Temporal and Spatial Analysis of Coastal Water Quality to Support Application of Whiteleg Shrimp Litopenaeus vannamei Intensive Pond Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site and Time
2.2. Data Collection
2.3. Sample Analysis
2.4. Data Analysis
3. Results
3.1. Whiteleg Shrimp Culture Performance
3.2. Water Quality Characteristics
3.3. Water Quality Status
4. Discussion
4.1. Whiteleg Shrimp Culture Performance
4.2. Water Quality Characteristics
4.3. Water Quality Status
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnard, P.L.; Erikson, L.H.; Foxgrover, A.C.; Hart, J.A.F.; Limber, P.; O’Neill, A.C.; Van Ormondt, M.; Vitousek, S.; Wood, N.; Hayden, M.K.; et al. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 2019, 9, 4309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortés, A.; Casillas-Hernández, R.; Cambeses-Franco, C.; Bórquez-López, R.; Magallón-Barajas, F.; Quadros-Seiffert, W.; Feijoo, G.; Moreira, M.T. Eco-efficiency assessment of shrimp aquaculture production in Mexico. Aquaculture 2021, 544, 737145. [Google Scholar] [CrossRef]
- Bongarts Lebbe, T.; Rey-Valette, H.; Chaumillon, É.; Camus, G.; Almar, R.; Cazenave, A.; Claudet, J.; Rocle, N.; Meur-Férec, C.; Viard, F.; et al. Designing coastal adaptation strategies to tackle sea level rise. Front. Mar. Sci. 2021, 8, 1640. [Google Scholar] [CrossRef]
- Cabral, H.; Fonseca, V.; Sousa, T.; Leal, M.C. Synergistic effects of climate change and marine pollution: An overlooked interaction in coastal and estuarine areas. Int. J. Environ. Res. Public Health 2019, 16, 2737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, A.; Hasnawi, H.; Tarunamulia, T.; Selamat, M.B.; Samawi, M.F. Distribution of heavy metal pollutants in coastal waters used to supply nearby shrimp ponds and their mitigation in Jabon District, East Java Province. J. Ris. Akuakultur 2019, 14, 127–138. (In Indonesian) [Google Scholar] [CrossRef]
- Thushari, G.; Senevirathna, J. Plastic pollution in the marine environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef]
- De Melo, F.P.; Ferreira, M.G.P.; Braga, Í.F.M.; Correia, E.d.S. Toxicity of nitrite on shrimp Litopenaeus vannamei reared in clear water and biofloc systems. B. Inst. Pesca 2018, 42, 855–865. [Google Scholar]
- Gusmawati, N.; Soulard, B.; Selmaoui-Folcher, N.; Proisy, C.; Mustafa, A.; Le Gendre, R.; Laugier, T.; Lemonnier, H. Surveying shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study from the Perancak estuary, Bali, Indonesia. Mar. Pollut. Bull. 2018, 131, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Marzuki, I.; Bachtiar, E.; Alwi, R.S.; Kamaruddin, M.; Iryani, A.S. Chitosan Performance of Shrimp Shells in The Biosorption Ion Metal of Cadmium, Lead and Nickel Based on Variations Ph Interaction; Atlantis Press: Amsterdam, The Netherlands, 2019; Volume 165, pp. 6–11. [Google Scholar]
- Syah, R.; Makmur, M.; Fahrur, M. Budidaya Udang Vaname Dengan Padat Penebaran Tinggi. Media Akuakultur. 2017, 12, 19–26. (In Indonesian) [Google Scholar] [CrossRef] [Green Version]
- Syah, R.; Makmur, M.; Undu, M.C. Estimation of feed nutrient waste load and carrying capacity of coastal areas for super-intensive vaname shrimp ponds. J. Ris. Akuakultur 2014, 9, 439–448. (In Indonesian) [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.A.T.; Jolly, C. Is super-intensification the solution to shrimp production and export sustainability? Sustainability 2019, 11, 5277. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.A.T.; Nguyen, T.A.T.; Jolly, C.; Nguelifack, B.M. Economic Efficiency of extensive and intensive shrimp production under conditions of disease and natural disaster risks in Khánh Hòa and Trà Vinh provinces, Vietnam. Sustainability 2020, 12, 2140. [Google Scholar] [CrossRef] [Green Version]
- Marzuki, I.; Kamaruddin, M.; Ahmad, R. Identification of marine sponges-symbiotic bacteria and their application in degrading polycyclic aromatic hydrocarbons. Biodiversitas J. Biol. Divers. 2021, 22, 1481–1488. [Google Scholar] [CrossRef]
- Engle, C.R.; McNevin, A.; Racine, P.; Boyd, C.E.; Paungkaew, D.; Viriyatum, R.; Tinh, H.Q.; Minh, H.N. Economics of sustainable intensification of aquaculture: Evidence from shrimp farms in Vietnam and Thailand. J. World Aquac. Soc. 2017, 48, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Paul, B.G.; Vogl, C.R. Key performance characteristics of organic shrimp aquaculture in Southwest Bangladesh. Sustainability 2012, 4, 995–1012. [Google Scholar] [CrossRef] [Green Version]
- Bui, T.D.; Luong-Van, J.; Austin, C.M. Impact of shrimp farm effluent on water quality in coastal areas of the world Heritage-Listed Ha Long Bay. Am. J. Environ. Sci. 2012, 8, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Chaikaew, P.; Rugkarn, N.; Pongpipatwattana, V.; Kanokkantapong, V. Enhancing ecological-economic efficiency of intensive shrimp farm through in-out nutrient budget and feed conversion ratio. Sustain. Environ. Res. 2019, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Iber, B.T.; Kasan, N.A. Recent advances in Shrimp aquaculture wastewater management. Heliyon 2021, 7, 9. [Google Scholar] [CrossRef]
- Avnimelech, Y. Shrimp and fish pond soils: Processes and management. Aquaculture 2003, 220, 549–567. [Google Scholar] [CrossRef] [Green Version]
- Kallenbach, C.M.; Frey, S.D.; Grandy, A.S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016, 7, 13630. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste Management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Martins, C.; Eding, E.; Verdegem, M.; Heinsbroek, L.; Schneider, O.; Blancheton, J.; D’Orbcastel, E.R.; Verreth, J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Olusegun, A.; Babatunde, D.; Abiodun, O. Haematological Response of clarias Gariepinus juveniles rearedin treated wastewater after waste solids removal using alum or moringa oleifera seed powder. Int. J. Aquac. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Cavazos, V.; Alonso, D. Effect of feces leaching on apparent digestibility coefficients of Pacific white shrimp (Litopenaeus vannamei). Hidrobiológica 2017, 27, 353–357. [Google Scholar] [CrossRef]
- Pomeroy, L.; Williams, P.L.; Azam, F.; Hobbie, J. The microbial loop. Oceanography 2007, 20, 28–33. [Google Scholar] [CrossRef]
- Beardsley, C.; Moss, S.; Malfatti, F.; Azam, F. Quantitative role of shrimp fecal bacteria in organic matter fluxes in a recirculating shrimp aquaculture system. FEMS Microbiol. Ecol. 2011, 77, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Vinitnantharat, S.; Patanachan, P.; Pansuk, P. Effect of Season on Water Quality of Extensive and Intensive Seabass Culture Ponds and Associated Canals. Veridian E-J. Sci. Technol. Silpakorn Univ. 2019, 6, 1–15. Available online: https://www.researchgate.net/publication/338335533_Effect_of_Season_on_Water_Quality_of_Extensive_and_Intensive_Seabass_Culture_Ponds_and_Associated_Canals (accessed on 9 September 2021).
- Moon, Y.-E.; Kim, H.-S. Inter-Annual and seasonal variations of water quality and trophic status of a reservoir with fluctuating monsoon precipitation. Int. J. Environ. Res. Public Health 2021, 18, 8499. [Google Scholar] [CrossRef]
- State Minister for Environment. Decree of the State Minister of the Environment Number: 115 of 2003 about Guidelines for Determining the Status of Water Quality; State Minister for Environment: Jakarta, Indonesia, 2003; Volume 15, p. 2003. Available online: https://luk.staff.ugm.ac.id/atur/sda/KepmenLH115-2003StatusMutuAir.pdf (accessed on 12 February 2021). (In Indonesian)
- Sun, W.; Xia, C.; Xu, M.; Guo, J.; Sun, G. Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecol. Indic. 2016, 66, 306–312. [Google Scholar] [CrossRef]
- de Lima, G.N.; Lombardo, M.A.; Magaña, V. Urban water supply and the changes in the precipitation patterns in the metropolitan area of São Paulo–Brazil. Appl. Geogr. 2018, 94, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Effendi, H.; Wardiatno, Y. Water quality status of Ciambulawung River, Banten Province, based on pollution index and NSF-WQI. Procedia Environ. Sci. 2015, 24, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Dunca, A.-M. Water pollution and water quality assessment of major transboundary rivers from banat (Romania). J. Chem. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, J.; Zhao, Y. The Risk Assessment of river water pollution based on a modified non-linear model. Water 2018, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Barokah, G.R.; Ariyani, F.; Siregar, T.H. Comparison of Storet and pollution index method to assess the environmental pollution status: A case study from Lampung Bay, Indonesia. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2017, 12, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Yusnita, E.A.; Triajie, H. Determination of water quality status in estuary waters of Bangkalan District Socah Subdistrict using Storet Method and Pollution Index. Juv.–J. Ilmu Kelaut. Dan Perikan. 2021, 2, 157–165. [Google Scholar] [CrossRef]
- Fabricius, K.E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 2005, 50, 125–146. [Google Scholar] [CrossRef] [PubMed]
- Riegl, B.M.; Sheppard, C.R.C.; Purkis, S.J. Human impact on atolls leads to coral loss and community Homogenisation: A modeling study. PLoS ONE 2012, 7, e36921. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, C.; Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 2014, 7, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Garniati, L.; Iswadi, A.; Praptiwi, R.A.; Sugardjito, J. Towards sustainable marine and coastal planning for Taka Bonerate Kepulauan Selayar Biosphere Reserve: Indonesian case study to The global challenge research fund blue communities project. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Palembang, Indonesia, 23 July 2018; IOP Publishing: Bristol, UK, 2019; Volume 298, p. 8. [Google Scholar]
- Ma, Z.; Song, X.; Wan, R.; Gao, L. A modified water quality index for intensive shrimp ponds of Litopenaeus vannamei. Ecol. Indic. 2013, 24, 287–293. [Google Scholar] [CrossRef]
- Armus, R.; Selry, C.; Marzuki, I.; Hasan, H.; Sapar, A. Investigation of potential marine bacterial isolates in biodegradation methods on hydrocarbon contamination. J. Physics. Conf. Ser. 2021, 1899, 012006. [Google Scholar] [CrossRef]
- Ministry of Environment. Decree of Minister of Environment Number 51 of 2004, Dated 8 April 2004 about the Standard Quality of Seawater for Marine Biota. Jakarta: Ministry of Environment, p. 10. 2004. Available online: https://ppkl.menlhk.go.id/website/filebox/824/191009100640Keputusan%20MENLH%20Nomor%2051%20tahun%202004%20%20tentang%20Baku%20Mutu%20Air%20Laut.pdf (accessed on 12 February 2021). (In Indonesian)
- Ministry of Marine Affairs and Fisheries. Regulation of the Minister of Marine Affairs and Fisheries of the Republic of Indonesia Number 75/Permen-KP/2016 about General Guidelines for Grow-out of Tiger Shrimp (Penaeus monodon) and Whiteleg Shrimp (Litopenaeus vannamei); Ministry of Marine Affairs and Fisheries: Jakarta, Indonesia, 2016; p. 43. Available online: https://bkipm.kkp.go.id/bkipmnew/public/files/regulasi/75-permen-kp-2016-ttg-pedoman-umum-pembesaran-udang-windu.pdf (accessed on 17 June 2020). (In Indonesian)
- American Public Health Association-[AWWA] American Water Works Association-[WEF] Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Clesceri, L.S., Eds.; American Public Health Association-American Water Works Association-Water Environment Federation: Washington, DC, USA, 2012; p. 1496. Available online: https://www.amazon.it/Standard-Methods-Examination-Water-Wastewater/dp/0875530133 (accessed on 12 February 2015).
- Teichert-Coddington, D.; Rouse, D.; Potts, A.; Boyd, C. Treatment of harvest discharge from intensive shrimp ponds by settling. Aquac. Eng. 1999, 19, 147–161. [Google Scholar] [CrossRef]
- Schmidt, F.H.; Ferguson, J.H.A. Rainfall Type Based on Wet and Dry Period Ratios for Indonesia with Western New Gurinea; Kementerian Perhubungan, Djawatan Meteorologi dan Geofisik: Jakarta, Indonesia, 1951; Volume 42, p. 77. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201300720509 (accessed on 27 March 2021).
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef] [Green Version]
- Canter, L.W. Environmental impact assessment. Impact Assess. 1982, 1, 6–40. [Google Scholar] [CrossRef]
- Zang, C.; Huang, S.; Wu, M.; Du, S.; Scholz, M.; Gao, F.; Lin, C.; Guo, Y.; Dong, Y. Comparison of Relationships Between pH, Dissolved Oxygen and Chlorophyll a for Aquaculture and Non-aquaculture Waters. Water Air Soil Pollut. 2011, 219, 157–174. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, L.; Xu, X.; Meng, Q.; Men, M.; Xu, B.; Deng, L. Correlation between ammonia-oxidizing microorganisms and environmental factors during cattle manure composting. Revista Argentina de Microbiología 2019, 51, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, J.A. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 1998, 166, 181–212. [Google Scholar] [CrossRef]
- Kamaruddin, M.; Marzuki, I.; Burhan, A.; Ahmad, R. Screening acetylcholinesterase inhibitors from marine-derived actinomycetes by simple chromatography. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Surabaya, Indonesia, 11 September 2020; IOP Publishing: Bristol, UK, 2021; Volume 679, p. 012011. [Google Scholar]
- Boyd, C.E. Guidelines for aquaculture effluent management at the farm-level. Aquaculture 2003, 226, 101–112. [Google Scholar] [CrossRef]
- Burford, M.; Smith, D.; Tabrett, S.; Coman, F.; Thompson, P.; Barclay, M.; Toscas, P. The effect of dietary protein on the growth and survival of the shrimp, Penaeus monodon in outdoor tanks. Aquac. Nutr. 2004, 10, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-H.; Menviel, L.; Peng, T.-H. Nitrate deficits by nitrification and denitrification processes in the Indian Ocean. Deep Sea Res. Part. I Oceanogr. Res. Pap. 2006, 53, 94–110. [Google Scholar] [CrossRef]
- Saeed, M.O.; Al-Nomazi, M.A.; Al-Amoudi, A.S. Evaluating suitability of source water for a proposed SWRO plant location. Heliyon 2019, 5, e01119. [Google Scholar] [CrossRef] [Green Version]
- Kasan, N.A.; Kamaruzzan, A.S.; Rahim, A.I.A.; Ishak, A.N.; Jauhari, I.; Ikhwanuddin, M. Production of Pacific whiteleg shrimp, Litopenaeus vannamei through implementation of rapid biofloc technology. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Makassar, Indonesia, 22 June 2019; IOP Publishing: Bristol, UK, 2019; Volume 370, p. 012005. [Google Scholar]
- Lebel, L.; Mungkung, R.; Gheewala, S.H.; Lebel, P. Innovation cycles, niches and sustainability in the shrimp aquaculture industry in Thailand. Environ. Sci. Policy 2010, 13, 291–302. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R., Jr.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Chatvijitkul, S.; Boyd, C.E.; Davis, D.A. Nitrogen, phosphorus, and carbon concentrations in some common aquaculture feeds. J. World Aquac. Soc. 2017, 49, 7. [Google Scholar] [CrossRef] [Green Version]
- Muqsith, A.; Harahab, N.; Mahmudi, M.; Fadjar, M. The estimation of loading feed nutrient waste from vannamei shrimp aquaculture pond and carrying capacity of coastal area in Banyuputih Sub-District Situbondo Regency. Int. Conf. Biol. Appl. Sci. (ICOBAS) 2019, 2120, 040037. [Google Scholar] [CrossRef]
- Paena, M.; Syamsuddin, R.; Rani, C.; Tandipayuk, H. Estimation of organic waste loads from shrimp pond superintensive that was disposed in the Labuange Bay waters. J. Ilmu Dan Teknol. Kelaut. Trop. 2020, 12, 509–518. (In Indonesian) [Google Scholar] [CrossRef]
- Torrent, J. Mediterranean Soils. In Encyclopedia of Soils in the Environment; Elsevier BV: Amsterdam, The Netherlands, 2005; pp. 418–427. [Google Scholar]
- Lucke, B.; Kemnitz, H.; Bäumler, R.; Schmidt, M. Red mediterranean soils in Jordan: New insights in their origin, genesis, and role as environmental archives. Catena 2014, 112, 4–24. [Google Scholar] [CrossRef] [Green Version]
- Spaargaren, O.; Deckers, J. Factors of soil formation | climate. In Encyclopedia of Soils in the Environment; Elsevier BV: Amsterdam, The Netherlands, 2005; pp. 512–520. [Google Scholar]
- White, A. Natural Weathering Rates of Silicate Minerals. Treatise Geochem. 2003, 5, 133–168. [Google Scholar] [CrossRef]
- Schnoor, J. Water quality and its sustainability introduction. Compr. Water Qual. Purif. 2014, 4, 1–40. [Google Scholar] [CrossRef]
- Patty, S.I.; Rizki, M.P.; Rifai, H.; Akbar, N.; Khairun, U. Water quality and sea pollution index in Manado Bay the view physical-chemical paramaters sea. J. Ilmu Kelaut. Kepul. 2019, 2, 1–13. (In Indonesian) [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, M. Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies. Atmos. Res. 2016, 178-179, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Mimura, N. Sea-level rise caused by climate change and its implications for society. Proc. Jpn. Acad. Ser. B 2013, 89, 281–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Tanto, T. Deteksi Suhu Permukaan Laut (SPL) Menggunakan Satelit. J. Kelautan Indones. J. Mar. Sci. Technol. 2020, 13, 126–142. (In Indonesian) [Google Scholar] [CrossRef]
- Akbari, E.; Alavipanah, S.K.; Jeihouni, M.; Hajeb, M.; Haase, D.; Alavipanah, S. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods. Water 2017, 9, 936. [Google Scholar] [CrossRef] [Green Version]
- Girjatowicz, J.P.; Świątek, M. Effects of atmospheric circulation on water temperature along the southern Baltic Sea coast. Oceanologia 2018, 61, 38–49. [Google Scholar] [CrossRef]
- Norouzi, N. Climate change impacts on the water flow to the reservoir of the Dez Dam basin. Water Cycle 2020, 1, 113–120. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Kefford, B.; Schäfer, R. Salt in freshwaters: Causes, effects and prospects-introduction to the theme issue. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180002. [Google Scholar] [CrossRef]
- Zhou, F.; Lu, X.; Chen, F.; Zhu, Q.; Meng, Y.; Chen, C.; Lao, Q.; Zhang, S. Spatial-Monthly variations and influencing factors of dissolved oxygen in surface water of Zhanjiang Bay, China. J. Mar. Sci. Eng. 2020, 8, 403. [Google Scholar] [CrossRef]
- Bahiyah, A.; Wirasatriya, A.; Marwoto, J.; Handoyo, G.; Anugrah, D.S.P.A. Study of Seasonal Variation of Sea Surface Salinity in Java Sea and its Surrounding Seas using SMAP Satellite. IOP Conf. Series Earth Environ. Sci. 2019, 246, 12. [Google Scholar] [CrossRef]
- Skudra, M.; Lips, U. Characteristics and inter-annual changes in temperature, salinity and density distribution in the Gulf of Riga. Oceanologia 2017, 59, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Sidabutar, E.A.; Brawijaya University; Sidabutar, E.A.; Sartimbul, A.; Handayani, M. The distribution of temperature, salinity, and dissolved oxygen to depth in the waters of the Prigi Bay, Trenggalek Regency. JFMR-J. Fish. Mar. Res. 2019, 3, 46–52. [Google Scholar] [CrossRef]
- Folorunso, A.F. Mapping a spatial salinity flow from seawater to groundwater using electrical resistivity topography techniques. Sci. Afr. 2021, 13, e00957. [Google Scholar] [CrossRef]
- Boyd, C.E. Pond water aeration systems. Aquac. Eng. 1998, 18, 9–40. [Google Scholar] [CrossRef]
- Dijkstra, P.; Thomas, S.C.; Heinrich, P.L.; Koch, G.W.; Schwartz, E.; Hungate, B.A. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol. Biochem. 2011, 43, 2023–2031. [Google Scholar] [CrossRef]
- Ospina-Álvarez, N.; Prego, R.; Alvarez, I.; DeCastro, M.; Alvarez-Ossorio, M.; Pazos, Y.; Campos, M.; Bernárdez, P.; Garcia-Soto, C.; Gomez-Gesteira, M.; et al. Oceanographical patterns during a summer upwelling–downwelling event in the Northern Galician Rias: Comparison with the whole Ria system (NW of Iberian Peninsula). Cont. Shelf Res. 2010, 30, 1362–1372. [Google Scholar] [CrossRef] [Green Version]
- Pauly, D. The gill-oxygen limitation theory (GOLT) and its critics. Sci. Adv. 2021, 7, eabc6050. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, Y.; Liu, Y.; Gao, C.; Zhang, H. Laboratory Investigation on Hydrodynamic Performance of an Innovative Aeration Device with a Wave-Driven Heaving Buoy. Energies 2018, 11, 3262. [Google Scholar] [CrossRef] [Green Version]
- Comfort, C.M.; Walker, G.O.; McManus, M.A.; Fujimura, A.G.; Ostrander, C.E.; Donaldson, T.J. Physical dynamics of the reef flat, channel, and fore reef areas of a fringing reef embayment: An oceanographic study of Pago Bay, Guam. Reg. Stud. Mar. Sci. 2019, 31, 100740. [Google Scholar] [CrossRef]
- Marzuki, I.; Pratama, I.; Ismail, H.E.; Paserangi, I.; Kamaruddin, M.; Chaerul, M.; Ahmad, R. The Identification and Distribution Components of Polycyclic Aromatic Hydrocarbon Contaminants at the Port of Paotere, Makassar, South Sulawesi. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Surabaya, Indonesia, 11 September 2020; IOP Publishing: Bristol, UK, 2021; Volume 679, p. 012017. [Google Scholar]
- Yang, X.E.; Wu, X.; Hao, H.L.; He, Z.L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef]
- Hlordzi, V.; Kuebutornye, F.K.; Afriyie, G.; Abarike, E.D.; Lu, Y.; Chi, S.; Anokyewaa, M.A. The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquac. Rep. 2020, 18, 100503. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Tee, K.F.; Kader, A.S.A. Water quality test and site selection for suitable species for seaweed farm in east coast of Malaysia. Biosci. Biotechnol. Res. Asia 2015, 12, 33–39. [Google Scholar] [CrossRef]
- Seghetta, M.; Tørring, D.; Bruhn, A.; Thomsen, M. Bioextraction potential of seaweed in Denmark—An instrument for circular nutrient management. Sci. Total Environ. 2016, 563-564, 513–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIsaac, G. Surface water pollution by nitrogen fertilizers. Encycl. Water Sci. 2003, 2003, 950–955. [Google Scholar] [CrossRef]
- Velthof, G.; van Bruggen, C.; Groenestein, C.; de Haan, B.; Hoogeveen, M.; Huijsmans, J. A model for inventory of ammonia emissions from agriculture in the Netherlands. Atmos. Environ. 2012, 46, 248–255. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 2019, 6. [Google Scholar] [CrossRef]
- Lestari, H.A.; Samawi, M.F.; Faizal, A.; Moore, A.M.; Jompa, J. Physical and chemical parameters of estuarine waters around south Sulawesi. Indones. J. Geogr. 2021, 53, 373–387. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Fei, X.-G.; Song, J.-M.; Hu, H.-Y.; Wang, G.-C.; Chung, I.K. Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 2006, 254, 248–255. [Google Scholar] [CrossRef]
- Tsagkamilis, P.; Danielidis, D.; Dring, M.J.; Katsaros, C. Removal of phosphate by the green seaweed Ulva lactuca in a small-scale sewage treatment plant (Ios Island, Aegean Sea, Greece). J. Appl. Phycol. 2009, 22, 331–339. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Hurd, C.L. Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation. Phycol. 2019, 58, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Guignard, M.S.; Leitch, A.R.; Acquisti, C.; Eizaguirre, C.; Elser, J.J.; Hessen, D.O.; Jeyasingh, P.D.; Neiman, M.; Richardson, A.E.; Soltis, P.S.; et al. Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture. Front. Ecol. Evol. 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Rusli, M.; Chaerul, M.; Marzuki, I. Adaptation of climate change to vulnerability of raw water availability in Bantaeng, South Sulawesi. J. Phys. Conf. Ser. 2021, 1899, 012062. [Google Scholar] [CrossRef]
- Douglas, E.; Haggitt, T.; Rees, T. Supply-and demand-driven phosphate uptake and tissue phosphorus in temperate seaweeds. Aquat. Biol. 2014, 23, 49–60. [Google Scholar] [CrossRef]
- Douglas, E.; Haggitt, T.; Rees, T. Relationship between tissue phosphorus and seawater phosphate in the brown alga Hormosira banksii. N. Z. J. Mar. Freshw. Res. 2014, 49, 64–68. [Google Scholar] [CrossRef]
- Lourenço, S.O.; Barbarino, E.; Nascimento, A.; Freitas, J.N.P.; Diniz, G.S. Tissue nitrogen and phosphorus in seaweeds in a tropical eutrophic environment: What a long-term study tells us. Eighteenth Int. Seaweed Symp. 2008, 1, 163–172. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Diaz, O.; Reddy, K.; Moore, P. Solubility of inorganic phosphorus in stream water as influenced by pH and calcium concentration. Water Res. 1994, 28, 1755–1763. [Google Scholar] [CrossRef]
- Nurjaya, I.W.; Surbakati, H.; Natih, N.M.N. Model of Total Suspended Solid (TSS) distribution due to coastal mining in Western Coast of Kundur Island part of Berhala Strait. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 9–10 October 2018; IOP Publishing: Bristol, UK, 2019; Volume 278, p. 012056. [Google Scholar]
- Raposa, K.B.; Wasson, K.; Smith, E.; Crooks, J.A.; Delgado, P.; Fernald, S.H.; Ferner, M.C.; Helms, A.; Hice, L.A.; Mora, J.W.; et al. Assessing tidal marsh resilience to sea-level rise at broad geographic scales with multi-metric indices. Biol. Conserv. 2016, 204, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, W.; Chen, S.; Li, D.; Wang, D.; Liu, J. The spatial and temporal variation of total suspended solid concentration in Pearl River Estuary during 1987–2015 based on remote sensing. Sci. Total Environ. 2018, 618, 1125–1138. [Google Scholar] [CrossRef]
- Hiatt, M.; Snedden, G.; Day, J.W.; Rohli, R.; Nyman, J.A.; Lane, R.; Sharp, L.A. Drivers and impacts of water level fluctuations in the Mississippi River delta: Implications for delta restoration. Estuar. Coast. Shelf Sci. 2019, 224, 117–137. [Google Scholar] [CrossRef]
- Saiya, H.G.; Katoppo, D.R. Waste management of shrimp farms as starting point to develop integrated farming systems (Case study: Kuwaru Coast, Bantul, Yogyakarta, Indonesia). J. Degraded Min. Lands Manag. 2015, 3, 423–432. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- McDonald, M.; Tikkanen, C.; Axler, R.; Larsen, C.; Host, G. Fish simulation culture model (FIS-C): A bioenergetics based model for aquacultural wasteload application. Aquac. Eng. 1996, 15, 243–259. [Google Scholar] [CrossRef]
- Niklitschek, E.J.; Secor, D.H. Dissolved oxygen, temperature and salinity effects on the ecophysiology and survival of juvenile Atlantic sturgeon in estuarine waters: II. Model development and testing. J. Exp. Mar. Biol. Ecol. 2009, 381, S161–S172. [Google Scholar] [CrossRef]
- Stricker, E.M.; Verbalis, J.G. Water and salt intake and body fluid homeostasis. Fundam. Neurosci. 2013, 783–797. [Google Scholar] [CrossRef]
- Van Der Lee, G.H.; Kraak, M.H.S.; Verdonschot, R.C.M.; Vonk, J.A.; Verdonschot, P.F.M. Oxygen drives benthic-pelagic decomposition pathways in shallow wetlands. Sci. Rep. 2017, 7, 15051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leidonald, R.; Muhtadi, A.; Lesmana, I.; Harahap, Z.A.; Rahmadya, A. Profiles of temperature, salinity, dissolved oxygen, and pH in Tidal Lakes. IOP Conf. Series Earth Environ. Sci. 2019, 260, 012075. [Google Scholar] [CrossRef]
- Seitz, R.D.; Dauer, D.M.; Llansó, R.J.; Long, W.C. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. J. Exp. Mar. Biol. Ecol. 2009, 381, S4–S12. [Google Scholar] [CrossRef]
- Friedrich, J.; Janssen, F.; Aleynik, D.; Bange, H.W.; Boltacheva, N.; Çagatay, M.N.; Dale, A.W.; Etiope, G.; Erdem, Z.; Geraga, M.; et al. Investigating hypoxia in aquatic environments: Diverse approaches to addressing a complex phenomenon. Biogeosciences 2014, 11, 1215–1259. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, R.; Habibie, M.N.; Suratno, S. Monthly ocean waves variation over Indonesia. J. Meteorol. dan Geofis. 2011, 12, 221–232. (In Indonesian) [Google Scholar] [CrossRef]
- Walker, P.J.; Winton, J.R. Emerging viral diseases of fish and shrimp. Veter-Res. 2010, 41, 51. [Google Scholar] [CrossRef] [Green Version]
- Furtado, P.S.; Campos, B.R.; Serra, F.P.; Klosterhoff, M.; Romano, L.A.; Wasielesky, W. Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquac. Int. 2014, 23, 315–327. [Google Scholar] [CrossRef]
- Hughes, G.M.; Morgan, M. The structure of fish gills in relation to their respiratory function. Biol. Rev. Camb. Philos. Soc. 2008, 48, 419–475. [Google Scholar] [CrossRef]
- Henry, R.P.; Lucu, Č.; Onken, H.; Weihrauch, D. Multiple functions of the crustacean gill: Osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front. Physiol. 2012, 3, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Yao, D.; Li, S.; Zhang, Y.; Aweya, J.J. Effects of ammonia on shrimp physiology and immunity: A review. Rev. Aquac. 2020, 12, 2194–2211. [Google Scholar] [CrossRef]
- Abakari, G.; Luo, G.; Kombat, E.O. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquac. Fish. 2020, 6, 4414–4447. [Google Scholar] [CrossRef]
- Nkuba, A.C.; Mahasri, G.; Lastuti, N.D.R.; Mwendolwa, A.A. Correlation of Nitrite and Ammonia with Prevalence of Enterocytozoon hepatopenaei (EHP) in Shrimp (Litopenaeus vannamei) on Several Super-Intensive Ponds in East Java, Indonesia. J. Ilm. Perikan. dan Kelaut. 2021, 13, 58–67. [Google Scholar] [CrossRef]
- Yao, S.; Lyu, S.; An, Y.; Lu, J.; Gjermansen, C.; Schramm, A. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: A review. J. Appl. Microbiol. 2019, 126, 359–368. [Google Scholar] [CrossRef]
- Han, P.; Lu, Q.; Fan, L.; Zhou, W. A Review on the Use of Microalgae for Sustainable Aquaculture. Appl. Sci. 2019, 9, 2377. [Google Scholar] [CrossRef] [Green Version]
- Padmavathi, P.; Sunitha, K.; Veeraiah, K. Efficacy of probiotics in improving water quality and bacterial flora in fish ponds. Afr. J. Microbiol. Res. 2012, 6, 7471–7478. [Google Scholar] [CrossRef]
- Marzuki, I.; Ali, M.Y.; Syarif, H.U.; Gusty, S.; Daris, L.; Nisaa, K. Investigation of Biodegradable Bac-te-ria as Bio indicators of the Presence of PAHs Contaminants in Marine Waters in the Marine Tourism Area of Makassar City. IOP Conf. Ser. Earth Environ. Sci. 2021, 750, 012006. [Google Scholar] [CrossRef]
- Dunn, J.G.; Sammarco, P.W.; LaFleur, G. Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata: A controlled experimental approach. J. Exp. Mar. Biol. Ecol. 2012, 411, 34–44. [Google Scholar] [CrossRef]
- Loya, Y.; Lubinevsky, H.; Rosenfeld, M.; Kramarsky-Winter, E. Nutrient enrichment caused by in situ fish farms at Eilat, Red Sea is detrimental to coral reproduction. Mar. Pollut. Bull. 2004, 49, 344–353. [Google Scholar] [CrossRef] [PubMed]
- DeGeorges, A.; Goreau, T.J.; Reilly, B. Land-Sourced pollution with an emphasis on domestic sewage: Lessons from the caribbean and implications for coastal development on Indian Ocean and Pacific coral reefs. Sustainability 2010, 2, 2919–2949. [Google Scholar] [CrossRef] [Green Version]
- Li, R.H.; Liu, S.M.; Li, Y.W.; Zhang, G.L.; Ren, J.L.; Zhang, J. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island. Biogeosciences Discuss. 2013, 10, 9091–9147. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.; Sugama, K.; Syah, R.; Kusnendar, E.; Paena, M.; Muliawan, I.; Suwoyo, H.S.; Asaad, A.I.J.; Asaf, R.; Ratnawati, E.; et al. Strategy for Development of Availability Pond Sustainable Super-intensive Technology Whiteleg Shrimp in South Sulawesi Province; Fisheries Research Center: Jakarta, Indonesia, 2021; p. 134. (In Indonesian)
- Sale, P.F.; Agardy, T.; Ainsworth, C.H.; Feist, B.; Bell, J.D.; Christie, P.; Hoegh-Guldberg, O.; Mumby, P.J.; Feary, D.A.; Saunders, M.I.; et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 2014, 85, 8–23. [Google Scholar] [CrossRef] [PubMed]
Variable | BB Location | GT Location |
---|---|---|
Pond construction | HDPE | HDPE |
Total land area (ha) | 20.00–40.00 | 3.50–45.00 |
Reservoir area (ha) | 0.29–2.00 | 0.50 |
WWTP area (ha) | 0.15–1.50 | 0.35–1.00 |
Number of ponds (unit) | 19–34 | 7–48 |
Pond area (m2) | 1600–4000 | 1900–5000 |
Total pond area (ha) | 4.39–12.24 | 2.60–17.28 |
WWTP pond volume to total pond (%) | 3.42–15.82 | 5.21–13.46 |
Stocking density (ind/m2) | 110–150 | 100–220 |
Productivity (ton/ha/cycle) | 17.5–44.4 | 13.9–30.0 |
Feed conversion ratio | 1.2:1–1.7:1 | 1.4:1 |
Subdistrict | Intensive Pond Area (ha) | Number of Ponds (Unit) | Total Area of Ponds (ha) | Production Potential (Ton/Year) | Estimated Feed (Ton/Year) | Estimated Waste Load | |
---|---|---|---|---|---|---|---|
ton N/Year | ton P/Year | ||||||
BB | 37.00 | 78 | 26.11 | 1615 | 2351 | 28.33 | 6.69 |
GT | 32.60 | 90 | 34.55 | 1578 | 2209 | 27.68 | 6.53 |
Total | 69.60 | 168 | 60.66 | 3193 | 4560 | 56.01 | 13.22 |
Variable | Mean ± SD | Sig. | |
---|---|---|---|
Before Stocking/Initial of Culture (Rainy Season) | End of Culture/After Harvesting (Dry Season) | ||
Temperature (°C) | 28.59 ± 0.18 | 28.14 ± 0.22 | 0.000 ** |
Salinity (ppt) | 33.870 ± 0.068 | 38.493 ± 0.616 | 0.000 ** |
pH | 8.504 ± 0.116 | 8.086 ± 0.051 | 0.000 ** |
Dissolved oxygen (mg/L) | 8.209 ± 0.541 | 5.214 ± 0.696 | 0.000 ** |
Ammonia (mg/L) | 0.08504 ± 0.02068 | 0.13616 ± 0.02979 | 0.000 ** |
Nitrate (mg/L) | 0.0001 ± 0.0000 | 0.13966 ± 0.05206 | 0.000 ** |
Nitrite (mg/L) | 0.02006 ± 0.01972 | 0.00020 ± 0.00029 | 0.000 ** |
Phosphate (mg/L) | 0.06622 ± 0.01945 | 0.03586 ± 0.04285 | 0.002 ** |
Total suspended solids (mg/L) | 22.6 ± 15.7 | 9.3 ± 3.0 | 0.000 ** |
Total organic matter (mg/L) | 67.126 ± 9.663 | 31.257 ± 15.797 | 0.000 ** |
Variable | Mean ± SD | Sig. | |
---|---|---|---|
Before Stocking/Initial of Culture (Rainy Season) | End of Culture/ After Harvesting (Dry Season) | ||
Temperature (°C) | 28.84 ± 0.31 | 28.43 ± 0.32 | 0.009 ** |
Salinity (ppt) | 33.566 ± 0.200 | 36.404 ± 0.571 | 0.000 ** |
pH | 8.393 ± 0.094 | 8.320 ± 0.033 | 0.015 * |
Dissolved oxygen (mg/L) | 7.089 ± 0.673 | 5.827 ± 0.648 | 0.000 ** |
Ammonia (mg/L) | 0.09722 ± 0.02679 | 0.14769 ± 0.06667 | 0.052 ns |
Nitrate (mg/L) | 0.00031 ± 0.00063 | 0.27675 ± 0.12965 | 0.000 ** |
Nitrite (mg/L) | 0.02782 ± 0.01272 | 0.00348 ± 0.00785 | 0.000 ** |
Phosphate (mg/L) | 0.09993 ± 0.10077 | 0.09167 ± 0.06966 | 0.902 ns |
Total suspended solids (mg/L) | 30.6 ± 8.1 | 20.5 ± 8.0 | 0.009 ** |
Total organic matter (mg/L) | 66.295 ± 7.743 | 36.751 ± 12.948 | 0.000 ** |
Variable | Mean ± SD | ||
---|---|---|---|
BB Location * | GT Location * | UL Location (Control) | |
Temperature (°C) | 28.59 a ± 0.18 | 28.84 b ± 0.31 | 28.42 ± 0.57 |
Salinity (ppt) | 33.870 b ± 0.068 | 33.566 a ± 0.200 | 33.610 ± 0.060 |
pH | 8.504 b ± 0.116 | 8.393 a ± 0.094 | 8.404 ± 0.057 |
Dissolved oxygen (mg/L) | 8.209 b ± 0.541 | 7.089 a ± 0.673 | 7.476 ± 0.232 |
Ammonia (mg/L) | 0.08504 a ± 0.02068 | 0.09722 a ± 0.02679 | 0.06712 ± 0.04303 |
Nitrate (mg/L) | 0.00010 a ± 0.00000 | 0.00031 a ± 0.00063 | 0.00010 ± 0.00000 |
Nitrite (mg/L) | 0.02006 a ± 0.01972 | 0.02782 a ± 0.01272 | 0.01277 ± 0.00936 |
Phosphate (mg/L) | 0.06622 a ± 0.01945 | 0.09993 b ± 0.10077 | 0.05138 ± 0.02314 |
Total suspended solids (mg/L) | 22.6 a ± 15.7 | 30.6 a ± 8.1 | 30.1 ± 7.8 |
Total organic matter (mg/L) | 67.126 a ± 9.663 | 66.295 a ± 7.743 | 55.440 ± 9.464 |
Variable | Mean ± SD | ||
---|---|---|---|
BB Location * | GT Location * | UL Location (Control) | |
Temperature (°C) | 28.14 a ± 0.22 | 28.43 b ± 0.32 | 28.41 ± 0.67 |
Salinity (ppt) | 38.493 b ± 0.616 | 36.404 a ± 0.571 | 36.054 ± 0.298 |
pH | 8.086 a ± 0.051 | 8.320 b ± 0.033 | 8.232 ± 0.280 |
Disssolved oxygen (mg/L) | 5.214 a ± 0.696 | 5.827 b ± 0.648 | 6.338 ± 0.618 |
Ammonia (mg/L) | 0.13616 a ± 0.02979 | 0.14769 a ± 0.06667 | 0.08127 ± 0.03903 |
Nitrate (mg/L) | 0.13966 a ± 0.05206 | 0.27675 b ± 0.12965 | 0.00173 ± 0.00190 |
Nitrite (mg/L) | 0.00020 a ± 0.00029 | 0.00348 a ± 0.00785 | 0.00626 ± 0.00590 |
Phosphate (mg/L) | 0.03586 a ± 0.04285 | 0.09167 b ± 0.06966 | 0.01339 ± 0.01702 |
Total suspended solids (mg/L) | 9.3 a ± 3.0 | 20.5 b ± 8.0 | 20.3 ± 3.4 |
Total organic matter (mg/L) | 31.257 a ± 15.797 | 36.751 a ± 12.948 | 35.820 ± 8.205 |
Location/Time | Variable | Transect A | Transect B | Transect C |
---|---|---|---|---|
BB Location: | ||||
Before stocking/initial of culture (rainy season) | Temperature (°C) | 28.61 | 28.61 | 27.69 |
Salinity (ppt) | 33.897 | 33.908 | 34.078 | |
pH | 8.473 | 8.485 | 8.520 | |
Dissolved oxygen (mg/L) | 7.949 | 8.126 | 8.115 | |
Ammonia (mg/L) | 0.11239 | 0.07724 | 0.07300 | |
Nitrate (mg/L) | 0.00010 | 0.00010 | 0.00010 | |
Nitrite (mg/L) | 0.02219 | 0.02088 | 0.01398 | |
Phosphate (mg/L) | 0.08873 | 0.06526 | 0.06666 | |
Total suspended solids (mg/L) | 30.0 | 20.1 | 27.6 | |
Total organic matter (mg/L | 67.947 | 62.897 | 61.069 | |
End of culture/after harvesting (dry season) | Temperature (°C) | 28.13 | 28.09 | 28.90 |
Salinity (ppt) | 38.271 | 38.337 | 38.466 | |
pH | 8.080 | 8.106 | 8.386 | |
Dissolved oxygen (mg/L) | 5.078 | 5.229 | 5.628 | |
Ammonia (mg/L) | 0.13770 | 0.13666 | 0.12181 | |
Nitrate (mg/L) | 0.16768 | 0.14296 | 0.14306 | |
Nitrite (mg/L) | 0.00493 | 0.00037 | 0.00029 | |
Phosphate (mg/L) | 0.07485 | 0.02208 | 0.05032 | |
Total suspended solids (mg/L) | 12.5 | 11.7 | 10.2 | |
Total organic matter (mg/L) | 33.704 | 30.826 | 35.345 | |
GT Location: | ||||
Before stocking/initial of culture (rainy season) | Temperature (°C) | 29.08 | 28.86 | 28.62 |
Salinity (ppt) | 33.552 | 33.596 | 33.651 | |
pH | 8.378 | 8.420 | 8.432 | |
Dissolved oxygen (mg/L) | 7.260 | 7.574 | 7.200 | |
Ammonia (mg/L) | 0.10971 | 0.10510 | 0.06411 | |
Nitrate (mg/L) | 0.00058 | 0.00010 | 0.00010 | |
Nitrite (mg/L) | 0.03596 | 0.02963 | 0.01977 | |
Phosphate (mg/L) | 0.11923 | 0.09060 | 0.06556 | |
Total suspended solids (mg/L) | 30.4 | 28.9 | 21.9 | |
Total organic matter (mg/L) | 70.704 | 62.695 | 66.785 | |
End of culture/after harvesting (dry season) | Temperature (°C) | 28.83 | 28.51 | 28.47 |
Salinity (ppt) | 37.120 | 37.309 | 37.318 | |
pH | 8.247 | 8.303 | 8.309 | |
Dissolved oxygen (mg/L) | 5.746 | 6.150 | 5.948 | |
Ammonia (mg/L) | 0.17174 | 0.14365 | 0.14248 | |
Nitrate (mg/L) | 0.34021 | 0.26659 | 0.26543 | |
Nitrite (mg/L) | 0.00222 | 0.00920 | 0.00131 | |
Phosphate (mg/L) | 0.07405 | 0.10513 | 0.07306 | |
Total suspended solids (mg/L) | 36.3 | 21.4 | 34.8 | |
Total organic matter (mg/L) | 43.567 | 38.626 | 34.754 |
Location/Time | Variable | Transect I-II | Transect III-IV | Transect V-VI | Transect VII-VIII | Transect IX-X | Transect XI-XII |
---|---|---|---|---|---|---|---|
BB Location: | |||||||
Before stocking/initial of culture (rainy season) | Temperature (°C) | 27.38 | 28.42 | 28.63 | 28.77 | 28.67 | 28.67 |
Salinity (ppt) | 34.183 | 33.840 | 33.917 | 33.922 | 33.903 | 33.835 | |
pH | 8.312 | 8.457 | 8.595 | 8.582 | 8.512 | 8.565 | |
Dissolved oxygen (mg/L) | 7.030 | 8.372 | 8.220 | 8.042 | 8.162 | 8.790 | |
Ammonia (mg/L) | 0.09245 | 0.08170 | 0.08290 | 0.07428 | 0.09338 | 0.09118 | |
Nitrate (mg/L) | 0.00010 | 0.00010 | 0.00010 | 0.00010 | 0.00010 | 0.00010 | |
Nitrite (mg/L) | 0.01582 | 0.01918 | 0.02462 | 0.01748 | 0.00795 | 0.01537 | |
Phosphate (mg/L) | 0.06677 | 0.06348 | 0.07330 | 0.07960 | 0.08380 | 0.05930 | |
Total suspended solids (mg/L) | 15.3 | 30.7 | 14.3 | 23.0 | 25.8 | 31.8 | |
Total organic matter (mg/L) | 60.257 | 65.127 | 66.931 | 66.065 | 67.067 | 61.581 | |
End of culture/after harvesting (dry season) | Temperature (°C) | 28.07 | 28.03 | 28.05 | 28.07 | 28.08 | 28.13 |
Salinity (ppt) | 37.710 | 38.662 | 39.205 | 38.668 | 38.162 | 37.797 | |
pH | 8.085 | 8.057 | 8.063 | 8.098 | 8.097 | 8.148 | |
Dissolved oxygen (mg/L) | 5.432 | 5.027 | 4.683 | 5.410 | 5.628 | 5.922 | |
Ammonia (mg/L) | 0.10982 | 0.13425 | 0.13285 | 0.13257 | 0.13158 | 0.14295 | |
Nitrate (mg/L) | 0.18165 | 0.14422 | 0.14440 | 0.14822 | 0.13387 | 0.11382 | |
Nitrite (mg/L) | 0.00010 | 0.00073 | 0.00057 | 0.00557 | 0.00010 | 0.00010 | |
Phosphate (mg/L) | 0.02752 | 0.05290 | 0.02152 | 0.07591 | 0.01249 | 0.03123 | |
Total suspended solids (mg/L) | 9.8 | 10.0 | 11.2 | 9.7 | 13.5 | 13.5 | |
Total organic matter (mg/L) | 47.723 | 41.205 | 15.709 | 29.484 | 34.886 | 28.942 | |
GT Location: | |||||||
Before stocking/initial of culture (rainy season) | Temperature (°C) | 28.40 | 28.47 | 28.47 | 28.30 | 28.23 | 28.17 |
Salinity (ppt) | 33.610 | 33.610 | 33.580 | 33.663 | 33.683 | 33.520 | |
pH | 8.440 | 8.443 | 8.413 | 8.380 | 8.460 | 8.393 | |
Dissolved oxygen (mg/L) | 6.743 | 6.643 | 6.873 | 7.353 | 8.213 | 7.677 | |
Ammonia (mg/L) | 0.09580 | 0.09750 | 0.09837 | 0.07340 | 0.09943 | 0.08573 | |
Nitrate (mg/L) | 0.00010 | 0.00010 | 0.00073 | 0.00010 | 0.00010 | 0.00010 | |
Nitrite (mg/L) | 0.03623 | 0.01963 | 0.02193 | 0.02870 | 0.03597 | 0.02287 | |
Phosphate (mg/L) | 0.16873 | 0.06600 | 0.07737 | 0.05500 | 0.06113 | 0.05493 | |
Total suspended solids (mg/L) | 34.3 | 24.0 | 27.4 | 23.7 | 22.3 | 27.0 | |
Total organic matter (mg/L) | 66.816 | 67.338 | 70.675 | 72.218 | 66.503 | 55.763 | |
End of culture/after harvesting (dry season) | Temperature (°C) | 28.07 | 28.03 | 28.05 | 28.85 | 28.73 | 28.78 |
Salinity (ppt) | 37.710 | 37.662 | 37.205 | 36.698 | 36.212 | 36.252 | |
pH | 8.085 | 8.057 | 8.068 | 8.310 | 8.250 | 8.285 | |
Dissolved oxygen (mg/L) | 5.432 | 5.027 | 4.683 | 5.733 | 5.862 | 6.317 | |
Ammonia (mg/L) | 0.10982 | 0.13425 | 0.13285 | 0.14367 | 0.16970 | 0.15195 | |
Nitrate (mg/L) | 0.18165 | 0.14422 | 0.14440 | 0.31132 | 0.36795 | 0.32338 | |
Nitrite (mg/L) | 0.00010 | 0.00073 | 0.00057 | 0.00555 | 0.00187 | 0.00283 | |
Phosphate (mg/L) | 0.02752 | 0.05290 | 0.02152 | 0.14258 | 0.08617 | 0.06792 | |
Total suspended solids (mg/L) | 9.8 | 10.0 | 11.2 | 32.5 | 23.3 | 24.5 | |
Total organic matter (mg/L) | 47.723 | 41.205 | 15.709 | 45.116 | 39.641 | 37.138 |
Measurement Time | Score on Level | Total Score | Water Quality Status | ||
---|---|---|---|---|---|
Minimum | Maximum | Average | |||
Before stocking/initial of culture (rainy season) | 0 | −4 | −12 | −16 | Class C or moderate or moderately polluted |
End of culture/after harvesting (dry season) | −12 | −8 | −24 | −44 | Class D or poor or heavily polluted |
Measurement Time | Score on Level | Total Score | Water Quality Status | ||
---|---|---|---|---|---|
Minimum | Maximum | Average | |||
Before stocking/initial of culture (rainy season) | 0 | 0 | 0 | 0 | Class A or very good or complying quality standard |
End of culture/after harvesting (dry season) | −8 | −12 | −36 | −56 | Class D or poor or heavily polluted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, A.; Paena, M.; Athirah, A.; Ratnawati, E.; Asaf, R.; Suwoyo, H.S.; Sahabuddin, S.; Hendrajat, E.A.; Kamaruddin, K.; Septiningsih, E.; et al. Temporal and Spatial Analysis of Coastal Water Quality to Support Application of Whiteleg Shrimp Litopenaeus vannamei Intensive Pond Technology. Sustainability 2022, 14, 2659. https://doi.org/10.3390/su14052659
Mustafa A, Paena M, Athirah A, Ratnawati E, Asaf R, Suwoyo HS, Sahabuddin S, Hendrajat EA, Kamaruddin K, Septiningsih E, et al. Temporal and Spatial Analysis of Coastal Water Quality to Support Application of Whiteleg Shrimp Litopenaeus vannamei Intensive Pond Technology. Sustainability. 2022; 14(5):2659. https://doi.org/10.3390/su14052659
Chicago/Turabian StyleMustafa, Akhmad, Mudian Paena, Admi Athirah, Erna Ratnawati, Ruzkiah Asaf, Hidayat Suryanto Suwoyo, Sahabuddin Sahabuddin, Erfan Andi Hendrajat, Kamaruddin Kamaruddin, Early Septiningsih, and et al. 2022. "Temporal and Spatial Analysis of Coastal Water Quality to Support Application of Whiteleg Shrimp Litopenaeus vannamei Intensive Pond Technology" Sustainability 14, no. 5: 2659. https://doi.org/10.3390/su14052659
APA StyleMustafa, A., Paena, M., Athirah, A., Ratnawati, E., Asaf, R., Suwoyo, H. S., Sahabuddin, S., Hendrajat, E. A., Kamaruddin, K., Septiningsih, E., Sahrijanna, A., Marzuki, I., & Nisaa, K. (2022). Temporal and Spatial Analysis of Coastal Water Quality to Support Application of Whiteleg Shrimp Litopenaeus vannamei Intensive Pond Technology. Sustainability, 14(5), 2659. https://doi.org/10.3390/su14052659