A CFD Analysis for Novel Close-Ended Deflector for Vertical Water Turbines
Abstract
:1. Introduction
1.1. The State of the Art
1.2. Methodology
2. The Design
2.1. The Rotors
2.2. Mesh and Computational Domain
2.3. Simulation Setting
3. Results and Discussion
3.1. Deflector Simulation
3.2. The Rotors Simulation
3.3. The Effect of the Deflector
3.4. 3D Simulation
4. Conclusions and Recommendation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ivanovski, K.; Hailemariam, A.; Smyth, R. The effect of renewable and non-renewable energy consumption on economic growth: Non-parametric evidence. J. Clean. Prod. 2021, 286, 124956. [Google Scholar] [CrossRef]
- Elkadeem, M.; Wang, S.; Sharshir, S.W.; Atia, E.G. Feasibility analysis and techno-economic design of grid-isolated hybrid renewable energy system for electrification of agriculture and irrigation area: A case study in Dongola, Sudan. Energy Convers. Manag. 2019, 196, 1453–1478. [Google Scholar] [CrossRef]
- Masdari, M.; Tahani, M.; Naderi, M.H.; Babayan, N. Optimization of airfoil Based Savonius wind turbine using coupled discrete vortex method and salp swarm algorithm. J. Clean. Prod. 2019, 222, 47–56. [Google Scholar] [CrossRef]
- Samarakoon, M.; Ranjith, P.; Rathnaweera, T.; Perera, M. Recent advances in alkaline cement binders: A review. J. Clean. Prod. 2019, 227, 70–87. [Google Scholar] [CrossRef]
- Zeren, F.; Akkuş, H.T. The relationship between renewable energy consumption and trade openness: New evidence from emerging economies. Renew. Energy 2020, 147, 322–329. [Google Scholar] [CrossRef]
- Bank, T.W. Access to Electricity. Available online: https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS (accessed on 7 July 2021).
- Chok, E.-T.; Lim, Y.S.; Chua, K.H. Novel fuzzy-based control strategy for standalone power systems for minimum cost of electricity in rural areas. Sustain. Energy Technol. Assess. 2019, 31, 199–211. [Google Scholar] [CrossRef]
- Ashourian, M.H.; Cherati, S.M.; Zin, A.M.; Niknam, N.; Mokhtar, A.S.; Anwari, M. Optimal green energy management for island resorts in Malaysia. Renew. Energy 2013, 51, 36–45. [Google Scholar] [CrossRef]
- Lau, K.Y.; Tan, C.W.; Yatim, A.H.M. Photovoltaic systems for Malaysian islands: Effects of interest rates, diesel prices and load sizes. Energy 2015, 83, 204–216. [Google Scholar] [CrossRef]
- Aziz, K.; Shamsudin, K. TNB Experience in Developing Solar Hybrid Station at RPS Kemar, Gerik, Perak Darul Ridzuan. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2013; Volume 16, p. 012145. [Google Scholar]
- Rural Electrification in East Malaysia—Achieving Optimal Power Generation System and Sustainability of Rural Electrification Projects. Available online: https://www.diva-portal.org/smash/get/diva2:967355/FULLTEXT01.pdf (accessed on 24 April 2021).
- Chua, K.H.; Lim, Y.S.; Morris, S. A novel fuzzy control algorithm for reducing the peak demands using energy storage system. Energy 2017, 122, 265–273. [Google Scholar] [CrossRef]
- Lau, K.Y.; Yousof, M.; Arshad, S.; Anwari, M.; Yatim, A. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy 2010, 35, 3245–3255. [Google Scholar] [CrossRef]
- Kai, L.Y.; Sarip, S.; Kaidi, H.M.; Ardila-Rey, J.A.; Samsuddin, N.M.; Muhtazaruddin, M.N.; Muhammad-Sukki, F.; Aziz, S.A. Current Status and Possible Future Applications of Marine Current Energy Devices in Malaysia: A Review. IEEE Access 2021, 9, 86869–86888. [Google Scholar] [CrossRef]
- Abdullah, C.; Mad Kaidi, H.; Sarip, S.; Shafie, N. Small Scale Standalone Solar and Tidal Hybrid Power System in Isolated Area. Renew. Energy Focus 2021, 39, 59–71. [Google Scholar] [CrossRef]
- Nunes, M.M.; Mendes, R.C.; Oliveira, T.F.; Junior, A.C.B. An experimental study on the diffuser-enhanced propeller hydrokinetic turbines. Renew. Energy 2019, 133, 840–848. [Google Scholar] [CrossRef]
- Ayodele, T.; Ogunjuyigbe, A.; Amusan, T. Wind power utilization assessment and economic analysis of wind turbines across fifteen locations in the six geographical zones of Nigeria. J. Clean. Prod. 2016, 129, 341–349. [Google Scholar] [CrossRef]
- Mosbahi, M.; Ayadi, A.; Chouaibi, Y.; Driss, Z.; Tucciarelli, T. Performance improvement of a novel combined water turbine. Energy Convers. Manag. 2020, 205, 112473. [Google Scholar] [CrossRef]
- Hassanzadeh, R.; Mohammadnejad, M. Effects of inward and outward overlap ratios on the two-blade Savonius type of vertical axis wind turbine performance. Int. J. Green Energy 2019, 16, 1485–1496. [Google Scholar] [CrossRef]
- Chen, J.; Pan, X.; Wang, C.; Hu, G.; Xu, H.; Liu, P. Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor. Energy 2019, 187, 115910. [Google Scholar] [CrossRef]
- Wardhana, W.; Keniraras, N.; Pratama, R.; Rahmawati, S. Hydrodynamics Performance Analysis of Vertical Axis Water Turbine (VAWT) Gorlov Type Using Computational Fluid Dynamics (CFD) Approach. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 698, p. 012022. [Google Scholar]
- Elbatran, A.; Ahmed, Y.M.; Shehata, A.S. Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine. Energy 2017, 134, 566–584. [Google Scholar] [CrossRef]
- Thakur, N.; Biswas, A.; Kumar, Y.; Basumatary, M. CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design. Chin. J. Chem. Eng. 2019, 27, 794–801. [Google Scholar] [CrossRef]
- Mosbahi, M.; Elgasri, S.; Lajnef, M.; Mosbahi, B.; Driss, Z. Performance enhancement of a twisted Savonius hydrokinetic turbine with an upstream deflector. Int. J. Green Energy 2021, 18, 51–65. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wang, J.-S.; Chang, M.-H.; Hoang, A.T.; Lam, S.S.; Kwon, E.E.; Ashokkumar, V. Optimization of a vertical axis wind turbine with a deflector under unsteady wind conditions via Taguchi and neural network applications. Energy Convers. Manag. 2022, 254, 115209. [Google Scholar] [CrossRef]
- Aboujaoude, H.; Beaumont, F.; Murer, S.; Polidori, G.; Bogard, F. Aerodynamic performance enhancement of a Savonius wind turbine using an axisymmetric deflector. J. Wind Eng. Ind. Aerodyn. 2022, 220, 104882. [Google Scholar] [CrossRef]
- Goh, H.-B.; Lai, S.-H.; Jameel, M.; Teh, H.-M.; Chin, R.-J. Feasibility assessment of tidal energy extraction at the Tg Tuan coastal headland: A numerical simulation study. Sustain. Energy Technol. Assess. 2020, 38, 100633. [Google Scholar] [CrossRef]
- Muratoglu, A.; Yuce, M.I. Design of a river hydrokinetic turbine using optimization and CFD simulations. J. Energy Eng. 2017, 143, 04017009. [Google Scholar] [CrossRef]
- Yahya, W.; Ziming, K.; Juan, W.; Qurashi, M.S.; Al-Nehari, M.; Salim, E. Influence of tilt angle and the number of guide vane blades towards the Savonius rotor performance. Energy Rep. 2021, 7, 3317–3327. [Google Scholar] [CrossRef]
- Alom, N. Influence of curtain plates on the aerodynamic performance of an elliptical bladed Savonius rotor (S-rotor). Energy Syst. 2021, 13, 265–280. [Google Scholar] [CrossRef]
- Mosbahi, M.; Lajnef, M.; Derbel, M.; Mosbahi, B.; Driss, Z.; Aricò, C.; Tucciarelli, T. Performance improvement of a Savonius water rotor with novel blade shapes. Ocean Eng. 2021, 237, 109611. [Google Scholar] [CrossRef]
- Behrouzi, F.; Nakisa, M.; Maimun, A.; Ahmed, Y.M. Global renewable energy and its potential in Malaysia: A review of Hydrokinetic turbine technology. Renew. Sustain. Energy Rev. 2016, 62, 1270–1281. [Google Scholar] [CrossRef]
- Rehman, W.; Rehman, F.; Malik, M.Z. A Review of Darrieus Water Turbines. In ASME Power Conference; American Society of Mechanical Engineers: New York, NY, USA, 2018; Volume 51401, p. V002T012A015. [Google Scholar]
- Behrouzi, F.; Maimun, A.; Nakisa, M. Review of various designs and development in hydropower turbines. Int. J. Mech. Mechatron. Eng. 2014, 8, 293–297. [Google Scholar]
- Demircan, E. Design and Analysis of a Vertical Axis Water Turbine for River Applications Using Computational Fluid Dynamics; Middle East Technical University: Ankara, Turkey, 2014. [Google Scholar]
- Yaakob, O.; Ismail, M.A.; Ahmed, Y.M. Parametric study for Savonius vertical axis marine current turbine using CFD simulation. In Proceedings of the 7th International Conference on Renewable Energy Sources (RES’13), Kuala Lumpur, Malaysia, 2–4 April 2013; Asia-Pacific Workshop on Marine Hydrodynamics. pp. 200–205. [Google Scholar]
- Alaimo, A.; Esposito, A.; Messineo, A.; Orlando, C.; Tumino, D. 3D CFD analysis of a vertical axis wind turbine. Energies 2015, 8, 3013–3033. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Shen, Z.; Yang, H. Study on the effects of runner geometries on the performance of inline cross-flow turbine used in water pipelines. Sustain. Energy Technol. Assess. 2020, 40, 100762. [Google Scholar] [CrossRef]
- Chanson, H. 14-Physical modelling of hydraulics. In Hydraulics of Open Channel Flow, 2nd ed.; Chanson, H., Ed.; Butterworth-Heinemann: Oxford, UK, 2004; pp. 253–274. [Google Scholar] [CrossRef]
- Abuan, B.; Howell, R. Effect of Idealised Unsteady Flow to the Performance of Horizontal Axis Tidal Turbine. In Proceedings of the 2nd Asian Wave and Tidal Conference, Marina Bay Sands, Singapore, 24–28 October 2016. [Google Scholar]
- Ashwindran, S.; Azizuddin, A.; Oumer, A. Computational fluid dynamic (CFD) of vertical-axis wind turbine: Mesh and time-step sensitivity study. J. Mech. Eng. Sci. 2019, 13, 5604–5624. [Google Scholar] [CrossRef]
- Mohamed, M.; Janiga, G.; Pap, E.; Thévenin, D. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade. Energy Convers. Manag. 2011, 52, 236–242. [Google Scholar] [CrossRef]
- Akwa, J.V.; da Silva Júnior, G.A.; Petry, A.P. Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics. Renew. Energy 2012, 38, 141–149. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Guide, F.U.s. Turbulence Model. 2019. Available online: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v221/en/flu_ug/flu_ug_sec_turb_choosing.html?q=Turbulence%20Model (accessed on 3 March 2021).
- Hellsten, A. Some improvements in Menter’s k-omega SST turbulence model. In Proceedings of the 29th AIAA, Fluid Dynamics Conference, Albuquerque, NM, USA, 15–18 June 1998; p. 2554. [Google Scholar] [CrossRef]
- Guide, F.U.s. Solution Model. 2019. Available online: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v221/en/flu_ug/flu_beta_aero_solve.html?q=.%20Solution%20Model (accessed on 24 March 2020).
- Akwa, J.V.; Vielmo, H.A.; Petry, A.P. A review on the performance of Savonius wind turbines. Renew. Sustain. Energy Rev. 2012, 16, 3054–3064. [Google Scholar] [CrossRef]
- Kamoji, M.; Kedare, S.; Prabhu, S. Experimental investigations on single stage, two stage and three stage conventional Savonius rotor. Int. J. Energy Res. 2008, 32, 877–895. [Google Scholar] [CrossRef]
- Salleh, M.B.; Kamaruddin, N.M.; Mohamed-Kassim, Z. Savonius hydrokinetic turbines for a sustainable river-based energy extraction: A review of the technology and potential applications in Malaysia. Sustain. Energy Technol. Assess. 2019, 36, 100554. [Google Scholar]
- Gilkeson, C.; Toropov, V.; Thompson, H.; Wilson, M.; Foxley, N.; Gaskell, P. Dealing with numerical noise in CFD-based design optimization. Comput. Fluids 2014, 94, 84–97. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-quraishi, M.B.Z.Y.; Sarip, S.; Mad Kaidi, H.; Ardila-Rey, J.A.; Muhammad-Sukki, F. A CFD Analysis for Novel Close-Ended Deflector for Vertical Water Turbines. Sustainability 2022, 14, 2790. https://doi.org/10.3390/su14052790
Al-quraishi MBZY, Sarip S, Mad Kaidi H, Ardila-Rey JA, Muhammad-Sukki F. A CFD Analysis for Novel Close-Ended Deflector for Vertical Water Turbines. Sustainability. 2022; 14(5):2790. https://doi.org/10.3390/su14052790
Chicago/Turabian StyleAl-quraishi, Mohammed Baqer Zaki Yahya, Shamsul Sarip, Hazilah Mad Kaidi, Jorge Alfredo Ardila-Rey, and Firdaus Muhammad-Sukki. 2022. "A CFD Analysis for Novel Close-Ended Deflector for Vertical Water Turbines" Sustainability 14, no. 5: 2790. https://doi.org/10.3390/su14052790
APA StyleAl-quraishi, M. B. Z. Y., Sarip, S., Mad Kaidi, H., Ardila-Rey, J. A., & Muhammad-Sukki, F. (2022). A CFD Analysis for Novel Close-Ended Deflector for Vertical Water Turbines. Sustainability, 14(5), 2790. https://doi.org/10.3390/su14052790