The Recent Progress China Has Made in High-Concentration Backfill
Abstract
:1. Introduction
2. Research Progress of High-Concentration Backfill Theory in China
2.1. Paste-Like and Paste Backfill Technology
2.2. New Backfill Materials
2.3. Bearing Mechanism of Backfill Body
2.4. Rheological Study on High Concentration Filled Slurry
2.5. Study on Creep Damage and Plastic Failure Characteristics of Backfill
3. Research Progress of High-Concentration Backfill Equipment in China
3.1. Development Progress of Tailings Concentration and Dehydration Device
3.1.1. Hydrocyclone (Hydrocyclone Group)
3.1.2. Vibrating Screen
3.1.3. Vertical Sand Bin
3.1.4. Thickener
3.1.5. Filter and Filter Press
3.2. Development Progress of Agitator
3.2.1. Mixing Barrel (Mixing Tank or Agitation Vat)
3.2.2. Horizontal Double Shaft Mixer
3.3. Development Progress of Backfill Industrial Pump
4. Discussion: The Development Direction of High-Concentration Backfill
4.1. Research and Development of New Low Cost Cementing Materials
4.2. Large-Capacity, High-Efficiency and Low-Cost Backfill Equipment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Zhao, Z.; Yu, H.; Wang, X. The recent progress China has made in the backfill mining method, part II: The composition and typical examples of backfill systems. Minerals 2021, 11, 1362. [Google Scholar] [CrossRef]
- Yu, H.; Li, S.; Wang, X. The recent progress China has made in the backfill mining method, part III: Practical engineering problems in stope and goaf backfill. Minerals 2022, 12, 88. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, Q.; Li, S.; Yu, H.; Wang, X.; Wang, H. Application of numerical simulation methods in solving complex mining engineering problems in dingxi mine, China. Minerals 2022, 12, 123. [Google Scholar] [CrossRef]
- Yu, H.; Li, S.; Wang, X. The recent progress China has made in the backfill mining method, part I: The theory and equipment of backfill pipeline transportation. Minerals 2021, 11, 1274. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Yang, B.; Yuan, S. Assessing water and sand inrushes hazard reductions due to backfill mining by combining gis and entropy methods. Mine Water Environ. 2021, 40, 956–969. [Google Scholar] [CrossRef]
- Sui, W.; Zhang, D.; Cui, Z.C.; Wu, Z.; Zhao, Q. Environmental implications of mitigating overburden failure and subsidences using paste-like backfill mining: A case study. Int. J. Min. Reclam. Environ. 2015, 29, 521–543. [Google Scholar] [CrossRef]
- Liu, J.; Sui, W.; Zhang, D.; Zhao, Q. Durability of water-affected paste backfill material and its clean use in coal mining. J. Clean. Prod. 2020, 250, 119576. [Google Scholar] [CrossRef]
- Yao, Y.; Cui, Z.; Wu, R. Development and challenges on mining backfill technology. J. Mater. Sci. Res. 2012, 1, 73. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner. Eng. 2019, 144, 106025. [Google Scholar] [CrossRef]
- Qiu, J.; Yang, L.; Sun, X.; Xing, J.; Li, S. Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill. Minerals 2017, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Song, W.; Yilmaz, E. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill. Constr. Build. Mater. 2018, 174, 190–201. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Q.; Wang, X.; Xiao, C.; Hu, Q. A hydraulic gradient model of paste-like crude tailings backfill slurry transported by a pipeline system. Environ. Earth Sci. 2016, 75, 1–9. [Google Scholar] [CrossRef]
- Guo, Y.; Ran, H.; Feng, G.; Du, X.; Zhao, Y.; Xie, W. Deformation and instability properties of cemented gangue backfill column under step-by-step load in constructional backfill mining. Environ. Sci. Pollut. Res. 2022, 29, 2325–2341. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.S.; Zhang, Q.L.; Fourie, A.; Chen, X.; Qi, C.C. Experimental investigation on the strength characteristics of cement paste backfill in a similar stope model and its mechanism. Constr. Build. Mater. 2017, 154, 34–43. [Google Scholar] [CrossRef]
- Liu, L.; Xin, J.; Feng, Y.; Zhang, B.; Song, K.I. Effect of the cement—Tailing ratio on the hydration products and microstructure characteristics of cemented paste backfill. Arab. J. Sci. Eng. 2019, 44, 6547–6556. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Taheri, A.; Zhang, W.; Wu, Z.; Song, W. Properties and application of backfill materials in coal mines in China. Minerals 2019, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Guo, G.; Liu, H.; Peng, X.; Yang, X. Stability analysis of the composite support pillar in backfill-strip mining using particle flow simulation method. Environ. Earth Sci. 2022, 81, 1–19. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, J.; Ouyang, S.; Deng, X.; Dong, C.; Du, E. Feasibility study and performance optimization of sand-based cemented paste backfill materials. J. Clean. Prod. 2020, 259, 120798. [Google Scholar] [CrossRef]
- Ma, C.; Liu, Y.T.; Song, D.Q.; Cao, L.; He, F.Q.; Liu, X.L.; Zhou, H.J. Characterizing the influencing factors in a novel repairing material for concrete structures by AC impedance spectroscopy. J. Build. Eng. 2021, 47, 103858. [Google Scholar] [CrossRef]
- Luan, H.; Jiang, Y.; Lin, H.; Wang, Y. A new thin seam backfill mining technology and its application. Energies 2017, 10, 2023. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Li, X.; Wang, L.; Fang, Z.; Zhao, B.; Liu, E.; Liu, L. Study on the pressure-bearing law of backfilling material based on three-stage strip backfilling mining. Energies 2020, 13, 211. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.W.; Wang, H.L.; Chen, S.J. Bearing capacity of backfill body and roof stability during strip coal pillar extracted with paste backfill. Geotech. Geol. Eng. 2018, 36, 235–245. [Google Scholar] [CrossRef]
- Yilmaz, E.; Belem, T.; Benzaazoua, M. Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions. Eng. Geol. 2015, 185, 52–62. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Qin, J.C.; Xiao, G.Z.; Yang, G.C.; Feng, X. Effect of anionic polyacrylamide on the structural stability of thickened tailings slurry in pipeline transportation. Adv. Mater. Sci. Eng. 2018, 2018, 7131487. [Google Scholar] [CrossRef] [Green Version]
- Cilliers, J.J.; Hinde, A.L. An improved hydrocyclone model for backfill preparation. Miner. Eng. 1991, 4, 683–693. [Google Scholar] [CrossRef]
- Toprak, N.A.; Altun, O. Considering hydrocyclone operation for tailings dewatering purpose and its effects on product specifications of paste backfill operations. Miner. Eng. 2021, 173, 107176. [Google Scholar] [CrossRef]
- Chang, Q.; Chen, J.; Zhou, H.; Bai, J. Implementation of paste backfill mining technology in Chinese coal mines. Sci. World J. 2014, 2014, 821025. [Google Scholar] [CrossRef]
- Shi, X.Z.; Hu, H.Y.; Du, X.H.; Li, M.L.; Wang, H.Y. Experimental study on flocculating sedimentation of tailings slurry in a vertical sand tank. Min. Metall. Eng. 2010, 30, 1–3. [Google Scholar]
- Wang, X.M.; Zhao, B.; Zhang, Q.L.; Xu, D.S. Cemented backfilling technology with unclassified tailings based on vertical sand silo. J. Cent. South Univ. Technol. 2008, 15, 801–807. [Google Scholar] [CrossRef]
- Ruan, Z.; Wang, Y.; Wu, A.; Yin, S.; Jin, F. A theoretical model for the rake blockage mitigation in deep cone thickener: A case study of lead-zinc mine in China. Math. Probl. Eng. 2019, 2019, 2130617. [Google Scholar] [CrossRef] [Green Version]
- Jiao, H.; Wu, A.; Wang, H.; Zhong, S.; Ruan, R.; Yin, S. The solids concentration distribution in the deep cone thickener: A pilot scale test. Korean J. Chem. Eng. 2013, 30, 262–268. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Tu, Y.; Han, P.; Liu, X.; Ye, S. Green treatment of cyanide tailings using a “Filter press backwash–Chemical precipitation–Gaseous membrane absorption” method. Appl. Sci. 2021, 11, 2091. [Google Scholar] [CrossRef]
- Li, B.; Yan, H.; Zhang, J.; Zhou, N. Compaction property prediction of mixed gangue backfill materials using hybrid intelligence models: A new approach. Constr. Build. Mater. 2020, 247, 118633. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, P.; Ying, W. Abrasive wear and optimal installation angle of concrete double-horizontal shaft mixer stirring blades. SN Appl. Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef]
- Yang, K.; Zhao, X.; Wei, Z.; Zhang, J. Development overview of paste backfill technology in China’s coal mines: A review. Environ. Sci. Pollut. Res. 2021, 28, 67957–67969. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, R.; Feng, R.; Hu, B.; Wang, G.; Yu, H. Feasibility of recycling bayer process red mud for the safety backfill mining of layered soft bauxite under coal seams. Minerals 2021, 11, 722. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Feng, R.; Yu, H.; Pan, J.; Bian, J. Environmental safety analysis of red mud-based cemented backfill on groundwater. Int. J. Environ. Res. Public Health 2021, 18, 8094. [Google Scholar] [CrossRef]
- Yin, S.; Shao, Y.; Wu, A.; Wang, H.; Liu, X.; Wang, Y. A systematic review of paste technology in metal mines for cleaner production in China. J. Clean. Prod. 2020, 247, 119590. [Google Scholar] [CrossRef]
- Di Nardo, M.; Yu, H. Special issue “Industry 5.0: The prelude to the sixth industrial revolution”. Appl. Syst. Innov. 2021, 4, 45. [Google Scholar] [CrossRef]
- Yu, H.; Li, S. The function design for the communication-based train control (CBTC) system: How to solve the problems in the underground mine rail transportation? Appl. Syst. Innov. 2021, 4, 31. [Google Scholar] [CrossRef]
- Nardo, M.D.; Yu, H. Intelligent ventilation systems in mining engineering: Is zigbee wsn technology the best choice? Appl. Syst. Innov. 2021, 4, 42. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Yu, H.; Wang, X. Engineering project: The method to solve practical problems for the monitoring and control of driver-less electric transport vehicles in the underground mines. World Electr. Veh. J. 2021, 12, 64. [Google Scholar] [CrossRef]
- Zhang, B.; Xin, J.; Liu, L.; Guo, L.; Song, K.I. An experimental study on the microstructures of cemented paste backfill during its developing process. Adv. Civ. Eng. 2018, 2018, 9783046. [Google Scholar] [CrossRef]
- Xu, W.; Chen, W.; Tian, M.; Guo, L. Effect of temperature on time-dependent rheological and compressive strength of fresh cemented paste backfill containing flocculants. Constr. Build. Mater. 2021, 267, 121038. [Google Scholar] [CrossRef]
- Zheng, J.; Guo, L.; Sun, X.; Li, W.; Jia, Q. Study on the strength development of cemented backfill body from lead-zinc mine tailings with sulphide. Adv. Mater. Sci. Eng. 2018, 2018, 7278014. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Guo, L.; Liu, G.; Pan, A.; Zhang, T. Analytical and experimental investigation of the relationship between spread and yield stress in the mini-cone test for cemented tailings backfill. Constr. Build. Mater. 2020, 260, 119770. [Google Scholar] [CrossRef]
Volcanic Ash Material | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O + K2O | SO3 | Ignition Loss |
---|---|---|---|---|---|---|---|---|
Tuff | 4~73 | 11~19 | 2.6~6.4 | 2~1.4 | 0.4~2 | 2.4~10 | - | 7~16 |
Power plant fly ash | 43~56 | 20~32 | 4~10 | 1.5~5 | 0.6~2 | 1~2.5 | 3~1.5 | 3~20 |
Coal gangue | 40~15 | 15~35 | 2~9 | 1~7 | 1~4 | 1~2.5 | - | 12~17 |
Iron blast furnace slag | 26~42 | 6~17 | 0.15~2 | 38~49 | 1~13 | - | - | - |
Bessemer slag | 8~20 | 0.6~6 | 6.5~30 | 42~50 | - | - | - | - |
Reflecting slag of steelmaking furnace | 35.5 | 3.6 | Fe 36 | 7.9 | 1.9 | - | S 0.9 | - |
Water quenched slag of lead smelting | 17.6 | 4.0 | Fe 27.4 | 20 | 1.37 | - | S 1.3 | - |
Sintered red mud | 20~23 | 5~8 | 8~12 | 43~46 | 1~2 | - | 6~10 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Yu, Z.; Yu, H.; Wang, X. The Recent Progress China Has Made in High-Concentration Backfill. Sustainability 2022, 14, 2758. https://doi.org/10.3390/su14052758
Li S, Yu Z, Yu H, Wang X. The Recent Progress China Has Made in High-Concentration Backfill. Sustainability. 2022; 14(5):2758. https://doi.org/10.3390/su14052758
Chicago/Turabian StyleLi, Shuai, Zheng Yu, Haoxuan Yu, and Xinmin Wang. 2022. "The Recent Progress China Has Made in High-Concentration Backfill" Sustainability 14, no. 5: 2758. https://doi.org/10.3390/su14052758
APA StyleLi, S., Yu, Z., Yu, H., & Wang, X. (2022). The Recent Progress China Has Made in High-Concentration Backfill. Sustainability, 14(5), 2758. https://doi.org/10.3390/su14052758