Generation Expansion Planning Based on Local Renewable Energy Resources: A Case Study of the Isolated Ambon-Seram Power System
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Ambon and Seram Systems
2.2. Parameters of Generation Expansion Planning
2.3. Methodology
3. Result and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EIA. International Energy Outlook 2016; U.S. Energy Information Administration (EIA): Washington, DC, USA, 2016; Volume 1.
- Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef] [Green Version]
- Ebhota, W.S. Power accessibility, fossil fuel and the exploitation of small hydropower technology in sub-saharan Africa. Int. J. Sustain. Energy Plan. Manag. 2019, 19, 13–28. [Google Scholar] [CrossRef]
- Kementerian Energi dan Sumber Daya Mineral. Rencana Usaha Penyediaan Tenaga Listrik PT. PLN (Persero) Tahun 2018 s.d. 2027; Kementerian Energi dan Sumber Daya Mineral: Jakarta, Indonesia, 2018. [Google Scholar]
- Nguyen, H.T.; Felder, F.A. Generation expansion planning with renewable energy credit markets: A bilevel programming approach. Appl. Energy 2020, 276, 115472. [Google Scholar] [CrossRef]
- Fitiwi, D.Z.; Lynch, M.; Bertsch, V. Enhanced network effects and stochastic modelling in generation expansion planning: Insights from an insular power system. Soc.-Econ. Plan. Sci. 2020, 71, 100859. [Google Scholar] [CrossRef]
- Seck, G.S.; Krakowski, V.; Assoumou, E.; Maïzi, N.; Mazauric, V. Embedding power system’s reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050. Appl. Energy 2019, 257, 114037. [Google Scholar] [CrossRef]
- Khan, A.Z.; Sun, Y.; Ashfaq, A. Generation expansion planning considering externalities for large scale integration of renewable energy. In Proceedings of the 2014 IEEE International Conference on Intelligent Energy and Power Systems (IEPS), Kyiv, Ukraine, 2–6 June 2014; pp. 135–140. [Google Scholar] [CrossRef]
- Chen, Q.; Kang, C.; Xia, Q.; Zhong, J. Power Generation Expansion Planning Model Towards Low-Carbon Economy and Its Application in China. IEEE Trans. Power Syst. 2010, 25, 1117–1125. [Google Scholar] [CrossRef] [Green Version]
- Shengyu, W.; Lu, C.; Xiaoqing, Y.; Bo, Y. Long-term generation expansion planning under uncertainties and fluctuations of multi-type renewables. In Proceedings of the 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Riga, Latvia, 11–13 May 2015; pp. 612–616. [Google Scholar] [CrossRef]
- da Luz, T.J.; Moura, P.; Almeida, A. Multi-objective power generation expansion planning with high penetration of renewables. Renew. Sustain. Energy Rev. 2018, 81, 2637–2643. [Google Scholar] [CrossRef]
- Pereira, S.; Ferreira, P.; Vaz, A.I.F. Generation expansion planning with high share of renewables of variable output. Appl. Energy 2017, 190, 1275–1288. [Google Scholar] [CrossRef]
- Rady, Y.Y.; Rocco, M.V.; Serag-Eldin, M.; Colombo, E. Modelling for power generation sector in Developing Countries: Case of Egypt. Energy 2018, 165, 198–209. [Google Scholar] [CrossRef]
- Shinwari, E.M.F. Optimization Model using WASP-IV for Pakistan’s Power Plants Generation Expansion Plan. IOSR J. Electr. Electron. Eng. 2012, 3, 39–49. [Google Scholar] [CrossRef]
- Malik, A.; Kuba, C. Power Generation Expansion Planning Including Large Scale Wind Integration: A Case Study of Oman. Wind. Resour. Future Energy Secur. 2015, 2013, 51–68. [Google Scholar] [CrossRef]
- Wright, J.; Bischof-Niemz, T.; Calitz, J.; Mushwana, C.; van Heerden, R. Long-term electricity sector expansion planning: A unique opportunity for a least cost energy transition in South Africa. Renew. Energy Focus 2019, 30, 21–45. [Google Scholar] [CrossRef]
- Khan, I. Power generation expansion plan and sustainability in a developing country: A multi-criteria decision analysis. J. Clean. Prod. 2019, 220, 707–720. [Google Scholar] [CrossRef]
- Shirley, R.; Kammen, D. Energy planning and development in Malaysian Borneo: Assessing the benefits of distributed technologies versus large scale energy mega-projects. Energy Strat. Rev. 2015, 8, 15–29. [Google Scholar] [CrossRef]
- Muttaqien, K.I. Perencanaan Pengembangan Pembangkit Sistem Jawa-Bali Menggunakan Model Optimasi OSeMOSYS; Universitas Gadjah Mada: Yogyakarta, Indonesia, 2017. [Google Scholar]
- Budi, R.F.S. Optimasi Pengembangan Pembangkit Sistem Kelistrikan Jawa-Madura-Bali Menggunakan Game Theory: Multi-Period Framework, Bi-Level, dan Multi-Objective Optimization Method; Universitas Gadjah Mada: Yogyakarta, Indonesia, 2017. [Google Scholar]
- Muthahhari, A.A.; Putranto, L.M.; Sarjiya; Anugerah, F.S.; Priyanto, A.; Isnandar, S.; Savitri, I. Long-Term Generation Expansion Planning in Sulawesi Electricity System Considering High Share of Intermittent Renewable Energy Resource. In Proceedings of the 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE), Pattaya, Thailand, 10–11 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Putrisia, T.I. Perencanaan Sistem Pembangkitan untuk Wilayah Sulawesi dengan Menggunakan OSeMOSYS; Universitas Gadjah Mada: Yogyakarta, Indonesia, 2017. [Google Scholar]
- Tumiran; Sarjiya; Putranto, L.M.; Priyanto, A.; Savitri, I. Generation expansion planning for high-potential hydropower resources: The case of the Sulawesi electricity system. Int. J. Sustain. Energy Plan. Manag. 2020, 28, 37–52. [Google Scholar]
- Presiden Republik Indonesia. Peraturan Presiden Republik Indonesia No. 61 Tahun 2011 Tentang Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca; Presiden Republik Indonesia: Jakarta, Indonesia, 2011. [Google Scholar]
- Kementerian Hukum dan Hak Asasi Manusia. Undang-Undang Republik Indonesia No. 16 Tahun 2016 Tentang Pengesahaan Paris Agreement to The United Nations Framework Convention on Climate Change. 2016. Available online: https://peraturan.bpk.go.id/Home/Details/37573 (accessed on 29 June 2021).
- The World Bank. Indonesia and Climate Change: Current Status and Policies; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Indonesian Government. Indonesian Government Law No 79 In 2014 About National Energy Policy; Indonesian Government: Jakarta, Indonesia, 2014; p. 8. [Google Scholar]
- Pusat Kajian LKFT Universitas Gadjah Mada (LKFT Study Center Universitas Gadjah Mada). Penyusunan Kajian Masterplan Kelistrikan Sulawesi (The Sulawesi Electricity Master Plan Study); Pusat Kajian LKFT Universitas Gadjah Mada (LKFT Study Center Universitas Gadjah Mada): Yogyakarta, Indonesian, 2018. [Google Scholar]
- PT PLN (Persero). Statistik PLN 2019 (PLN STATISTICS 2019); PT PLN (Persero): Jakarta, Indonesia, 2019. [Google Scholar]
- de Lima, G.S.C.; Lopes, E.C.; Motta, J.G.; Asano, R.; Valverde, M.; Suyama, R.; Leite, P.T. Sustainable development enhanced in the decision process of electricity generation expansion planning. Renew. Energy 2018, 123, 563–577. [Google Scholar] [CrossRef]
- Palmintier, B.S.; Webster, M.D. Impact of Operational Flexibility on Electricity Generation Planning With Renewable and Carbon Targets. IEEE Trans. Sustain. Energy 2015, 7, 672–684. [Google Scholar] [CrossRef]
- Koltsaklis, N.; Dagoumas, A.S.; Kopanos, G.M.; Pistikopoulos, E.N.; Georgiadis, M.C. A spatial multi-period long-term energy planning model: A case study of the Greek power system. Appl. Energy 2013, 115, 456–482. [Google Scholar] [CrossRef]
- Nemati, H.; Latify, M.A.; Yousefi, G.R. Coordinated generation and transmission expansion planning for a power system under physical deliberate attacks. Int. J. Electr. Power Energy Syst. 2018, 96, 208–221. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Figueroa-Acevedo, A.; Boese, M.; Li, Y.; Mohan, N.; Okullo, J.; Heath, B.; Bakke, J. Challenges of planning for high renewable futures: Experience in the U.S. midcontinent electricity market. Renew. Sustain. Energy Rev. 2020, 131, 109992. [Google Scholar] [CrossRef]
- Bhuvanesh, A.; Christa, S.J.T.; Kannan, S.; Pandiyan, M.K. Aiming towards pollution free future by high penetration of renewable energy sources in electricity generation expansion planning. Futures 2018, 104, 25–36. [Google Scholar] [CrossRef]
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- Simiyu, P. Green-Based Generation Expansion Planning For Kenya Using Wien Automatic Software Package (WASP) IV Model. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2015, 3, 70–79. [Google Scholar]
- Rouhani, A.; Varamini, G.; Nikkhah, M. Generation Expansion Planning Considering Renewable Energies. Am. J. Eng. Res. 2013, 2, 276–286. [Google Scholar]
- Van Zuijlen, B.; Zappa, W.; Turkenburg, W.; Van Der Schrier, G.; van den Broek, M. Cost-optimal reliable power generation in a deep decarbonisation future. Appl. Energy 2019, 253. [Google Scholar] [CrossRef]
- Brouwer, A.S.; van den Broek, M.; Zappa, W.; Turkenburg, W.C.; Faaij, A. Least-cost options for integrating intermittent renewables in low-carbon power systems. Appl. Energy 2016, 161, 48–74. [Google Scholar] [CrossRef] [Green Version]
- Cole, W.; Greer, D.; Ho, J.; Margolis, R. Considerations for maintaining resource adequacy of electricity systems with high penetrations of PV and storage. Appl. Energy 2020, 279, 115795. [Google Scholar] [CrossRef]
- Al Naimi, M.S.; Ali, M.I.H.; Mogi, G. Abu Dhabi energy mix using PLEXOS as optimization tool. In Proceedings of the 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), Al Ain, United Arab Emirates, 25–28 February 2018; pp. 82–86. [Google Scholar] [CrossRef]
- González, P.; Romero-Cadaval, E.; González, E.; Guerrero, M.A. Impact of Grid Connected Photovoltaic System in the Power Quality of a Distribution Network. IFIP Adv. Inf. Commun. Technol. 2011, 349, 466–473. [Google Scholar]
- Collins, S.; Deane, P.; Poncelet, K.; Panos, E.; Pietzcker, R.; Delarue, E.; Gallachoir, B.O. Integrating short term variations of the power system into integrated energy system models: A methodological review. Renew. Sustain. Energy Rev. 2017, 76, 839–856. [Google Scholar] [CrossRef] [Green Version]
- Norvaiša, E.; Galinis, A.; Neniškis, E. Incorporation of wind power probabilities into long-term energy system development analysis using bottom-up models. Energy Strat. Rev. 2021, 38, 100770. [Google Scholar] [CrossRef]
- Kementerian Energi dan Sumber Daya Mineral Republik Indonesia (Ministry of Energy and Mineral Resources Republic of Indonesia). Rencana Usaha Penyediaan Tenaga Listrik PT. PLN (Persero) 2019–2028 (Electricity Supply Business Plan); Kementerian Energi dan Sumber Daya Mineral Republik Indonesia (Ministry of Energy and Mineral Resources Republic of Indonesia): Jakarta, Indonesia, 2019. [Google Scholar]
- Ibrahim, M.H.; Sarjiya; Putranto, L.M. Optimisasi Perencanaan Pengembangan Pembangkit Sistem Ambon-Seram Mempertimbangkan Energi Baru dan Terbarukan dan Faktor Lingkungan—Studi Kasus Sistem Ambon; Universitas Gadjah Mada: Yogyakarta, Indonesia, 2020. [Google Scholar]
- Triprastowo, B.; Sarjiya; Putranto, L.M. Optimisasi Perencanaan Pengembangan Pembangkit Sistem Ambon-Seram Mempertimbangkan Energi Baru dan Terbarukan dan Faktor Lingkungan—Studi Kasus Sistem Seram; Universitas Gadjah Mada: Yogyakarta, Indonesia, 2020. [Google Scholar]
- Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia. Lampiran I Surat Keputusan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia No. SK.7875/MENLHK-PHPL/KPHP/HPL.0/12/2020. 2020. Available online: https://geoportal.menlhk.go.id/webgis/index.php/en/map/printed-map (accessed on 20 March 2021).
- Billinton, R.; Allan, R.N. Reliability Evaluation of Power Systems, 2nd ed.; Plenum Press: New York, NY, USA, 1996. [Google Scholar]
- Phoon, H.Y. Generation System Reliability Evaluations with Intermittent Renewables. University of Strathclyde. 2006. Available online: https://www.esru.strath.ac.uk/Documents/MSc_2006/phoon.pdf (accessed on 1 December 2021).
No | Name | System | Capacity (MW) |
---|---|---|---|
1 | Diesel Hative Kecil | Ambon | 2.5 |
2 | Diesel Poka | 8.9 | |
3 | Gas Machine LMVPP | 54 | |
4 | Gas Machine Ambon Peaker | 30 | |
5 | Diesel Masohi | Seram | 0.49 |
6 | Diesel Kairatu | 1.51 | |
7 | Diesel Piru | 0.8 | |
8 | Diesel Sewa Kairatu | 3 | |
9 | Diesel Sewa Piru | 3 | |
10 | Gas Machine Seram | 20 | |
11 | Diesel Taniwel | 2.8 | |
12 | Diesel Saparua | Saparua | 2.6 |
13 | Diesel Haruku | Haruku | 4.9 |
Land Use | Land Area (ha) | Percentage of Land (%) |
---|---|---|
Protected and conservation forests | 5,740,106.35 | 30 |
Production forests | 9,619,213.95 | 51 |
Nonforest area | 3,666,141.96 | 19 |
Total | 19,025,462.26 | 100 |
Biomass Crop Types | Cycle (Year) | Biomass Land Requirements for a Biomass Power Plant (ha) | ||
---|---|---|---|---|
3 MW | 6 MW | 10 MW | ||
Acacia auriculiformis | 5 | 1570 | 3882 | 5232 |
Acacia mangium | 5 | 1682 | 3364 | 5606 |
Caliandra calothirsus | 5 | 2018 | 4036 | 6727 |
Gliricidia sepium | 3 | 1638 | 3276 | 5460 |
Eucalyptus pellita | 4 | 1744 | 6469 | 5813 |
Fuel Type | Price | Heat Content | ||||
---|---|---|---|---|---|---|
Value | Unit | Value | Unit | Value | Unit | |
Coal | 65 | $/Ton | 3.303 | $/GJ | 4700 | kcal/kg |
LNG | 15 | $/MMBTU | 9.478 | $/GJ | 252,000 | kcal/Mscf |
HSD | 0.5 | $/litre | 13.123 | $/GJ | 9100 | kcal/litre |
MFO | 0.4 | $/litre | 9.849 | $/GJ | 9700 | kcal/litre |
Geothermal | 1141.89 | IDR/kWh | 22.657 | $/GJ | 2.76 | MJ/kg |
Biomass | 500 | IDR/kWh | 2.5 | $/GJ | 3400 | kcal/kg |
System | Generating Unit | Unit Size | Capacity Factor | Heat Rate | Maintenance Rate | FOR | Technical Lifetime | Build Cost | FOM | VOM |
---|---|---|---|---|---|---|---|---|---|---|
MW | % | GJ/MWh | % | % | years | $/kWe | $/kWe/y | $/MWh | ||
Ambon and Seram | Coal PP | 25 | 70–90 | 9 | 11.51 | 7 | 30 | 1400 | 31.3 | 2 |
Gas machine | 10 | 30–50 | 8.37 | 2.88 | 3 | 25 | 800 | 18 | 1 | |
Geothermal | 5 | 60–80 | 4.32 | 7.67 | 10 | 30 | 4000 | 30 | 1 | |
Hydro | 10 | 30–56 | - | 11.51 | 4 | 50 | 2000 | 6.6 | 1 | |
Mini hydro | 1 | 65–75 | - | 11.51 | 4 | 35 | 2400 | 6.6 | 1 | |
Biomass | 0.5 | 70–90 | 9 | 11.51 | 7 | 25 | 1700 | 47.6 | 3 | |
Wind | 0.5 | - | - | 0.31 | 3 | 27 | 2200 | 39.55 | 0.8 | |
Solar | 1 | - | - | 5 | 5 | 25 | 2500 | 24.7 | 0.4 | |
Haruku and Saparua | Gas machine | 0.5 | 30–50 | 8.37 | 2.88 | 3 | 25 | 800 | 18 | 1 |
Biomass | 0.25 | 70–90 | 9 | 11.51 | 7 | 25 | 1700 | 47.6 | 3 | |
Wind | 0.1 | - | - | 0.31 | 3 | 27 | 2200 | 39.55 | 0.8 | |
Solar | 0.1 | - | - | 5 | 5 | 25 | 2500 | 24,7 | 0.4 |
Line Type | Conductor Type | Investment Cost (USD/kms) |
---|---|---|
Submarine Cable 150 kV | XLPE-CU3 × 300 mm2 | 3,660,000 |
Overhead Line 150 kV | ACSR 1 × 240 mm2 | 160,000 |
Overhead Line 70 kV | ACSR 1 × 240 mm2 | 70,000 |
No. | Line | Onshore Circuit (km) | Offshore Circuit (km) | Circuit (km) | Total Circuit | Investment (Million USD) |
---|---|---|---|---|---|---|
1 | Ambon–Haruku | 11.5 | 8 | 19.5 | 2 | 17.98 |
2 | Haruku–Saparua | 18.5 | 1.5 | 19.5 | 2 | 5.08 |
3 | Saparua–Seram | 29 | 7 | 36 | 2 | 16.52 |
Year | Coal | LNG | Biomass | ||||||
---|---|---|---|---|---|---|---|---|---|
Capacity (MW) | Energy (GWh) | Volume (Ton) | Capacity (MW) | Energy (GWh) | Volume (MMBTU) | Capacity (MW) | Energy (GWh) | Volume (Ton) | |
2020 | 0 | 0 | 0.0 | 129 | 440.95 | 3,510,684.9 | 0 | 0 | 0 |
2025 | 50 | 319.83 | 146,279.3 | 125 | 212.35 | 1,690,664.4 | 6 | 20.34 | 14,574.4 |
2030 | 80 | 495.02 | 226,405.6 | 125 | 184.85 | 1,471,672.8 | 9 | 19.18 | 13,742.1 |
2040 | 80 | 507.77 | 232,236.5 | 145 | 318.79 | 2,643,384.8 | 17 | 106.52 | 76,341.3 |
2050 | 80 | 501.36 | 229,303.2 | 145 | 367.62 | 3,092,886.9 | 51 | 314.64 | 225,489.0 |
Year | Coal | LNG | Biomass | ||||||
---|---|---|---|---|---|---|---|---|---|
Capacity (MW) | Energy (GWh) | Volume (Ton) | Capacity (MW) | Energy (GWh) | Volume (MMBTU) | Capacity (MW) | Energy (GWh) | Volume (Ton) | |
2020 | 0 | 0 | 0.0 | 129 | 439.92 | 3,502,494.1 | 0 | 0 | 0 |
2025 | 50 | 306.60 | 140,228.0 | 125 | 240.97 | 1,918,537.5 | 6 | 36.79 | 26,367.6 |
2030 | 80 | 490.48 | 224,329.7 | 125 | 117.31 | 933,959.2 | 6 | 36.79 | 26,367.6 |
2040 | 80 | 515.70 | 235,863.3 | 125 | 338.98 | 2,698,863.8 | 6 | 39.17 | 28,074.6 |
2050 | 80 | 496.45 | 227,059.8 | 125 | 331.85 | 2,642,032.1 | 90 | 565.96 | 405,604.3 |
Total Component Cost (Million USD) | Without the Interconnection Option | With the Interconnection Option | Without the Interconnection Option (LOLP Constrained) |
---|---|---|---|
Power Plant Investment Cost | 326.32 | 278.86 | 424.66 |
Line Investment Cost | - | 39.59 | - |
FOM Cost | 50.29 | 44.05 | 63.17 |
VOM Cost | 11.35 | 11.52 | 11.15 |
Fuel Cost | 421.51 | 399.68 | 448.05 |
Sub-Total (No Line) | 809.46 | 734.11 | 947.03 |
Total | 809.46 | 773.70 | 947.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumiran; Putranto, L.M.; Sarjiya; Wijaya, F.D.; Priyanto, A.; Savitri, I. Generation Expansion Planning Based on Local Renewable Energy Resources: A Case Study of the Isolated Ambon-Seram Power System. Sustainability 2022, 14, 3032. https://doi.org/10.3390/su14053032
Tumiran, Putranto LM, Sarjiya, Wijaya FD, Priyanto A, Savitri I. Generation Expansion Planning Based on Local Renewable Energy Resources: A Case Study of the Isolated Ambon-Seram Power System. Sustainability. 2022; 14(5):3032. https://doi.org/10.3390/su14053032
Chicago/Turabian StyleTumiran, Lesnanto Multa Putranto, Sarjiya, Fransisco Danang Wijaya, Adi Priyanto, and Ira Savitri. 2022. "Generation Expansion Planning Based on Local Renewable Energy Resources: A Case Study of the Isolated Ambon-Seram Power System" Sustainability 14, no. 5: 3032. https://doi.org/10.3390/su14053032
APA StyleTumiran, Putranto, L. M., Sarjiya, Wijaya, F. D., Priyanto, A., & Savitri, I. (2022). Generation Expansion Planning Based on Local Renewable Energy Resources: A Case Study of the Isolated Ambon-Seram Power System. Sustainability, 14(5), 3032. https://doi.org/10.3390/su14053032