meio Ambiente, Secretaria de Bidiversidade e Florestas: Brasília, Brazil, 2015.
- Soares-Filho, B.; Moutinho, P.; Nepstad, D.; Anderson, A.; Rodrigues, H.; Garcia, R.; Dietzsch, L.; Merry, F.; Bowman, M.; Hissa, L.; et al. Role of Brazilian Amazon Protected Areas in Climate Change Mitigation. Proc. Natl. Acad. Sci. USA 2010, 107, 10821–10826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; Seroa da Motta, R.; et al. Slowing Amazon Deforestation through Public Policy and Interventions in Beef and Soy Supply Chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Munger, J.; L’Roe, J.; Barreto, P.; Pereira, R.; Christie, M.; Amaral, T.; Walker, N.F. Did Ranchers and Slaughterhouses Respond to Zero-Deforestation Agreements in the Brazilian Amazon? Conserv. Lett. 2016, 9, 32–42. [Google Scholar] [CrossRef]
- Carvalho, R.; Adami, M.; Amaral, S.; Bezerra, F.G.; de Aguiar, A.P.D. Changes in Secondary Vegetation Dynamics in a Context of Decreasing Deforestation Rates in Pará, Brazilian Amazon. Appl. Geogr. 2019, 106, 40–49. [Google Scholar] [CrossRef]
- Azevedo Junior, W.C.; Rodrigues, M.; Silva, D.C.C. Does Agricultural Efficiency Contribute to Slowdown of Deforestation in the Brazilian Legal Amazon? J. Nat. Conserv. 2022, 65, 126092. [Google Scholar] [CrossRef]
- Tollefson, J. Brazil’s Presidential Election Could Savage Its Science. Nature 2018, 562, 171–173. [Google Scholar] [CrossRef] [Green Version]
- Abessa, D.; Famá, A.; Buruaem, L. The Systematic Dismantling of Brazilian Environmental Laws Risks Losses on All Fronts. Nat. Ecol. Evol. 2019, 3, 510–511. [Google Scholar] [CrossRef]
- Rajão, R.; Soares-Filho, B.; Nunes, F.; Börner, J.; Machado, L.; Assis, D.; Oliveira, A.; Pinto, L.; Ribeiro, V.; Rausch, L.; et al. The Rotten Apples of Brazil’s Agribusiness. Science 2020, 369, 246–248. [Google Scholar] [CrossRef]
- Fearnside, P.M. Retrocessos Sob o Presidente Bolsonaro: Um Desafio à Sustentabilidade Na Amazônia. Sustentabilidade Int. Sci. J. 2019, 1, 38–52. [Google Scholar]
- Araújo, R.; Vieira, I. Desmatamento e as Ideologias Da Expansão Da Fronteira Agrícola: O Caso Das Críticas Ao Sistema de Monitoramento Da Floresta Amazônica. Sustain. Debate 2019, 10, 366–378. [Google Scholar]
- Amaral, D.F.; de Souza Ferreira Filho, J.B.; Chagas, A.L.S.; Adami, M. Expansion of Soybean Farming into Deforested Areas in the Amazon Biome: The Role and Impact of the Soy Moratorium. Sustain. Sci. 2021, 16, 1295–1312. [Google Scholar] [CrossRef]
- Schielein, J.; Ponzoni Frey, G.; Miranda, J.; de Souza, R.A.; Boerner, J.; Henderson, J. The Role of Accessibility for Land Use and Land Cover Change in the Brazilian Amazon. Appl. Geogr. 2021, 132, 102419. [Google Scholar] [CrossRef]
- McArthur, J.W.; McCord, G.C. Fertilizing Growth: Agricultural Inputs and Their Effects in Economic Development. J. Dev. Econ. 2017, 127, 133–152. [Google Scholar] [CrossRef]
- Richards, P.D.; Walker, R.T.; Arima, E.Y. Spatially Complex Land Change: The Indirect Effect of Brazil’s Agricultural Sector on Land Use in Amazonia. Glob. Environ. Chang. 2014, 29, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Garrett, R.D.; Gardner, T.A.; Morello, T.F.; Marchand, S.; Barlow, J.; de Blas, D.E.; Ferreira, J.; Lees, A.C.; Parry, L. Explaining the Persistence of Low Income and Environmentally Degrading Land Uses in the Brazilian Amazon. Ecol. Soc. 2017, 22, 27. [Google Scholar] [CrossRef]
- Barbosa, F.A.; Soares Filho, B.S.; Merry, F.D.; Azevedo, H.D.O.; Costa, W.L.S.; Coe, M.T.; Batista, E.D.S.; Maciel, T.; Sheepers, L.; de Oliveira, A.; et al. Cenários Para a Pecuária de Corte Amazônica; Universidade Federal de Minas Gerais: Belo Horizonte, Brazil, 2015; p. 146. [Google Scholar]
- Cortner, O.; Garrett, R.D.; Valentim, J.F.; Ferreira, J.; Niles, M.T.; Reis, J.; Gil, J. Perceptions of Integrated Crop-Livestock Systems for Sustainable Intensification in the Brazilian Amazon. Land Use Policy 2019, 82, 841–853. [Google Scholar] [CrossRef]
- Rada, N.; Helfand, S.; Magalhães, M. Agricultural Productivity Growth in Brazil: Large and Small Farms Excel. Food Policy 2019, 84, 176–185. [Google Scholar] [CrossRef]
- Garrett, R.D.; Cammelli, F.; Ferreira, J.; Levy, S.A.; Valentim, J.; Vieira, I. Forests and Sustainable Development in the Brazilian Amazon: History, Trends, and Future Prospects. Annu. Rev. Environ. Resour. 2021, 46, 625–652. [Google Scholar] [CrossRef]
- Merry, F.; Soares-Filho, B. Will Intensification of Beef Production Deliver Conservation Outcomes in the Brazilian Amazon? Elem. Sci. Anthr. 2017, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.M.G.; Soares-Filho, B.S.; Freitas, S.R.; Metzger, J.P. Modeling Landscape Dynamics in an Atlantic Rainforest Region: Implications for Conservation. For. Ecol. Manag. 2009, 257, 1219–1230. [Google Scholar] [CrossRef]
- Bernard, E.; Melo, F.P.L.; Pinto, S.R.R. Desafios e Oportunidades Para a Conservação Da Biodiversidade Na Mata Atlântica Frente à Expansão Do Bioetanol. Trop. Conserv. Sci. 2011, 4, 267–275. [Google Scholar] [CrossRef]
- Pádua, J.A. A Mata Atlântica e a Floresta Amazônica na construção do território brasileiro: Estabelecendo um marco de análise. Rev. História Reg. 2015, 20, 16. [Google Scholar] [CrossRef] [Green Version]
- Britto, F.R.A.; de Oliveira, A.M.H.C.; Caetano, A.J. A Ocupação Do Território e a Devastação Da Mata Atlântica. In Biodiversidade, População e Economia: Uma Região de Mata Atlântica [Biodiversity, Population and Economy: A Region of Atlantic Forest]; Cedeplar, Universidade Federal de Minas Gerais: Belo Horizonte, Brazil, 1997; pp. 49–89. [Google Scholar]
- Da Silva, R.F.B.; Batistella, M.; Moran, E.F. Socioeconomic Changes and Environmental Policies as Dimensions of Regional Land Transitions in the Atlantic Forest, Brazil. Environ. Sci. Policy 2017, 74, 14–22. [Google Scholar] [CrossRef]
- Silva, R.F.B.; Batistella, M.; Moran, E.F.; Lu, D. Land Changes Fostering Atlantic Forest Transition in Brazil: Evidence from the Paraíba Valley. Prof. Geogr. 2017, 69, 80–93. [Google Scholar] [CrossRef]
- Brasil. Decreto No 750, de 10 de Fevereiro de 1993—Dispõe Sobre o Corte, a Exploração e a Supressão de Vegetação Primária Ou Nos Estágios Avançado e Médio de Regeneração Da Mata Atlântica. 1993. Available online: http://www.planalto.gov.br/ccivil_03/decreto/1990-1994/d750.htm (accessed on 26 January 2022).
- Brasil. Lei No 11.428, de 22 de Dezembro de 2006—Lei Da Mata Atlântica. 2006. Available online: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/lei/l11428.htm (accessed on 26 January 2022).
- Rodrigues, R.R.; Padovezi, A.; Farah, F.T.; Garcia, L.C.; Sanglade, L.C.; Brancalion, P.H.S.; Chaves, R.B.; Viani, R.A.G.; Barreto, T.E. Pacto Pela Restauração Da Mata Atlântica—Protocolo de Monitoramento Para Programas e Projetos de Restauração Florestal. 2013. Available online: https://pactomataatlantica.org.br/wp-content/uploads/2021/05/protocolo-de-monitoramento-pt.pdf (accessed on 26 January 2022).
- Faria, V.G.; de Mello, K.; Pinto, L.F.G.; Brites, A.; Tavares, P.A.; Fernandes, R.B.; Chamma, A.L.S.; Fransozi, A.A.; del Giudice, R.; Rosa, M.; et al. O Código Florestal Na Mata Atlântica. Sustain. Debate 2021. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, L.R.; Silva, C.F.D.; Pereira, M.G.; Gaia-Gomes, J.H.; Silva, E.M.R.D. Biological Properties and Organic Matter Dynamics of Soil in Pasture and Natural Regeneration Areas in the Atlantic Forest Biome. Rev. Bras. Ciênc. Solo 2016, 40. [Google Scholar] [CrossRef] [Green Version]
- Bertossi, A.P.A.; Da Rocha Junior, P.R.; Ribeiro, P.H.; Menezes, J.P.C.D.; Cecílio, R.A.; Andrade, F.V. Soil Cover and Chemical and Physical Attributes in Oxisol in the Atlantic Forest Biome. Rev. Árvore 2016, 40, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Da Rocha Junior, P.R.; Andrade, F.V.; de Sá Mendonça, E.; Donagemma, G.K.; Fernandes, R.B.A.; Bhattharai, R.; Kalita, P.K. Soil, Water, and Nutrient Losses from Management Alternatives for Degraded Pasture in Brazilian Atlantic Rainforest Biome. Sci. Total Environ. 2017, 583, 53–63. [Google Scholar] [CrossRef]
- Queiroz, L.D.S.; Barrichelo, L. A Celulose de Eucalipto: Uma Oportunidade Brasileira; Avis Brasilis Editora: Vinhedo, Brazil, 2008. [Google Scholar]
- Da Silva, R.F.B.; Batistella, M.; Moran, E.F. Drivers of Land Change: Human-Environment Interactions and the Atlantic Forest Transition in the Paraíba Valley, Brazil. Land Use Policy 2016, 58, 133–144. [Google Scholar] [CrossRef]
- Embrapa ILPF. Biomas Mata Atlântica—Portal Embrapa. Available online: https://www.embrapa.br/web/rede-ilpf/bioma/mata-atlantica#this (accessed on 26 January 2022).
- Brannstrom, C. Conservation-with-Development Models in Brazil’s Agro-Pastoral Landscapes. World Dev. 2001, 29, 1345–1359. [Google Scholar] [CrossRef]
- Silva, A.L.; Salas Alves, D.; Pinheiro Ferreira, M. Landsat-Based Land Use Change Assessment in the Brazilian Atlantic Forest: Forest Transition and Sugarcane Expansion. Remote Sens. 2018, 10, 996. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.P.; Alves, D.S.; Shimabukuro, Y.E. Forest Dynamics and Land-Use Transitions in the Brazilian Atlantic Forest: The Case of Sugarcane Expansion. Reg. Environ. Chang. 2015, 15, 365–377. [Google Scholar] [CrossRef]
- Alkimim, A.; Clarke, K.C. Land Use Change and the Carbon Debt for Sugarcane Ethanol Production in Brazil. Land Use Policy 2018, 72, 65–73. [Google Scholar] [CrossRef] [Green Version]
- IBGE—Instituto Brasileiro de Geografia e Estatística. A Geografia Da Cana-de-Açúcar, Dinâmica Territorial Da Produção Agropecuária; IBGE: Rio de Janeiro, Brazil, 2017; ISBN 978-85-240-4443-4.
- Crouzeilles, R.; Santiami, E.; Rosa, M.; Pugliese, L.; Brancalion, P.H.S.; Rodrigues, R.R.; Metzger, J.P.; Calmon, M.; Scaramuzza, C.A.D.M.; Matsumoto, M.H.; et al. There Is Hope for Achieving Ambitious Atlantic Forest Restoration Commitments. Perspect. Ecol. Conserv. 2019, 17, 80–83. [Google Scholar] [CrossRef]
- Lapola, D.M.; Martinelli, L.A.; Peres, C.A.; Ometto, J.P.H.B.; Ferreira, M.E.; Nobre, C.A.; Aguiar, A.P.D.; Bustamante, M.M.C.; Cardoso, M.F.; Costa, M.H.; et al. Pervasive Transition of the Brazilian Land-Use System. Nat. Clim. Chang. 2014, 4, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Kaimowitz, D.; Angelsen, A. Will Livestock Intensification Help Save Latin America’s Tropical Forests? J. Sustain. For. 2008, 27, 6–24. [Google Scholar] [CrossRef]
- Garcia, E.; Ramos Filho, F.S.V.; Mallmann, G.M.; Fonseca, F. Costs, Benefits and Challenges of Sustainable Livestock Intensification in a Major Deforestation Frontier in the Brazilian Amazon. Sustainability 2017, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Von Thünen, J.H. Thunen’s Isolated State: An English Edition of Der Isolierte Staat; Hall, P., Ed.; Pergamon Press: Oxford, UK, 1826. [Google Scholar]
- Barretto, A.G.O.P.; Berndes, G.; Sparovek, G.; Wirsenius, S. Agricultural Intensification in Brazil and Its Effects on Land-Use Patterns: An Analysis of the 1975–2006 Period. Glob. Chang. Biol. 2013, 19, 1804–1815. [Google Scholar] [CrossRef]
- Villoria, N.B.; Byerlee, D.; Stevenson, J. The Effects of Agricultural Technological Progress on Deforestation: What Do We Really Know? Appl. Econ. Perspect. Policy 2014, 36, 211–237. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalhães, C.A.S.; Pedreira, B.C.; Tonini, H.; Farias Neto, A.L. Crop, Livestock and Forestry Performance Assessment under Different Production Systems in the North of Mato Grosso, Brazil. Agrofor. Syst. 2019, 93, 2085–2096. [Google Scholar] [CrossRef]
- Vilela, L.; Martha Junior, G.B.; Macedo, M.C.M.; Marchão, R.L.; Guimarães Júnior, R.; Pulrolnik, K.; Maciel, G.A. Sistemas de integração lavoura-pecuária na região do Cerrado. Pesqui. Agropecu. Bras. 2011, 46, 1127–1138. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef] [PubMed]
- Rovere, E.L.L.; Wills, W.; Grottera, C.; Dubeux, C.B.S.; Gesteira, C. Economic and Social Implications of Low-Emission Development Pathways in Brazil. Carbon Manag. 2018, 9, 563–574. [Google Scholar] [CrossRef]
- Balbino, L.C.; Barcellos, A.D.O.; Stone, L.F. Marco Referencial: Integração Lavoura-Pecuária-Floresta = Reference Document Crop-Livestock-Forestry Integration, 1st ed.; Embrapa: Brasília, Brazil, 2011. [Google Scholar]
- Lemaire, G.; Franzluebbers, A.; de Faccio Carvalho, P.C.; Dedieu, B. Integrated Crop–Livestock Systems: Strategies to Achieve Synergy between Agricultural Production and Environmental Quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Xavier, D.F.; da Silva Lédo, F.J.; Paciullo, D.S.; Urquiaga, S.; Alves, B.J.R.; Boddey, R.M. Nitrogen Cycling in a Brachiaria-Based Silvopastoral System in the Atlantic Forest Region of Minas Gerais, Brazil. Nutr. Cycl. Agroecosyst. 2014, 99, 45–62. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Chappell, J.C.; Shi, W.; Cubbage, F.W. Greenhouse Gas Emissions in an Agroforestry System of the Southeastern USA. Nutr. Cycl. Agroecosyst. 2017, 108, 85–100. [Google Scholar] [CrossRef]
- Moraes, A.; de Faccio Carvalho, P.C.; Anghinoni, I.; Lustosa, S.B.C.; de Andrade, S.E.V.G.; Kunrath, T.R. Integrated Crop–Livestock Systems in the Brazilian Subtropics. Eur. J. Agron. 2014, 57, 4–9. [Google Scholar] [CrossRef]
- Borges, W.L.B.; Calonego, J.C.; Rosolem, C.A. Impact of Crop-Livestock-Forest Integration on Soil Quality. Agrofor. Syst. 2019, 93, 2111–2119. [Google Scholar] [CrossRef]
- Domiciano, L.F.; Mombach, M.A.; Carvalho, P.; da Silva, N.M.F.; Pereira, D.H.; Cabral, L.S.; Lopes, L.B.; Pedreira, B.C. Performance and Behaviour of Nellore Steers on Integrated Systems. Anim. Prod. Sci. 2018, 58, 920–929. [Google Scholar] [CrossRef]
- Baliscei, M.A.; Barbosa, O.R.; Souza, W.D.; Costa, M.A.T.; Krutzmann, A.; Queiroz, E.D.O. Microclimate without Shade and Silvopastoral System during Summer and Winter. Acta Sci. Anim. Sci. 2013, 35, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.A.; Paciullo, D.S.C.; Morenz, M.J.F.; Gomide, C.A.M.; Rodrigues, R.A.R.; Chizzotti, F.H.M. Productivity and Nutritive Value of Brachiaria Decumbens and Performance of Dairy Heifers in a Long-Term Silvopastoral System. Grass Forage Sci. 2019, 74, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Paciullo, D.S.C.; de Castro, C.R.T.; de Miranda Gomide, C.A.; Maurício, R.M.; Pires, M.D.F.Á.; Müller, M.D.; Xavier, D.F. Performance of Dairy Heifers in a Silvopastoral System. Livest. Sci. 2011, 141, 166–172. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, P.; Domiciano, L.F.; Mombach, M.A.; do Nascimento, H.L.B.; Cabral, L.D.S.; Sollenberger, L.E.; Pereira, D.H.; Pedreira, B.C. Forage and Animal Production on Palisadegrass Pastures Growing in Monoculture or as a Component of Integrated Crop–Livestock–Forestry Systems. Grass Forage Sci. 2019, 74, 650–660. [Google Scholar] [CrossRef]
- Oliveira Resende, L.; Müller, M.D.; Kohmann, M.M.; Pinto, L.F.G.; Junior, L.C.; de Zen, S.; Rego, L.F.G. Silvopastoral Management of Beef Cattle Production for Neutralizing the Environmental Impact of Enteric Methane Emission. Agrofor. Syst. 2020, 94, 893–903. [Google Scholar] [CrossRef]
- Kim, D.-G.; Kirschbaum, M.U.F.; Beedy, T.L. Carbon Sequestration and Net Emissions of CH4 and N2O under Agroforestry: Synthesizing Available Data and Suggestions for Future Studies. Agric. Ecosyst. Environ. 2016, 226, 65–78. [Google Scholar] [CrossRef]
- Reis, J.C.; Rodrigues, G.S.; de Barros, I.; Rodrigues, R.D.A.R.; Garrett, R.D.; Valentim, J.F.; Kamoi, M.Y.T.; Michetti, M.; Wruck, F.J.; Rodrigues-Filho, S.; et al. Integrated Crop-Livestock Systems: A Sustainable Land-Use Alternative for Food Production in the Brazilian Cerrado and Amazon. J. Clean. Prod. 2021, 283, 124580. [Google Scholar] [CrossRef]
- Martínez, G.B.; Botelho, F.J.E.; Bendahan, A.B.; De Moraes, A.J.G.; Silva, A.R.; Godinho, V.P.C.; Medeiros, R.D.; Oliveira, T.K.; Franke, I.L.; Perin, R.; et al. Sistemas ILPF e Transferência de Tecnologia Nos Estados Do Acre, Amazonas, Amapá, Pará, Rondônia e Roraima. In Sistemas de Integração Lavoura-Pecuária-Floresta no Brasil—Estratégias Regionais de Transferência de Tecnologia, Avaliação da Adoção e de Impactos; Skorupa, L.A., Manzatto, C.V., Eds.; Chapter 2; Embrapa: Brasília, Brazil, 2019. [Google Scholar]
- Sagastuy, M.; Krause, T. Agroforestry as a Biodiversity Conservation Tool in the Atlantic Forest? Motivations and Limitations for Small-Scale Farmers to Implement Agroforestry Systems in North-Eastern Brazil. Sustainability 2019, 11, 6932. [Google Scholar] [CrossRef] [Green Version]
- Santana, D.P.; Noce, M.A.; Borghi, E.; Alvarenga, R.C.; Neto, A.R.; Muller, M.D.; Martins, C.E.; Bernardo, W.F.; Viana, M.C.M.; Pires, J.A.A.; et al. Sistemas ILPF e Transferência de Tecnologia Nos Estados de Minas Gerais, Espírito Santo e Rio de Janeiro. In Sistemas de Integração Lavoura-Pecuária-Floresta no Brasil—Estratégias Regionais de Transferência de Tecnologia, Avaliação da Adoção e de Impactos; Skorupa, L.A., Manzatto, C.V., Eds.; Chapter 6; Embrapa: Brasília, Brazil, 2019. [Google Scholar]
- Castro, C.A.D.O.; Resende, R.T.; Bhering, L.L.; Cruz, C.D. Brief History of Eucalyptus Breeding in Brazil under Perspective of Biometric Advances. Ciênc. Rural 2016, 46, 1585–1593. [Google Scholar] [CrossRef] [Green Version]
- De Figueiredo, E.B.; Jayasundara, S.; de Oliveira Bordonal, R.; Berchielli, T.T.; Reis, R.A.; Wagner-Riddle, C.; La Scala, N., Jr. Greenhouse Gas Balance and Carbon Footprint of Beef Cattle in Three Contrasting Pasture-Management Systems in Brazil. J. Clean. Prod. 2017, 142, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Maia, A.G.; dos Santos Eusebio, G.; Fasiaben, M.D.C.R.; Moraes, A.S.; Assad, E.D.; Pugliero, V.S. The Economic Impacts of the Diffusion of Agroforestry in Brazil. Land Use Policy 2021, 108, 105489. [Google Scholar] [CrossRef]
- Brasil. Plano Amazônia Sustentável: Diretrizes Para o Desenvolvimento Sustentável Da Amazônia Brasileira; Ministério do Meio Ambiente: Secretaria de Políticas de Desenvolvimento Regional. 2008. Available online: http://www.fundoamazonia.gov.br/export/sites/default/pt/.galleries/documentos/biblioteca/PAS-Presidencia-Republica.pdf (accessed on 26 January 2022).
- Brasil. Decreto No 6.290, de 6 de Dezembro de 2007—Institui o Plano de Desenvolvimento Regional Sustentável Para a Área de Influência Da Rodovia BR-163 No Trecho Cuiabá/MT—Santarém/PA—Plano BR-163 Sustentável, e Dá Outras Providências. 2007. Available online: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2007/decreto/d6290.htm (accessed on 18 January 2022).
- Brasil. Lei No 11.284, de 2 de Março de 2006—Gestão de Florestas Públicas Para a Produção Sustentável. 2006. Available online: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/lei/l11284.htm (accessed on 18 January 2022).
- Brasil. Decreto No 8.505, de 20 de Agorsto de 2015—Dispõe Sobre o Programa Áreas Protegidas Da Amazônia, Instituído No Âmbito Do Ministério Do Meio Ambiente. 2015. Available online: http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2015/decreto/d8505.htm. (accessed on 18 January 2022).
- Brasil. Resolução no 3 de 9 de Abril de 2021—Plano Amazônia 2021/2022. 2021. Available online: https://www.in.gov.br/web/dou (accessed on 10 January 2022).
- Brasil. Projeto Biodiversidade e Mudanças Climáticas na Mata Atlântica. Available online: https://antigo.mma.gov.br/areas-protegidas/programas-e-projetos/projeto-mata-atl%C3%A2ntica.html (accessed on 26 January 2022).
- Brasil. Lei No 12.187, de 29 de Dezembro de 2009. Política Nacional Sobre Mudança do Clima. 2009. Available online: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/lei/l12187.htmhttp://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/lei/l12187.htm (accessed on 26 January 2022).
- Brasil. Lei No 12.805, de 29 de Abril de 2013. Institui a Política Nacional de Integração. Lavoura-Pecuária-Floresta e Altera a Lei No 8.171, de 17 de Janeiro de 1991. 2013. Available online: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2013/lei/l12805.htm (accessed on 13 January 2022).
- Brasil. Plano Setorial de Mitigação e de Adaptação Às Mudanças Climáticas Para a Consolidação de Uma Economia de Baixa Emissão de Carbono Na Agricultura, 1st ed.; Ministério da Agricultura, Pecuária e Abastecimento, Ministério do Desenvolvimento Agrário, Coordenação da Casa Civil da Presidência da República—Brasília: MAPA/ACS: Brasília, Brasil, 2012; ISBN 978-85-7991-062-0.
- Polidoro, J.C.; de Freitas, P.L.; Hernani, L.C.; Anjos, L.H.C.D.; Rodrigues, R.D.A.R.; Cesário, F.V.; Andrade, A.G.D.; Ribeiro, J.L. Potential Impact of Plans and Policies Based on the Principles of Conservation Agriculture on the Control of Soil Erosion in Brazil. Land Degrad. Dev. 2021, 32, 3457–3468. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Tabela 1112—Número de Estabelecimentos Agropecuários e Área Dos Estabelecimentos Por Utilização Das Terras e Agricultura Familiar. Available online: https://sidra.ibge.gov.br/tabela/1112#notas-tabela (accessed on 10 January 2022).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Tabela 6881—Número de Estabelecimentos Agropecuários Com Área e Área Dos Estabelecimentos Agropecuários, Por Tipologia, Utilização Das Terras, Condição Do Produtor Em Relação Às Terras, Grupos de Atividade Econômica e Origem Da Orientação Técnica Recebida. Available online: https://sidra.ibge.gov.br/tabela/6881 (accessed on 10 January 2022).
- Dos Santos Eusébio, G.; Maia, A.G.; da Silveira, R.L.F. CRÉDITO RURAL E IMPACTO SOBRE O VALOR DA PRODUÇÃO AGROPECUÁRIA: Uma análise para agricultores não familiares. Gest. Reg. 2020, 36. [Google Scholar] [CrossRef]
- Urruth, L.M.; Bassi, J.B.; Chemello, D. Policies to Encourage Agroforestry in the Southern Atlantic Forest. Land Use Policy 2022, 112, 105802. [Google Scholar] [CrossRef]
- Zu Ermgassen, E.K.H.J.; Alcântara, M.P.D.; Balmford, A.; Barioni, L.; Neto, F.B.; Bettarello, M.M.F.; Brito, G.D.; Carrero, G.C.; Florence, E.D.A.S.; Garcia, E.; et al. Results from On-The-Ground Efforts to Promote Sustainable Cattle Ranching in the Brazilian Amazon. Sustainability 2018, 10, 1301. [Google Scholar] [CrossRef] [Green Version]
- Carrer, M.J.; Maia, A.G.; de Mello Brandão Vinholis, M.; de Souza Filho, H.M. Assessing the Effectiveness of Rural Credit Policy on the Adoption of Integrated Crop-Livestock Systems in Brazil. Land Use Policy 2020, 92, 104468. [Google Scholar] [CrossRef]
- Dill, M.D.; Emvalomatis, G.; Saatkamp, H.; Rossi, J.A.; Pereira, G.R.; Barcellos, J.O.J. Factors Affecting Adoption of Economic Management Practices in Beef Cattle Production in Rio Grande Do Sul State, Brazil. J. Rural Stud. 2015, 42, 21–28. [Google Scholar] [CrossRef]
- Kay, R.D.; Edwards, W.M.; Duffy, P.A. Gestão de Propriedades Rurais, 7th ed.; AMGH: Porto Alegre, Brazil, 2014; ISBN 978-85-8055-395-6. [Google Scholar]
- Tavernier, E.M.; Onyango, B.M. Utilization of Farm Management Risk Strategies at the Rural/Urban Fringe. Afr. J. Agric. Res. 2008, 3, 554–565. [Google Scholar] [CrossRef]
- Skorupa, L.A.; Manzatto, C.V. Avaliação da Adoção de Sistemas de Integração Lavoura-Pecuária-Floresta (ILPF) no Brasil. In Sistemas de Integração Lavoura-Pecuária-Floresta no Brasil: Estratégias Regionais de Transferência de Tecnologia, Avaliação da Adoção e de Impactos; Embrapa: Brasília, Brazil, 2019. [Google Scholar]
- Lopes, D.; Lowery, S. Rural Credit in Brazil: Challenges and Opportunities for Promoting Sustainable Agriculture; 2015. Available online: https://www.forest-trends.org/wp-content/uploads/imported/ft-mapping-rural-credit-in-brazil_v19_final-rev-pdf.pdf (accessed on 13 January 2022).
- Observatório ABC. Desafios e Restrições Dos Produtores Rurais Na Adoção de Tecnologias de Baixo Carbono ABC; 2017. Available online: http://observatorioabc.com.br/wp-content/uploads/2017/05/Sumario_ABC_AltaFloresta_-1.pdf (accessed on 13 January 2022).
- Pereira, E.J.D.A.L.; de Santana Ribeiro, L.C.; da Silva Freitas, L.F.; de Barros Pereira, H.B. Brazilian Policy and Agribusiness Damage the Amazon Rainforest. Land Use Policy 2020, 92, 104491. [Google Scholar] [CrossRef]
- Strassburg, B.B.N. Conservation Provides Multiple Wins for Brazil. Nat. Ecol. Evol. 2019, 3, 508–509. [Google Scholar] [CrossRef] [PubMed]
Land Use and Land Cover | 1985 | 2020 | Land Use Change (Mha) | ||
---|---|---|---|---|---|
Area (Mha) | Territorial Proportion (%) | Area (Mha) | Territorial Proportion (%) | ||
1. Native forest | 374.57 | 89.02% | 330.03 | 78.44% | −44.53 |
2. Pasture | 18.54 | 4.41% | 56.65 | 13.46% | 38.10 |
3. Agriculture | 0.08 | 0.02% | 6.13 | 1.46% | 6.06 |
4. Forest plantation | 0.003 | 0.001% | 0.27 | 0.063% | 0.26 |
6. Other land use | 27.58 | 6.55% | 27.69 | 6.58% | 0.11 |
Total | 420.77 | 100.00% | 420.77 | 100.00% |
Land Use and Land Cover | 1985 | 2020 | Land Use Change (Mha) | ||
---|---|---|---|---|---|
Area (Mha) | Territorial Proportion (%) | Area (Mha) | Territorial Proportion (%) | ||
1. Native forest | 32.91 | 29.74% | 31.92 | 28.84% | −0.99 |
2. Pasture | 39.99 | 36.14% | 28.46 | 25.72% | −11.53 |
3. Agriculture | 10.71 | 9.68% | 18.78 | 16.97% | 8.06 |
4. Forest plantation | 0.85 | 0.77% | 3.84 | 3.47% | 2.99 |
5. Mosaic of Agriculture and Pasture | 19.26 | 17.40% | 20.14 | 18.20% | 0.89 |
6. Other land uses | 6.95 | 6.28% | 7.53 | 6.80% | 0.58 |
Total | 110.66 | 100.00% | 110.66 | 100.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, J.G.d.; Oliveira Neto, S.N.d.; Canto, A.C.B.d.; Leite, F.F.G.D.; Cordeiro, F.R.; Assad, L.T.; Silva, G.C.C.; Marques, R.d.O.; Dalarme, M.S.L.; Ferreira, I.G.M.; et al. Land Use, Land Cover Change and Sustainable Intensification of Agriculture and Livestock in the Amazon and the Atlantic Forest in Brazil. Sustainability 2022, 14, 2563. https://doi.org/10.3390/su14052563
Silveira JGd, Oliveira Neto SNd, Canto ACBd, Leite FFGD, Cordeiro FR, Assad LT, Silva GCC, Marques RdO, Dalarme MSL, Ferreira IGM, et al. Land Use, Land Cover Change and Sustainable Intensification of Agriculture and Livestock in the Amazon and the Atlantic Forest in Brazil. Sustainability. 2022; 14(5):2563. https://doi.org/10.3390/su14052563
Chicago/Turabian StyleSilveira, Júlia Graziela da, Sílvio Nolasco de Oliveira Neto, Ana Carolina Barbosa do Canto, Fernanda Figueiredo Granja Dorilêo Leite, Fernanda Reis Cordeiro, Luís Tadeu Assad, Gabriela Cristina Costa Silva, Renato de Oliveira Marques, Melissa Silva Leme Dalarme, Isabel Gouvea Maurício Ferreira, and et al. 2022. "Land Use, Land Cover Change and Sustainable Intensification of Agriculture and Livestock in the Amazon and the Atlantic Forest in Brazil" Sustainability 14, no. 5: 2563. https://doi.org/10.3390/su14052563
APA StyleSilveira, J. G. d., Oliveira Neto, S. N. d., Canto, A. C. B. d., Leite, F. F. G. D., Cordeiro, F. R., Assad, L. T., Silva, G. C. C., Marques, R. d. O., Dalarme, M. S. L., Ferreira, I. G. M., Conceição, M. C. G. d., & Rodrigues, R. d. A. R. (2022). Land Use, Land Cover Change and Sustainable Intensification of Agriculture and Livestock in the Amazon and the Atlantic Forest in Brazil. Sustainability, 14(5), 2563. https://doi.org/10.3390/su14052563