Resilience Analysis of Australian Electricity and Gas Transmission Networks
Abstract
:1. Introduction
1.1. The Resilience of Energy Networks
1.2. Australian National Energy Network
1.3. Resilience Analysis with Complex Network Theories
2. Literature Review
2.1. Random Graph Models
2.2. Scale-Free Network Models
2.3. Small World Network Models
- The model has existing cliques without hubs, a higher level of clustering coefficient;
- The degrees of nodes follow a fat-tailed distribution;
- The model has a smaller average path length than Erdos-Renyi networks:
3. Robustness Analysis of Energy Networks
4. The Case Study Dataset
5. Results and Discussion
5.1. Topological Features
5.2. Resilience Analysis against Fault or Failure
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Infrastructure Australia. Australian Infrastructure Audit 2019; 2019. Available online: https://www.infrastructureaustralia.gov.au/australian-infrastructure-audit-2019-transport (accessed on 20 December 2021).
- Lark, J.P.; Nelson, R.B.; Chappelle, L. Michigan Public Service Commission Report on August 14th Blackout. November 2003. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi3kIHosbb2AhUfzDgGHUwLALUQFnoE-CAoQAQ&url=https%3A%2F%2Fwww.michigan.gov%2Fdocuments%2Fmpsc_blackout_77423_7.pdf&usg=AOvVaw2CS_bDi6uf04dNxQM3Hp1s (accessed on 20 December 2021).
- European Regulators Group for Electricity and Gas. ERGEG Final Report: The Lessons to Be Learned from the Large Disturbance in the European Power System on the 4th of November 2006. 2007, pp. 1–35. Available online: https://www.ceer.eu/documents/104400/-/-/b4f16360-b355-5d50-bf33-01f8a76fc95a (accessed on 20 December 2021).
- Xue, Y.; Xiao, S. Generalized congestion of power systems: Insights from the massive blackouts in India. J. Mod. Power Syst. Clean Energy 2013, 1, 91–100. [Google Scholar] [CrossRef] [Green Version]
- AEMO. Black System. 2019. Available online: https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf (accessed on 20 December 2021).
- North American Electric Reliability Corporation. Glossary of Terms Used in Reliability Standards. 2008. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwirx4Kw79XwAhXJXCsKHWsnBqgQFjADegQIAx-AD&url=https%3A%2F%2Fwww.nerc.com%2Ffiles%2Fglossary_of_terms.pdf&usg=AOvVaw19BRFvocTYh5yJ2BkU7_MV (accessed on 20 December 2021).
- Zhai, C.; Zhang, H.; Xiao, G.; Pan, T.C. Modelling and identification of worst-case cascading failures in power systems. arXiv 2017, arXiv:1703.05232, 1–27. [Google Scholar]
- Qin, A.; Chien, A.C. Rolling Blackouts Hit Taiwan After Accident at Power Plant - The New York Times. New York Times. 27 September 2021. Available online: https://www.nytimes.com/2021/05/13/world/asia/taiwan-blackout-power-outage.html (accessed on 8 October 2021).
- Smee, B. Queensland power plant explosion causes mass outages across state—Australia news. The Guardian. 2021. Available online: https://www.theguardian.com/australia-news/2021/may/25/queensland-power-plant-explosion-causes-mass-outage (accessed on 13 September 2021).
- Pollard, E. Queensland Blackout to Be Investigated after Fire at Callide Power Station Cuts Power to Large Parts of the State—ABC News. ABC News. 2021. Available online: https://www.abc.net.au/news/2021-05-26/qld-callide-power-station-biloela-investigation/100164942#:~:text=The%20electricity%20operator%20at%20the,explosion%20at%20Callide%20Power%20Station (accessed on 13 September 2021).
- Infrastructure Australia. An Assessment of Australia’s Future Infrastructure Needs; 2019. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjF5OXz1Lr2AhVO05QKHfjpAS4QFnoECA4QAQ&url=https%3A%2F%2Fwww.infrastructureaustralia.gov.au%2Fsites%2Fdefault%2Ffiles%2F2019-08%2FAustralian%2520Infrastructure%2520Audit%25202019.pdf&usg=AOvVaw0IdJgWNgGSzg0xAoLEDctp (accessed on 20 December 2021).
- CSIRO. Climate and Disaster Resilience Report; Sydney. 2020. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjwrOa91Lr2AhWJy4sBHcowDWIQFnoECAwQAQ&url=https%3A%2F%2Fwww.csiro.au%2F-%2Fmedia%2FEnvironment%2FCSIRO-Report-Climate-and-Disaster-Resilience-Overview.pdf&usg=AOvVaw0u0rKqxQRpa4F0jjCC763D (accessed on 20 December 2021).
- AEMO. National Electricity Market (NEM). 2020. Available online: https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem (accessed on 20 December 2021).
- Ogge, M.; Aulby, H. Can’t Stand the Heat the Energy Security Risk of Australia ’ s Reliance on Coal and Gas. 2017. Available online: https://apo.org.au/node/121471 (accessed on 20 December 2021).
- Chang, C. SA Power Outage 2017: Why Blackouts Are a Problem for All Australians. news.com.au. 2017. Available online: https://www.news.com.au/technology/environment/why-south-australias-blackouts-are-a-problem-for-us-all/news-story/bc3bbc8be17d80844bc05ab7f5760d56 (accessed on 20 December 2021).
- Dan Harrison What Caused the Blackouts in Melbourne, and Do Victorians Need to Get Used to Power Cuts?—ABC News. ABC News. 2019. Available online: https://www.abc.net.au/news/2019-01-26/victorian-blackouts-what-caused-them-and-is-this-the-new-normal/10751412 (accessed on 20 December 2021).
- Ausgrid. Ausgrid Past Outages Data. Available online: https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Past-outage-data (accessed on 20 December 2021).
- Core Energy Group. Gas Network Sector Study; Adelaide, 2014. Available online: https://www.energynetworks.com.au/resources/reports/ena-i-gas-network-sector-study/ (accessed on 20 December 2021).
- NSW Department of Planning & Environment. New South Wales 2016-17 Gas Networks Performance Report; 2017. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiT6Prh0rr2AhWMv5QKHYNlBAEQFnoECAsQAQ&url=https%3A%2F%2Fenergy.nsw.gov.au%2Fmedia%2F1751&usg=AOvVaw258aCL5iVhunqR5_Yptai9 (accessed on 20 December 2021).
- DELWP. Review of Victoria ’ s Electricity and Gas Network Safety Framework; 2017. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiLwuGZ0rr2AhVGyosBHZXECLoQFnoECA0QAQ&url=https%3A%2F%2Fengage.vic.gov.au%2Fdownload%2Fdocument%2F1929&usg=AOvVaw1bS1Qb8LDENj3rWKhOgLmI (accessed on 20 December 2021).
- Formston, G.; Harcus, P.; Castlin, G. Safety Case (SAOP) of Jemena Gas Assets (NSW); Jemena: Melbourne, Australia, 2018. [Google Scholar]
- Australian Gas Network. Key Support for Gas Vision 2050 Australian Gas Networks. 2017. Available online: https://www.australiangasnetworks.com.au/our-business/about-us/media-releases/key-support-for-gas-vision-2050 (accessed on 14 May 2020).
- Morgan, E.; Long, S. Coronavirus Economic Recovery Committee Looks Set to Push Australia towards Gas-Fired Future. 2020, pp. 13–15. Available online: https://www.abc.net.au/news/2020-05-13/coronavirus-recovery-to-push-australia-towards-gas-future/12239978 (accessed on 20 December 2021).
- Guo, H.; Zheng, C.; Iu, H.H.C.; Fernando, T. A critical review of cascading failure analysis and modeling of power system. Renew. Sustain. Energy Rev. 2017, 80, 9–22. [Google Scholar] [CrossRef]
- Rosas-Casals, M.; Valverde, S.; Solé, R.V. Topological vulnerability of the European power grid under errors and attacks. Int. J. Bifurc. Chaos 2007, 17, 2465–2475. [Google Scholar] [CrossRef]
- Holme, P.; Kim, B.J.; Yoon, C.N.; Han, S.K. Attack vulnerability of complex networks. Phys. Rev. E 2002, 65, 14. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Zhang, X.; Cao, M. Power Grid Complexity; Tsinghua University Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 9787302232803. [Google Scholar]
- Xiaohui, Y.; Wuzhi, Z.; Xinli, S.; Guoyang, W.; Tao, L.; Zhida, S. Review on power system cascading failure theories and studies. In Proceedings of the n 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, China, 16–20 October 2016; pp. 1–6. [Google Scholar]
- Meng, Z.-W.; Lu, Z.; Song, J. Comparison analysis of the small-world topological model of Chinese and American power grids. Automation Electr. Power Syst. 2004, 28, 21–29. [Google Scholar]
- Holmgren, A.J. Using Graph Models to Analyze the Vulnerability of Electric Power Networks. Risk Anal. 2006, 26, 955–969. [Google Scholar] [CrossRef]
- Ding, M.; Han, P.-P. Small-world topological model based vulnerability assessment algorithm for large-scale power grid. Automation Electr. Power Syst. 2006, 30, 7–10, 40. [Google Scholar]
- Albert, R.; Albert, I.; Nakarado, G. Structural Vulnerability of the North American Power Grid. Phys. Rev. E 2004, 69, 25103. [Google Scholar] [CrossRef] [Green Version]
- Crucitti, P.; Latora, V.; Marchiori, M. A topological analysis of the Italian electric power grid. Phys. A Stat. Mech. Appl. 2004, 338, 92–97. [Google Scholar] [CrossRef]
- Chassin, D.P.; Posse, C. Evaluating North American electric grid reliability using the Barabási-Albert network model. Phys. A Stat. Mech. Appl. 2005, 355, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Cotilla-Sanchez, E.; Hines, P.D.H.; Barrows, C.; Blumsack, S. Comparing the Topological and Electrical Structure of the North American Electric Power Infrastructure. IEEE Syst. J. 2012, 6, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of “small-world” networks. In The Structure and Dynamics of Networks; Princeton University Press: Princeton, NJ, USA, 2011; pp. 301–303. ISBN 9781400841356. [Google Scholar]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdös, P. Graph Theory and Probability. Can. J. Math. 1959, 11, 34–38. [Google Scholar] [CrossRef]
- Diestel, R. Random Graphs. In Graph Theory; Springer: Berlin/Heidelberg, Germany, 2017; pp. 324–342. [Google Scholar] [CrossRef]
- Erdos, P.; Rényi, A. On the evolution of random graphs. In The Structure and Dynamics of Networks; Princeton University Press: Princeton, NJ, USA, 2011; pp. 38–82. [Google Scholar] [CrossRef]
- Bollobás, B. Paul Erdős and probability theory. Random Struct. Algorithms 1998, 13, 521–533. [Google Scholar] [CrossRef]
- Bildea, A.; Alphand, O.; Rousseau, F.; Duda, A. Link quality estimation with the Gilbert-Elliot model for wireless sensor networks. IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC 2015, 2015, 2049–2054. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Saldanha, T.J.V.; Malladi, S.; Melville, N.P. Theories Used in Information System Research: Insights from Complex Network Analysis. J. Inf. Technol. Theory Appl. 2013, 14, 5–46. [Google Scholar]
- Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Klemm, K.; Eguíluz, V.M. Highly clustered scale-free networks. Phys. Rev. E 2002, 65, 036123. [Google Scholar] [CrossRef] [Green Version]
- Saramäki, J.; Kaski, K. Scale-free networks generated by random walkers. Phys. A Stat. Mech. Appl. 2004, 341, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Chen, G. Modeling the complex topology of the internet. Dyn. Contin. Discret. Impuls. Syst. Ser. B Appl. Algorithms 2006, 13, 353–359. [Google Scholar]
- Nunes, T.C.; Brito, S.; Da Silva, L.R.; Tsallis, C. Role of dimensionality in preferential attachment growth in the Bianconi-Barabási model. J. Stat. Mech. Theory Exp. 2017, 2017, 093402. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Zhang, L.F.; Huang, J.P. The Watts-Strogatz network model developed by including degree distribution: Theory and computer simulation. J. Phys. A Math. Theor. 2007, 40, 8237–8246. [Google Scholar] [CrossRef]
- Xia, Y.; Fan, J.; Hill, D. Cascading failure in Watts-Strogatz small-world networks. Phys. A Stat. Mech. Appl. 2010, 389, 1281–1285. [Google Scholar] [CrossRef]
- Crossley, N.; Bellotti, E.; Edwards, G.; Everett, M.G.; Koskinen, J.; Tranmer, M. Statistical Analysis Of Network Dynamics. In Social Network Analysis for Ego-Nets; Sage Publications Ltd.: London, UK, 2015; pp. 151–177. [Google Scholar] [CrossRef]
- Ash, J.; Newth, D. Optimizing complex networks for resilience against cascading failure. Phys. A Stat. Mech. Appl. 2007, 380, 673–683. [Google Scholar] [CrossRef]
- Mei, S.; Ni, Y.; Wang, G.; Wu, S. A Study of Self-Organized Criticality of Power System Under Cascading Failures Based on AC-OPF With Voltage Stability Margin. IEEE Trans. Power Syst. 2008, 23, 1719–1726. [Google Scholar] [CrossRef]
- Crucitti, P.; Latora, V.; Marchiori, M. A model for cascading failures in complex networks. arXiv 2004, arXiv:cond-mat/030914169. [Google Scholar] [CrossRef] [Green Version]
- Motter, A.; Ying-Cheng, L. Cascade-based attacks on complex networks. arXiv 2003, arXiv:cond-mat/030108666. [Google Scholar] [CrossRef] [Green Version]
- Dobson, I.; Carreras, B.A.; Newman, D.E. A probabilistic loading-dependent model of cascading failure and possible implications for blackouts. In Proceedings of the 36th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 6–9 January 2003; p. 10. [Google Scholar]
- Wang, K.W.; Sun, J.M.; Guan, J.T.; Zhu, D.W. A percolation study of electrical properties of reservoir rocks. Phys. A Stat. Mech. Appl. 2007, 380, 19–26. [Google Scholar] [CrossRef]
- Broadbent, S.R.; Hammersley, J.M. Percolation processes: I. Crystals and mazes. Math. Proc. Cambridge Philos. Soc. 1957, 53, 629–641. [Google Scholar] [CrossRef]
- Sahimi, M. Applications of Percolation Theory; Taylor & Francis: Bristol, PA, 1993; ISBN 0748400753. [Google Scholar]
- Veillette, M.; Taqqu, M. Distribution Functions of Poisson Random Integrals: Analysis and Computation. Methodol. Comput. Appl. Probab. 2012, 14, 169–202. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J.; Strogatz, S.H.; Watts, D.J. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 2001, 64, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, N.; Cohen, R.; ben-Avraham, D.; Barabási, A.L.; Havlin, S. Percolation in directed scale-free networks. Phys. Rev. E 2002, 66, 015104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, R.; ben-Avraham, D.; Havlin, S. Percolation critical exponents in scale-free networks. Phys. Rev. E 2002, 66, 036113. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, O.E. Random Graph Dynamics by Rick Durrett. Int. Stat. Rev. 2007, 75, 428. [Google Scholar] [CrossRef]
- Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S. Resilience of the Internet to random breakdowns. Phys. Rev. Lett. 2000, 85, 4626–4628. [Google Scholar] [CrossRef] [Green Version]
- Callaway, D.S.; Newman, M.E.J.; Strogatz, S.H.; Watts, D.J. Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 2000, 85, 5468–5471. [Google Scholar] [CrossRef] [Green Version]
- Radicchi, F.; Castellano, C. Breaking of the site-bond percolation universality in networks. Nat. Commun. 2015, 6, 10196. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor & Francis: London, UK, 2018. [Google Scholar]
- Kalisky, T. Complex Networks: Structure, Percolation and Optimization Acknowledgments. Ph.D. Thesis, Bar-Ilan university, Ramat Gan, Israel, January 2006. [Google Scholar]
- Dorogovtsev, S.N.; Goltsev, A.V.; Mendes, J.F.F. Critical phenomena in complex networks. Rev. Mod. Phys. 2008, 80, 1275–1335. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.; Newman, M.E.J. Exact solution of site and bond percolation on small-world networks. Phys. Rev. E 2000, 62, 7059–7064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavique, L.; Mendes, A.B.; Santos, J.M. Clique Communities in Social Networks. In Quantitative Modelling in Marketing and Management; Moutinho, L., Huarng, K.-H., Eds.; World Scientific: Singapore, 2015; pp. 469–490. [Google Scholar] [CrossRef]
- Tóth, B.; Vicsek, T.; Palla, G. Overlapping Modularity at the Critical Point of k - Clique Percolation. J. Stat. Phys. 2013, 151, 689–706. [Google Scholar] [CrossRef] [Green Version]
- Geoscience Australia. National Oil and Gas Infrastructure WMS; 2016. Available online: https://data.gov.au/dataset/ds-ga-29b9b918-c5b1-fb1d-e053-10a3070a1a72/distribution/dist-ga-29b9b918-c5b1-fb1d-e053-10a3070a1a72-0/details?q= (accessed on 15 May 2020).
Electricity Network | Gas Network | |
---|---|---|
Highest degree node | Node 293 | Node “Ddg” |
Degree of highest degree node | 22 | 7 |
Number of nodes in core (% of total nodes) | 1092 nodes (92.54%) | 11 nodes (2.95%) |
Number of connected components | 42 | 160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.A.; Tasnim, M.; Basnyat, Z.S.; Karimi, F.; Khalilpour, K. Resilience Analysis of Australian Electricity and Gas Transmission Networks. Sustainability 2022, 14, 3273. https://doi.org/10.3390/su14063273
Kumar SA, Tasnim M, Basnyat ZS, Karimi F, Khalilpour K. Resilience Analysis of Australian Electricity and Gas Transmission Networks. Sustainability. 2022; 14(6):3273. https://doi.org/10.3390/su14063273
Chicago/Turabian StyleKumar, Shriram Ashok, Maliha Tasnim, Zohvin Singh Basnyat, Faezeh Karimi, and Kaveh Khalilpour. 2022. "Resilience Analysis of Australian Electricity and Gas Transmission Networks" Sustainability 14, no. 6: 3273. https://doi.org/10.3390/su14063273
APA StyleKumar, S. A., Tasnim, M., Basnyat, Z. S., Karimi, F., & Khalilpour, K. (2022). Resilience Analysis of Australian Electricity and Gas Transmission Networks. Sustainability, 14(6), 3273. https://doi.org/10.3390/su14063273