Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan
Abstract
:1. Introduction
2. MSW Landfilling Approaches
2.1. Open Dumps
2.2. Anaerobic Landfills
2.3. Semi-Aerobic Landfills
2.4. Aerated Landfills
2.5. Bioreactor Landfills
3. Methods and Data
3.1. Estimation of Methane Emissions from Waste Disposal Sites in Karachi
3.2. Estimation of Land Requirement for Bioreactor Landfill
3.3. Estimation of Power Generation from Bioreactor Landfill
3.4. Determination of k Value for Waste Degradation in Karachi
3.5. Estimation of Liquid Required for Bioreactor Landfill
4. Proposal for Development of Bioreactor Landfills in Karachi
4.1. Estimation of Methane Emissions from Waste Disposal Sites in Karachi
4.2. Bioreactor Landfill Operations
4.3. Estimation of Land Requirement for Bioreactor Landfill
4.4. Estimation of Methane Production and Power Generation from Bioreactor Landfill
4.5. Determination of k Value for Waste Degradation in Karachi
4.6. Estimation of Liquid Requirement for Bioreactor Landfill
4.7. Design Componetnts of Bioreactor Landfill
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, A.; Ren, F.; Lin, W.Y.; Wang, J.-Y. A review of municipal solid waste environmental standards with a focus on incinerator residues. Int. J. Sustain. Built Environ. 2015, 4, 165–188. [Google Scholar] [CrossRef] [Green Version]
- Zia, U.U.R.; Rashid, T.U.; Ali, M.; Awan, W.N. Techno-economic assessment of energy generation through municipal solid waste: A case study for small/medium size districts in Pakistan. Waste Dispos. Sustain. Energy 2020, 2, 337–350. [Google Scholar] [CrossRef]
- Wilson, D.C.; Velis, C.A. Waste management—Still a global challenge in the 21st century: An evidence-based call for action. Waste Manag. Res. 2015, 33, 1049–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, M.; Agrawal, M. Greenhouse Gas Emissions from Municipal Solid Waste Management: A Review of Global Scenario. Available online: https://link.springer.com/chapter/10.1007/978-981-15-9577-6_5 (accessed on 6 February 2022).
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Reinhart, D.; Bolyard, S.C.; Berge, N. Grand Challenges—Management of municipal solid waste. Waste Manag. 2016, 49, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Lee, S.H.; Kumar, P.; Kim, K.H.; Lee, S.S.; Bhattacharya, S.S. Solid waste management: Scope and the challenge of sustainability. J. Clean. Prod. 2019, 228, 658–678. [Google Scholar] [CrossRef]
- Marshall, R.E.; Farahbakhsh, K. Systems approaches to integrated solid waste management in developing countries. Waste Manag. 2013, 33, 988–1003. [Google Scholar] [CrossRef]
- Ritzkowski, M.; Stegmann, R. Landfill aeration worldwide: Concepts, indications and findings. Waste Manag. 2012, 32, 1411–1419. [Google Scholar] [CrossRef]
- Jouhara, H.; Czajczyńska, D.; Ghazal, H.; Krzyżyńska, R.; Anguilano, L.; Reynolds, A.J.; Spencer, N. Municipal waste management systems for domestic use. Energy 2017, 139, 485–506. [Google Scholar] [CrossRef]
- Hettiaratchi, J.P.A.; Jayasinghe, P.A.; Yarandy, T.A.; Attalage, D.; Jalilzadeh, H.; Pokhrel, D.; Bartholameuz, E.; Hunte, C. Innovative Practices to Maximize Resource Recovery and Minimize Greenhouse Gas Emissions from Landfill Waste Cells: Historical and Recent Developments. J. Indian Inst. Sci. 2021, 101, 1–20. [Google Scholar] [CrossRef]
- Fei, X.; Fang, M.; Wang, Y. Climate change affects land-disposed waste. Nat. Clim. Chang. 2021, 32, 1411–1419. [Google Scholar] [CrossRef]
- Cossu, R. Technical evolution of landfilling. Waste Manag. 2010, 30, 947–948. [Google Scholar] [CrossRef] [PubMed]
- Mir, I.S.; Cheema, P.P.S.; Singh, S.P. Implementation analysis of solid waste management in Ludhiana city of Punjab. Environ. Challenges 2021, 2, 100023. [Google Scholar] [CrossRef]
- Cossu, R. Multibarrier Principles in Landfilling; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Raheem, A.; Hassan, M.Y.; Shakoor, R. Bioenergy from anaerobic digestion in Pakistan: Potential, development and prospects. Renew. Sustain. Energy Rev. 2016, 59, 264–275. [Google Scholar] [CrossRef]
- Aslam, S.; Ali, F.; Naseer, A.; Sheikh, Z. Application of material flow analysis for the assessment of current municipal solid waste management in Karachi, Pakistan. Waste Manag. Res. 2021, 40, 0734242X211000427. [Google Scholar] [CrossRef] [PubMed]
- Ricci-Jürgensen, M.; Gilbert, J.; Ramola, A. Global Assessment of Municipal Organic Waste Production and Recycling; ISWA: Rotterdam, The Netherlands, 2020. [Google Scholar]
- Sohoo, I.; Ritzkowski, M.; Guo, J.; Sohoo, K.; Kuchta, K. Municipal Solid Waste Management through Sustainable Landfilling: In View of the Situation in Karachi, Pakistan. Int. J. Environ. Res. Public Health 2022, 19, 773. [Google Scholar] [CrossRef] [PubMed]
- Lavagnolo, M.C. Landfilling in developing countries. In Solid Waste Landfilling Concepts, Processes, Technology; Cossu, R., Stegmann, R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 773–796. [Google Scholar]
- Dos Muchangos, L.S.; Tokai, A. Greenhouse gas emission analysis of upgrading from an open dump to a semi-aerobic landfill in Mozambique—the case of Hulene dumpsite. Sci. Afr. 2020, 10, e00638. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, A.K.; Ganguly, R. Impact of open dumping of municipal solid waste on soil properties in mountainous region. J. Rock Mech. Geotech. Eng. 2018, 10, 725–739. [Google Scholar] [CrossRef]
- Amadi, A.N.; Olasehinde, P.I.; Okosun, E.A.; Okoye, N.O.; Okunlola, I.A.; Alkali, Y.B.; Dan-Hassan, M.A. A Comparative Study on the Impact of Avu and Ihie Dumpsites on Soil Quality in Southeastern Nigeria. Am. J. Chem. 2012, 2, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Babu, R.; Prieto Veramendi, P.M.; Rene, E.R. Strategies for resource recovery from the organic fraction of municipal solid waste. Case Stud. Chem. Environ. Eng. 2021, 3, 100098. [Google Scholar] [CrossRef]
- Krecl, P.; de Lima, C.H.; Dal Bosco, T.C.; Targino, A.C.; Hashimoto, E.M.; Oukawa, G.Y. Open waste burning causes fast and sharp changes in particulate concentrations in peripheral neighborhoods. Sci. Total Environ. 2021, 765, 142736. [Google Scholar] [CrossRef]
- Warith, M.A. Solid waste management: New trends in landfill design. Emirates J. Eng. Res. 2003, 8, 61–70. [Google Scholar]
- Tonini, D.; Manfredi, S.; Bakas, I.; Kai-Sørensen Brogaard, L.; Damgaard, A. Life Cycle Assessment of Landfilling. In Solid Waste Landfilling; Elsevier: Amsterdam, The Netherlands, 2018; pp. 955–972. [Google Scholar] [CrossRef]
- Yang, R.; Xu, Z.; Chai, J. A review of characteristics of landfilled municipal solid waste in several countries: Physical composition, unit weight, and permeability coefficient. Polish J. Environ. Stud. 2018, 27, 2425–2435. [Google Scholar] [CrossRef]
- Slezak, R.; Krzystek, L.; Ledakowicz, S. Simulation of aerobic landfill in laboratory scale lysimeters—Effect of aeration rate. Chem. Pap. 2010, 64, 223–229. [Google Scholar] [CrossRef]
- Heyer, K.-U.; Hupe, K.; Stegmann, R. Landfill Aftercare—Scope for Actions, Duration, Costs and Quantitative Criteria for the Completion. In Proceedings of the Sardinia Tenth International Waste Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy, 3–7 October 2005. [Google Scholar]
- Matsufuji, Y.; Tanaka, A.; Cossu, R. Semiaerobic Landfilling. In Solid Waste Landfilling; Elsevier: Amsterdam, The Netherlands, 2018; pp. 807–830. [Google Scholar] [CrossRef]
- Theng, L.C.; Matsufuji, Y.; Mohd, N.H. Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: A Malaysia cost analysis. Waste Manag. 2005, 25, 702–711. [Google Scholar] [CrossRef]
- Matsuto, T.; Zhang, X.; Matsuo, T.; Yamada, S. Onsite survey on the mechanism of passive aeration and air flow path in a semi-aerobic landfill. Waste Manag. 2015, 36, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Yanase, R.; Matsufuji, Y.; Tashiro, T.; Nakatomi, S. Study on the Gas Flow of Semi-Aerobic Landfill. In Proceedings of the 21th Annual Conference of Japan Society of Material Cycles and Waste Management, Takaokamachi, Japan, 7 November 2010; pp. 39–540. [Google Scholar]
- Ritzkowski, M.; Stegmann, R. Landfill In Situ Aeration. In Solid Waste Landfilling; Elsevier: Amsterdam, The Netherlands, 2018; pp. 899–914. [Google Scholar] [CrossRef]
- Cossu, R.; Grossule, V. Landfill Bioreactors. In Solid Waste Landfilling; Elsevier: Amsterdam, The Netherlands, 2018; pp. 831–841. [Google Scholar] [CrossRef]
- Ritzkowski, M.; Heyer, K.U.; Stegmann, R. Fundamental processes and implications during in situ aeration of old landfills. Waste Manag. 2006, 26, 356–372. [Google Scholar] [CrossRef]
- Ritzkowski, M.; Heerenklage, J.; Stegmann, R. An overview on techniques and regulations of mechanical-biological pre-treatment of municipal solid waste *. Clean Air 2006, 2, 57–68. [Google Scholar]
- Ritzkowski, M.; Stegmann, R. Landfill aeration within the scope of post-closure care and its completion. Waste Manag. 2013, 33, 2074–2082. [Google Scholar] [CrossRef]
- Berge, N.D.; Reinhart, D.R.; Dietz, J.; Townsend, T. In situ ammonia removal in bioreactor landfill leachate. Waste Manag. 2006, 26, 334–343. [Google Scholar] [CrossRef]
- Shao, L.M.; He, P.J.; Li, G.J. In situ nitrogen removal from leachate by bioreactor landfill with limited aeration. Waste Manag. 2008, 28, 1000–1007. [Google Scholar] [CrossRef]
- Raga, R.; Cossu, R.; Heerenklage, J.; Pivato, A.; Ritzkowski, M. Landfill aeration for emission control before and during landfill mining. Waste Manag. 2015, 46, 420–429. [Google Scholar] [CrossRef]
- Nwaokorie, K.J.; Bareither, C.A.; Mantell, S.C.; Leclaire, D.J. The influence of moisture enhancement on landfill gas generation in a full-scale landfill. Waste Manag. 2018, 79, 647–657. [Google Scholar] [CrossRef]
- Erses, A.S.; Onay, T.T.; Yenigun, O. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresour. Technol. 2008, 99, 5418–5426. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2020, 19, 1433–1456. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Bhuvaneshwari, S.; Hettiaratchi, P.A.; Hettiarachchi, H. A Comprehensive Model for Anaerobic Degradation in Bio-Reactor Landfills; Scholars’ Mine: Chicago, IL, USA, 2013; pp. 1–7. [Google Scholar]
- Kumar, S.; Chiemchaisri, C.; Mudhoo, A. Bioreactor landfill technology in municipal solid waste treatment: An overview. Crit. Rev. Biotechnol. 2011, 31, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Morello, L.; Cossu, R.; Raga, R.; Pivato, A.; Lavagnolo, M.C. Recirculation of reverse osmosis concentrate in lab-scale anaerobic and aerobic landfill simulation reactors. Waste Manag. 2016, 56, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Frank, R.R.; Davies, S.; Wagland, S.T.; Villa, R.; Trois, C.; Coulon, F. Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production. Waste Manag. 2016, 55, 61–70. [Google Scholar] [CrossRef]
- Liu, L.; Xiong, H.; Ma, J.; Ge, S.; Yu, X.; Zeng, G. Leachate Recirculation for Enhancing Methane Generation within Field Site in China. J. Chem. 2018, 2018, 9056561. [Google Scholar] [CrossRef]
- Sang, N.N.; Soda, S.; Ishigaki, T.; Ike, M. Microorganisms in landfill bioreactors for accelerated stabilization of solid wastes. J. Biosci. Bioeng. 2012, 114, 243–250. [Google Scholar] [CrossRef]
- Hettiaratchi, P.; Jayasinghe, P.; Tay, J.H.; Yadav, S. Recent advances of biomass waste to gas using landfill bioreactor technology-a review. Curr. Org. Chem. 2015, 19, 413–422. [Google Scholar] [CrossRef]
- Grossule, V.; Morello, L.; Cossu, R.; Lavagnolo, M.C. Bioreactor landfills: Comparison and kinetics of the different systems. Detritus 2018, 3, 100–113. [Google Scholar] [CrossRef]
- Hater, G.R.; Young, K.E.; Simpson, C.; Harris, J.M. Economics of Eight Scenarios for Landfill Bioreactors as Compared to a Base Case Subtitle D Landfill. In Proceedings of the Waste Tech 2001, San Diego, CA, USA, 13 February 2001. [Google Scholar]
- Berge, N.D.; Reinhart, D.R.; Batarseh, E.S. An assessment of bioreactor landfill costs and benefits. Waste Manag. 2009, 29, 1558–1567. [Google Scholar] [CrossRef] [PubMed]
- Morello, L.; Raga, R.; Lavagnolo, M.C.; Pivato, A.; Ali, M.; Yue, D.; Cossu, R. The S.An.A.® concept: Semi-aerobic, Anaerobic, Aerated bioreactor landfill. Waste Manag. 2017, 67, 193–202. [Google Scholar] [CrossRef]
- Valencia, R.; Van der Zon, W.; Woelders, H.; Lubberding, H.J.; Gijzen, H.J. Achieving “Final Storage Quality” of municipal solid waste in pilot scale bioreactor landfills. Waste Manag. 2009, 29, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Price, G.A.; Barlaz, M.A.; Hater, G.R. Nitrogen management in bioreactor landfills. Waste Manag. 2003, 23, 675–688. [Google Scholar] [CrossRef]
- Omar, H.; Rohani, S. Treatment of landfill waste, leachate and landfill gas: A review. Front. Chem. Sci. Eng. 2015, 9, 15–32. [Google Scholar] [CrossRef]
- Read, A.D.; Hudgins, M.; Harper, S.; Phillips, P.; Morris, J. The successful demonstration of aerobic landfilling. The potential for a more sustainable solid waste management approach? Resour. Conserv. Recycl. 2001, 32, 115–146. [Google Scholar] [CrossRef]
- Jain, P.; Powell, J.; Townsend, T.G.; Reinhart, D.R. Air Permeability of Waste in a Municipal Solid Waste Landfill. J. Environ. Eng. 2005, 131, 1565–1573. [Google Scholar] [CrossRef]
- Yazdani, R.; Mostafid, M.E.; Han, B.; Imhoff, P.T.; Chiu, P.; Augenstein, D.; Kayhanian, M.; Tchobanoglous, G. Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling. Environ. Sci. Technol. 2010, 44, 6215–6220. [Google Scholar] [CrossRef]
- Wu, C.; Shimaoka, T.; Nakayama, H.; Komiya, T.; Chai, X. Stimulation of waste decomposition in an old landfill by air injection. Bioresour. Technol. 2016, 222, 66–74. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K. Influence of moisture content and leachate recirculation on oxygen consumption and waste stabilization in post aeration phase of landfill operation. Sci. Total Environ. 2021, 773, 145584. [Google Scholar] [CrossRef]
- Yazdani, R. Quantifying Factors Limiting Aerobic Degradation During Aerobic Bioreactor Landfilling and Performance Evaluation of a Landfill-Based Anaerobic Composting Digester for Energy Recovery and Compost Production; University of California: Davis, CA, USA, 2010; ISBN 1124354654. [Google Scholar]
- Žgajnar Gotvajn, A.; Pavko, A. Perspectives on Biological Treatment of Sanitary Landfill Leachate. In Wastewater Treatment Engineering; InTech: Rijeka, Croatia, 2015; Volume 13, pp. 31–39. [Google Scholar]
- Ko, J.H.; Xu, Q.; Jang, Y.-C. Emissions and control of hydrogen sulfide at landfills: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2043–2083. [Google Scholar] [CrossRef]
- Grossule, V.; Stegmann, R. Problems in traditional landfilling and proposals for solutions based on sustainability. Detritus 2020, 12, 78–91. [Google Scholar] [CrossRef]
- Tabasaran, O.; Rettenberger, G. Grundlagen zur Planung von Entgasungsanlagen. Hösel Schenkel Schurer. Müll-Handbuch. E. Schmidt Berl. Bd 1987, 3, 5000–8061. [Google Scholar]
- Ritzkowski, M.; Stegmann, R. Controlling greenhouse gas emissions through landfill in situ aeration. Int. J. Greenh. Gas Control 2007, 1, 281–288. [Google Scholar] [CrossRef]
- Towprayoon, S. CHAPTER 3: Solid Waste Disposal. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventory; Intergovernmental Panel on Climate Change—IPCC: Geneva, Switzerland, 2019; pp. 1–25. [Google Scholar]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K.; Cinar, S.Ö. Environmental Sustainability Enhancement of Waste Disposal Sites in Developing Countries through Controlling Greenhouse Gas Emissions. Sustainability 2021, 13, 151. [Google Scholar] [CrossRef]
- Shahid, M.; Nergis, Y.; Siddiqui, S.A.; Farooq Choudhry, A. Environmental impact of municipal solid waste in Karachi city. World Appl. Sci. J. 2014, 29, 1516–1526. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K. Evaluation of behavior of waste disposal sites in Karachi, Pakistan and effects of enhanced leaching on their emission potential. Detritus 2019, 7, 96–103. [Google Scholar] [CrossRef]
- IPCC. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. 2001. Available online: https://www.ipcc-nggip.iges.or.jp/public/gp/english/gpgaum_en.html (accessed on 12 December 2021).
- IPCC. Conceptual Basis for Uncertainty Analysis. In Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; 2000; Available online: https://www.ipcc-nggip.iges.or.jp/public/gp/english/A1_Conceptual.pdf. (accessed on 12 December 2021).
- Amini, H.R.; Reinhart, D.R.; Mackie, K.R. Determination of first-order landfill gas modeling parameters and uncertainties. Waste Manag. 2012, 32, 305–316. [Google Scholar] [CrossRef]
- Zuberi, M.J.S.; Ali, S.F. Greenhouse effect reduction by recovering energy from waste landfills in Pakistan. Renew. Sustain. Energy Rev. 2015, 44, 117–131. [Google Scholar] [CrossRef]
- Yu, X.; Ye, X.; Lin, H.; Feng, N.; Gao, S.; Zhang, X.; Wang, Y.; Yu, H.; Deng, X.; Qian, B. Knockdown of long non-coding RNA LCPAT1 inhibits autophagy in lung cancer. Cancer Biol. Med. 2018, 15, 228–237. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; ISBN 110705799X. [Google Scholar]
- Salukele, F.M. Innovative Landfill Bioreactor Systems for Municipal Solid Waste Treatment in East Africa Aimed at Optimal Energy Recovery and Minimal Greenhouse Gas Emissions. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2013. Available online: https://edepot.wur.nl/264686 (accessed on 8 November 2021).
- Younes, M.K.; Nopiah, Z.M.; Basri, N.E.A.; Basri, H.; Abushammala, M.F.M.; Younes, M.Y. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model. Waste Manag. 2016. [Google Scholar] [CrossRef] [PubMed]
- Yedla, S. Modified landfill design for sustainable waste management. Int. J. Glob. Energy Issues 2005, 23, 93–105. [Google Scholar] [CrossRef]
- Park, J.K.; Chong, Y.G.; Tameda, K.; Lee, N.H. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: A review. Waste Manag. Res. 2018, 36, 200–220. [Google Scholar] [CrossRef]
- Garg, A.; Achari, G.; Joshi, R.C. A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation. Waste Manag. Res. 2006, 24, 363–375. [Google Scholar] [CrossRef]
- Machado, S.L.; Carvalho, M.F.; Gourc, J.P.; Vilar, O.M.; do Nascimento, J.C.F. Methane generation in tropical landfills: Simplified methods and field results. Waste Manag. 2009, 29, 153–161. [Google Scholar] [CrossRef]
- Alberta Environment Technical Guidance for the Quantification of Specified Gas Emissions from Landfills (Version 1.2). Available online: https://open.alberta.ca/publications/9780778576792 (accessed on 4 July 2021).
- Duan, Z.; Kjeldsen, P.; Scheutz, C. Efficiency of gas collection systems at Danish landfills and implications for regulations. Waste Manag. 2022, 139, 269–278. [Google Scholar] [CrossRef]
- Rahman, N. Sustainable Waste Management through Operating Landfill as Biocell; The University of Texas at Arlington: Arlington, TX, USA, 2018. [Google Scholar]
- SSWMB. Solid Waste Emergency and Efficiency Project (SWEEP) Sindh Solid Waste Management Board Government of Sindh; Sindh Solid Waste Management Board (SSWMB): Karachi, Pakistan, 2020.
- SSWMB Tenders. Available online: http://sswmb.gos.pk/cms/?page_id=1617 (accessed on 28 April 2021).
- SSWMB. Government of Sindh Bidding Document Operation/Maintenance of Sswmb Landfill Site at DEH Procuring Agency; Solid Waste Management Board (SSWMB): Karachi, Pakistan, 2020.
- Sohoo, I.; Ritzkowski, M.; Heerenklage, J.; Kuchta, K. Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan. Renew. Sustain. Energy Rev. 2021, 135, 110175. [Google Scholar] [CrossRef]
- Korai, M.S.; Mahar, R.B.; Uqaili, M.A. The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan. Renew. Sustain. Energy Rev. 2017, 72, 338–353. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Hettiarachchi, H.; Hettiaratchi, P. Landfill design and operation. Sustain. Solid Waste Manag. 2016, 18, 577–604. [Google Scholar]
- Pazoki, M.; Ghasemzadeh, R. Landfilling. In Municipal Landfill Leachate Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 21–100. [Google Scholar]
- Ni, Z.; Liu, J.; Girotto, F.; Cossu, R.; Qi, G. Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors. Bioresour. Technol. 2016, 216, 250–259. [Google Scholar] [CrossRef]
- Ali, M.; Zhang, J.; Raga, R.; Lavagnolo, M.C.; Pivato, A.; Wang, X.; Zhang, Y.; Cossu, R.; Yue, D. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling. Front. Environ. Sci. Eng. 2018, 12, 1–9. [Google Scholar] [CrossRef]
- Ritzkowski, M.; Walker, B.; Kuchta, K.; Raga, R.; Stegmann, R. Aeration of the teuftal landfill: Field scale concept and lab scale simulation. Waste Manag. 2016, 55, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Furuichi, T. Estimation of methane emission rate changes using age-defined waste in a landfill site. Waste Manag. 2013, 33, 1861–1869. [Google Scholar] [CrossRef]
- Baldwin, T.D.; Stinson, J.; Ham, R.K. Decomposition of Specific Materials Buried within Sanitary Landfills. J. Environ. Eng. 1998, 124, 1193–1202. [Google Scholar] [CrossRef]
- World Meteorological Organization. World Weather Information Service. Available online: http://worldweather.wmo.int/en/city.html?cityId=892 (accessed on 23 May 2017).
- Hunte, C.A. Performance of a Full-Scale Bioreactor Landfill; University of Calgary: Calgary, AB, Canada, 2010; Volume 72. [Google Scholar]
- Meegoda, J.N.; Soliman, A.; Hettiaratchi, P.A.; Agbakpe, M. Resource mining for a bioreactor landfill. Curr. Environ. Eng. 2019, 6, 17–34. [Google Scholar] [CrossRef]
- Pacey, J.; Augenstein, D.; Morck, R.; Reinhart, D.; Yazdani, R. The bioreactor landfill-an innovation in solid waste management. MSW Manag. 1999, 1, 53–60. [Google Scholar]
- Hettiarachchi, H.; Hettiaratchi, J.P.A.; Hunte, C.A.; Meegoda, J.N. Operation of a landfill bioreactor in a cold climate: Early results and lessons learned. J. Hazard. Toxic Radioact. Waste 2013, 17, 307–316. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Sohu, Z.A.; Cinar, S.Ö.; Chong, Z.K.; Kuchta, K. Estimation of methane production and electrical energy generation from municipal solid waste disposal sites in Pakistan. Energies 2021, 14, 2444. [Google Scholar] [CrossRef]
Landfilling Approach | Pros | Cons | Reference |
---|---|---|---|
Open disposal | No or low cost is involved in the short-term. Income source for waste scavengers. | Long-term environmental costs such as uncontrolled emissions of toxic gases due to open decomposition of waste, ground water contamination, and soil contamination due to toxic and concentrated leachate release. Public health problems. | [66] |
Anaerobic landfills | LFG with high methane concentration can be used as an energy source. Relatively low cost is involved in the short term. | High COD, BOD5 and VFA concentrations in leachate. High level of ammonia in leachate. Formation of hydrogen sulphide (H2S) gas from the decomposition of gypsum wall board in waste. Long duration in waste stabilization. Long term LFG (methane) emissions. | [59,67] |
Semi-aerobic landfills | Promotes waste and leachate stabilization Reduced biological stabilization time of landfilled waste. In situ leachate treatment. Low-cost system. | Careful management and operation needed for optimal performance | [33,59,68] |
Aerobic landfills | Speedy waste stabilization. No or low methane production with reduced GHG emissions. Low or no residual methane emissions. In situ leachate treatment. Moisture removal by air stripping. Nitrogen removal. Better waste settlement. | High energy demand. | [35,59,68] |
Waste Component | FW | GW | Paper | Glass | Metal | Plastic | Fines | Nappies | Textile | TP | Wood |
---|---|---|---|---|---|---|---|---|---|---|---|
Fraction in sample [% w/w] | 26.10 | 17.04 | 7.97 | 5.6 | 1.1 | 8 | 3.7 | 9.8 | 5.57 | 10 | 3.11 |
Waste Components | % | DOC Default Value | DOC % |
---|---|---|---|
Paper (A) | 7.97 | 0.4 | 3.2 |
Green waste (B) | 17.04 | 0.2 | 3.4 |
Food (C) | 26.10 | 0.15 | 3.9 |
Wood (D) | 3.11 | 0.43 | 1.3 |
Nappies (E) | 9.8 | 0.24 | 2.4 |
Textile (F) | 5.57 | 0.24 | 1.3 |
Total | 15.5 |
Data | Unit | Value | Reference |
---|---|---|---|
MSW generation | [tonnes/day] | 15,600 | [17] |
MSW landfilled | [%] | 70 | [17] |
MSW landfilled-FM | [tonnes/day] | 10,920 | |
MSW landfilled-FM | [million-tonnes/year] | 4 | |
Density of methane | [kg/m3] | 0.66 | [78] |
Methane fraction in LFG | [%] average | 50 | |
Global warming potential of methane (over 100 years horizon) | [CO2-eq] | 25 | [79,80] |
Total DOC in the waste | kg/tonne FM | 155 | |
Default k value for waste disposal sites | 0.05 | [76] |
Parameter | Value | Unit | Reference |
---|---|---|---|
Waste tipping | 3700 | [tonnes/day] | |
Waste compaction | 0.8 | [tonnes/m3] | |
Landfill height | 30 | [meters] | |
Total DOC in the waste | 155 | kg/tonne FM | |
DOC loss in pre-treatment | 10 | [%] | |
DOC in the waste disposed in bioreactor landfill | 139.9 | kg/tonne FM | |
Landfill gas collection efficiency | 50 | [%] | [88] |
k value for bioreactor landfill | 0.3 | [43,77] | |
Density of methane | 0.66 | [kg/m3] | |
Methane fraction in landfill gas | 64 | [%] | Average CH4 concentration in LFG in simulating bioreactor landfill conditions in Karachi [19] |
1 kWh | 3.6 | [MJ] | |
Electric efficiency (η) | 30 | [%] | [78] |
Calorific value of methane | 55.53 | [MJ/tonne] | |
LHV of methane | 36.48 | [kJ/m3] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohoo, I.; Ritzkowski, M.; Sultan, M.; Farooq, M.; Kuchta, K. Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan. Sustainability 2022, 14, 3364. https://doi.org/10.3390/su14063364
Sohoo I, Ritzkowski M, Sultan M, Farooq M, Kuchta K. Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan. Sustainability. 2022; 14(6):3364. https://doi.org/10.3390/su14063364
Chicago/Turabian StyleSohoo, Ihsanullah, Marco Ritzkowski, Muhammad Sultan, Muhammad Farooq, and Kerstin Kuchta. 2022. "Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan" Sustainability 14, no. 6: 3364. https://doi.org/10.3390/su14063364
APA StyleSohoo, I., Ritzkowski, M., Sultan, M., Farooq, M., & Kuchta, K. (2022). Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan. Sustainability, 14(6), 3364. https://doi.org/10.3390/su14063364