The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study
Abstract
:1. Introduction
2. Electricity Price Forecasting
3. Materials and Methods
3.1. Clustering
3.2. Selecting Effective Parameters Using GCA
3.3. Forecasting Module
4. Numerical Studies
4.1. Data Description
4.2. Error Measurement Strategy
4.3. Simulation Results
4.3.1. GCA Results
4.3.2. Results for Correlation Value 0.5
4.3.3. Results for Correlation Value 0.6
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Parameters | |||
Entire number of input data components | Forecasted vector for sample g | ||
m | Entire number of input data in GCA | Actual vector for sample g | |
n | Entire kind of input data parameters in GCA | Mean value of actual vector | |
ξ | Distinguishing factor in GCA. | ||
Variables | |||
, , , | Offset vectors | Z-th data sample data at time ti for GCA | |
Current cell memory information in LSTM cell | Z-th data sample normalized data at time ti for GCA | ||
The temporary of the memory cell in the memory block | Normalized target data at time ti for GCA. | ||
The output of the output gate in LSTM cell | Grey coefficient between sequence and | ||
Hidden layer current state in LSTM cell | Grey correlation grade between sequence and | ||
The output of the input gate | Indices | ||
The output of forget gate | g | Output layer sample index | |
, , , | Weight matrices connecting the input signal x and the hidden layer output signal y | ti | Time sample index for Input data in GCA |
The current input in LSTM cell | z | Input data type index in GCA |
References
- Jahangir, H.; Tayarani, H.; Baghali, S.; Ahmadian, A.; Elkamel, A.; Golkar, M.A.; Castilla, M. A novel electricity price forecasting approach based on dimension reduction strategy and rough artificial neural networks. IEEE Trans. Ind. Inform. 2019, 16, 2369–2381. [Google Scholar] [CrossRef]
- Xu, F.Y.; Cun, X.; Yan, M.; Yuan, H.; Wang, Y.; Lai, L.L. Power market load forecasting on neural network with beneficial correlated regularization. IEEE Trans. Ind. Inform. 2018, 14, 5050–5059. [Google Scholar] [CrossRef]
- Li, X.; Li, X. Big data and its key technology in the future. Comput. Sci. Eng. 2018, 20, 75–88. [Google Scholar] [CrossRef]
- Lago, J.; Marcjasz, G.; De Schutter, B.; Weron, R. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. Appl. Energy 2021, 293, 116983. [Google Scholar] [CrossRef]
- Jahangir, H.; Tayarani, H.; Gougheri, S.S.; Golkar, M.A.; Ahmadian, A.; Elkamel, A. Deep Learning-Based Forecasting Approach in Smart Grids With Microclustering and Bidirectional LSTM Network. IEEE Trans. Ind. Electron. 2020, 68, 8298–8309. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Uniejewski, B.; Weron, R. Regularized quantile regression averaging for probabilistic electricity price forecasting. Energy Econ. 2021, 95, 105121. [Google Scholar] [CrossRef]
- Jędrzejewski, A.; Marcjasz, G.; Weron, R. Importance of the long-term seasonal component in day-ahead electricity price forecasting revisited: Parameter-rich models estimated via the LASSO. Energies 2021, 14, 3249. [Google Scholar] [CrossRef]
- Marcjasz, G.; Uniejewski, B.; Weron, R. Beating the naïve—Combining LASSO with naïve intraday electricity price forecasts. Energies 2020, 13, 1667. [Google Scholar] [CrossRef] [Green Version]
- Gilanifar, M.; Wang, H.; Sriram, L.M.; Ozguven, E.E.; Arghandeh, R. Multitask Bayesian spatiotemporal Gaussian processes for short-term load forecasting. IEEE Trans. Ind. Electron. 2019, 67, 5132–5143. [Google Scholar] [CrossRef]
- Palhares, R.M.; Yuan, Y.; Wang, Q. Artificial intelligence in industrial systems. IEEE Trans. Ind. Electron. 2019, 66, 9636–9640. [Google Scholar] [CrossRef]
- Rusk, N. Deep learning. Nat. Methods 2016, 13, 35. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Hajirahimi, Z.; Khashei, M. Hybrid structures in time series modeling and forecasting: A review. Eng. Appl. Artif. Intell. 2019, 86, 83–106. [Google Scholar] [CrossRef]
- Hamdoun, H.; Sagheer, A.; Youness, H. Energy time series forecasting-analytical and empirical assessment of conventional and machine learning models. J. Intell. Fuzzy Syst. 2021, 40, 12477–12502, Preprint. [Google Scholar] [CrossRef]
- Bibi, N.; Shah, I.; Alsubie, A.; Ali, S.; Lone, S.A. Electricity Spot Prices Forecasting Based on Ensemble Learning. IEEE Access 2021, 9, 150984–150992. [Google Scholar] [CrossRef]
- Javed, U.; Ijaz, K.; Jawad, M.; Ansari, E.A.; Shabbir, N.; Kütt, L.; Husev, O. Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis. Energies 2021, 14, 5510. [Google Scholar] [CrossRef]
- Lisi, F.; Shah, I. Forecasting next-day electricity demand and prices based on functional models. Energy Syst. 2020, 11, 947–979. [Google Scholar] [CrossRef]
- Shah, I.; Lisi, F. Forecasting of electricity price through a functional prediction of sale and purchase curves. J. Forecast. 2020, 39, 242–259. [Google Scholar] [CrossRef]
- Shah, I.; Bibi, H.; Ali, S.; Wang, L.; Yue, Z. Forecasting one-day-ahead electricity prices for italian electricity market using parametric and nonparametric approaches. IEEE Access 2020, 8, 123104–123113. [Google Scholar] [CrossRef]
- Shah, I.; Iftikhar, H.; Ali, S. Modeling and forecasting medium-term electricity consumption using component estimation technique. Forecasting 2020, 2, 163–179. [Google Scholar] [CrossRef]
- Shah, I.; Iftikhar, H.; Ali, S.; Wang, D. Short-term electricity demand forecasting using components estimation technique. Energies 2019, 12, 2532. [Google Scholar] [CrossRef] [Green Version]
- Shah, I.; Akbar, S.; Saba, T.; Ali, S.; Rehman, A. Short-term forecasting for the electricity spot prices with extreme values treatment. IEEE Access 2021, 9, 105451–105462. [Google Scholar] [CrossRef]
- Uppal, M.; Garg, V.K.; Kumar, D. Weather biased optimal delta model for short-term load forecast. IET Smart Grid 2020, 3, 835–842. [Google Scholar] [CrossRef]
- Schütz Roungkvist, J.; Enevoldsen, P.; Xydis, G. High-resolution electricity spot price forecast for the Danish power market. Sustainability 2020, 12, 4267. [Google Scholar] [CrossRef]
- Solyali, D. A comparative analysis of machine learning approaches for short-/long-term electricity load forecasting in Cyprus. Sustainability 2020, 12, 3612. [Google Scholar] [CrossRef]
- Aslam, S.; Ayub, N.; Farooq, U.; Alvi, M.J.; Albogamy, F.R.; Rukh, G.; Haider, S.I.; Azar, A.T.; Bukhsh, R. Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid. Sustainability 2021, 13, 12653. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, K.; Yang, S.; Lu, X. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting. Energy 2019, 171, 1053–1065. [Google Scholar] [CrossRef]
- Wen, S.; Wang, Y.; Tang, Y.; Xu, Y.; Li, P.; Zhao, T. Real-time identification of power fluctuations based on lstm recurrent neural network: A case study on singapore power system. IEEE Trans. Ind. Inform. 2019, 15, 5266–5275. [Google Scholar] [CrossRef]
- Toubeau, J.F.; Bottieau, J.; Vallée, F.; De Grève, Z. Deep learning-based multivariate probabilistic forecasting for short-term scheduling in power markets. IEEE Trans. Power Syst. 2018, 34, 1203–1215. [Google Scholar] [CrossRef]
- Cui, M.; Khodayar, M.; Chen, C.; Wang, X.; Zhang, Y.; Khodayar, M.E. Deep learning-based time-varying parameter identification for system-wide load modeling. IEEE Trans. Smart Grid 2019, 10, 6102–6114. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.J.; Chang, L.C.; Kao, I.F.; Wang, Y.S. Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 2019, 209, 134–145. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, Y.; Chen, W. Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform. Energy 2019, 187, 115804. [Google Scholar] [CrossRef]
- Mujeeb, S.; Javaid, N.; Ilahi, M.; Wadud, Z.; Ishmanov, F.; Afzal, M.K. Deep long short-term memory: A new price and load forecasting scheme for big data in smart cities. Sustainability 2019, 11, 987. [Google Scholar] [CrossRef] [Green Version]
- Fatema, I.; Kong, X.; Fang, G. Electricity demand and price forecasting model for sustainable smart grid using comprehensive long short term memory. Int. J. Sustain. Eng. 2021, 14, 1714–1732. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.-W.; Li, Y.-F. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network. Energy Convers. Manag. 2018, 156, 498–514. [Google Scholar] [CrossRef]
- Veit, D.J.; Weidlich, A.; Yao, J.; Oren, S.S. Simulating the dynamics in two-settlement electricity markets via an agent-based approach. Int. J. Manag. Sci. Eng. Manag. 2006, 1, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, H.S.; Fang, L.; Guan, L. Forecasting day-ahead price spikes for the Ontario electricity market. Electr. Power Syst. Res. 2016, 141, 450–459. [Google Scholar] [CrossRef]
- Nowotarski, J.; Weron, R. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renew. Sustain. Energy Rev. 2018, 81, 1548–1568. [Google Scholar] [CrossRef]
- Uniejewski, B.; Marcjasz, G.; Weron, R. Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO. Int. J. Forecast. 2019, 35, 1533–1547. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Ce, L.; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Appl. Energy 2017, 190, 291–305. [Google Scholar] [CrossRef]
- Wang, K.; Xu, C.; Zhang, Y.; Guo, S.; Zomaya, A.Y. Robust big data analytics for electricity price forecasting in the smart grid. IEEE Trans. Big Data 2017, 5, 34–45. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Y. Introduction to grey systems theory. In Grey Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–18. [Google Scholar]
- Zhou, S.; Zhou, L.; Mao, M.; Tai, H.M.; Wan, Y. An optimized heterogeneous structure LSTM network for electricity price forecasting. IEEE Access 2019, 7, 108161–108173. [Google Scholar] [CrossRef]
- The Independent Electricity System Operator (IESO). 2018. Available online: http://ieso.ca/ (accessed on 5 December 2018).
- Wang, L.; Zhang, Z.; Chen, J. Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst. 2016, 32, 2673–2681. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Sanaye-Pasand, M. A new predictive approach to wide-area out-of-step protection. IEEE Trans. Ind. Inform. 2018, 15, 1890–1898. [Google Scholar] [CrossRef]
Non-Clustering | Seasonal Clustering | Monthly Clustering | |||||||
---|---|---|---|---|---|---|---|---|---|
Date | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE |
30 March 2018 | 0.278435 | 1.03064 | 0.401885 | 0.274898 | 1.01755 | 0.399363 | 0.271402 | 1.004607 | 0.37668 |
March 2018 | 0.100155 | 0.919093 | 0.134502 | 0.097938 | 0.898752 | 0.134302 | 0.095492 | 0.876302 | 0.126315 |
30 August 2018 | 0.718319 | 0.965788 | 0.755829 | 0.707927 | 0.951815 | 0.747863 | 0.590662 | 0.794151 | 0.617849 |
30 July 2018 | 0.334843 | 0.916085 | 0.387628 | 0.322518 | 0.882367 | 0.373947 | 0.212374 | 0.581027 | 0.266549 |
July 2018 | 0.220278 | 0.852426 | 0.254799 | 0.208578 | 0.80715 | 0.24533 | 0.128541 | 0.497425 | 0.163983 |
27 September 2018 | 0.177126 | 0.878413 | 0.26119 | 0.123373 | 0.611835 | 0.205115 | 0.11053 | 0.548144 | 0.196724 |
September 2018 | 0.076773 | 0.7422 | 0.119532 | 0.058819 | 0.56863 | 0.095234 | 0.05384 | 0.520497 | 0.09442 |
Non-Clustering | Seasonal Clustering | Monthly Clustering | |||||||
---|---|---|---|---|---|---|---|---|---|
Date | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE |
30 March 2018 | 0.335223 | 1.240845 | 0.453206 | 0.288832 | 1.069127 | 0.408023 | 0.278811 | 1.032032 | 0.396027 |
March 2018 | 0.120099 | 1.102112 | 0.15613 | 0.117517 | 1.078423 | 0.151843 | 0.104502 | 0.958984 | 0.135949 |
30 August 2018 | 0.788079 | 1.059581 | 0.834331 | 0.783233 | 1.053065 | 0.823699 | 0.622135 | 0.836467 | 0.65346 |
30 July 2018 | 0.392924 | 1.074989 | 0.455631 | 0.390127 | 1.067337 | 0.445071 | 0.257015 | 0.703159 | 0.309999 |
July 2018 | 0.26909 | 1.04132 | 0.31132 | 0.240731 | 0.931574 | 0.276083 | 0.152377 | 0.589666 | 0.188007 |
28 February 2018 | 0.241559 | 1.3833 | 0.357837 | 0.222776 | 1.275739 | 0.341735 | 0.218931 | 1.253718 | 0.337652 |
February 2018 | 0.169699 | 0.911453 | 0.221781 | 0.166475 | 0.894133 | 0.21366 | 0.164636 | 0.884258 | 0.211801 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pourhaji, N.; Asadpour, M.; Ahmadian, A.; Elkamel, A. The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study. Sustainability 2022, 14, 3063. https://doi.org/10.3390/su14053063
Pourhaji N, Asadpour M, Ahmadian A, Elkamel A. The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study. Sustainability. 2022; 14(5):3063. https://doi.org/10.3390/su14053063
Chicago/Turabian StylePourhaji, Nazila, Mohammad Asadpour, Ali Ahmadian, and Ali Elkamel. 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study" Sustainability 14, no. 5: 3063. https://doi.org/10.3390/su14053063
APA StylePourhaji, N., Asadpour, M., Ahmadian, A., & Elkamel, A. (2022). The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study. Sustainability, 14(5), 3063. https://doi.org/10.3390/su14053063