A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Data Selection
2.2. Annual Publications
2.3. Country Publications
2.4. Vehicle Discussion
3. Environmental Efficiency Evaluation Process of NEVs under LCA
3.1. LCA Evaluation Method Division and Selection
3.2. Stage Division
3.2.1. Energy Stages
Energy Resource Extraction and Collection
Carrier Production and Energy Transportation
Energy Refinement and Distribution
3.2.2. Production Stage
Material Extraction and Collection
Equipment Manufacturing
3.2.3. Operation Stage
Driving Routes and Energy Conservation
Maintenance and Replacement
3.2.4. Equipment Ends of Life
3.3. Types of Research Objects and the Selection Trend of Performance Indices
Selection Trend of Vehicle Types and Performance Indices
3.4. Environmental Efficiency Index Selection and Trends
Selection and Trends of Vehicle Environmental Efficiency Indices
4. Discussion
4.1. More Comprehensive Process
4.1.1. Materials, Equipment and Car Transportation
4.1.2. Operation Equipment Settling and Using
4.2. More Novel Research
4.2.1. Environmental Assessment of HFCEV
4.2.2. Vehicle Type Classification
4.2.3. Water Footprint
4.2.4. Battery Aging
4.3. More Diverse Evaluation
4.3.1. Method Combination under LCA
4.3.2. Comprehensive Evaluation under LCA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chatzikomis, C.I.; Spentzas, K.N.; Mamalis, A.G. Environmental and economic effects of widespread introduction of electric vehicles in Greece. Eur. Transp. Res. Rev. 2014, 6, 365–376. [Google Scholar] [CrossRef]
- Dillman, K.J.; Arnadottir, A.; Heinonen, J.; Czepkiewicz, M.; Daviosdottir, B. Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven. Sustainability 2020, 12, 9390. [Google Scholar] [CrossRef]
- Onat, N.C.; Aboushaqrah, N.N.M.; Kucukvar, M.; Tarlochan, F.; Hamouda, A.M. From sustainability assessment to sustainability management for policy development: The case for electric vehicles. Energy Conv. Manag. 2020, 216, 16. [Google Scholar] [CrossRef]
- Ahmadi, P. Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles. J. Clean. Prod. 2019, 225, 1209–1219. [Google Scholar] [CrossRef]
- Noori, M.; Gardner, S.; Tatari, O. Electric vehicle cost, emissions, and water footprint in the United States: Development of a regional optimization model. Energy 2015, 89, 610–625. [Google Scholar] [CrossRef]
- Nordelof, A.; Messagie, M.; Tillman, A.M.; Soderman, M.L.; van Mierlo, J. Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles-what can we learn from life cycle assessment? Int. J. Life Cycle Assess. 2014, 19, 1866–1890. [Google Scholar] [CrossRef] [Green Version]
- Dranka, G.G.; Ferreira, P. Electric Vehicles and Biofuels Synergies in the Brazilian Energy System. Energies 2020, 13, 4423. [Google Scholar] [CrossRef]
- Gan, Y.; Lu, Z.; He, X.; Hao, C.; Wang, Y.; Cai, H.; Wang, M.; Elgowainy, A.; Przesmitzki, S.; Bouchard, J. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective. Environ. Sci. Technol. 2021, 55, 6944–6956. [Google Scholar] [CrossRef]
- Hou, F.; Chen, X.; Chen, X.; Yang, F.; Ma, Z.; Zhang, S.; Liu, C.; Zhao, Y.; Guo, F. Comprehensive analysis method of determining global long-term GHG mitigation potential of passenger battery electric vehicles. J. Clean Prod. 2021, 289, 125137. [Google Scholar] [CrossRef]
- Petrovic, D.T.; Pesic, D.R.; Petrovic, M.M.; Mijailovic, R.M. ELECTRIC CARS Are They Solution to Reduce CO2 Emission? Therm. Sci. 2020, 24, 2879–2889. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Pelton, R.E.O.; Smith, T.M.; Lee, J.; Jeon, J.; Suh, K. Environmental Implications of the National Power Roadmap with Policy Directives for Battery Electric Vehicles (BEVs). Sustainability 2019, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; He, X.; Wang, H.; Wang, M.; Zhang, S.; Ma, D.; Wang, B.; Wu, Y. Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 355–370. [Google Scholar] [CrossRef]
- de Schepper, E.; van Passel, S.; Lizin, S.; Vincent, T.; Martin, B.; Gandibleux, X. Economic and environmental multi-objective optimisation to evaluate the impact of Belgian policy on solar power and electric vehicles. J. Environ. Econ. Policy 2016, 5, 1–27. [Google Scholar] [CrossRef]
- Zeng, D.; Dong, Y.; Cao, H.; Li, Y.; Wang, J.; Li, Z.; Hauschild, M.Z. Are the electric vehicles more sustainable than the conventional ones? Influences of the assumptions and modeling approaches in the case of typical cars in China. Resour. Conserv. Recycl. 2021, 167, 105210. [Google Scholar] [CrossRef]
- Shi, X.Q.; Wang, X.; Yang, J.X.; Sun, Z.X. Electric vehicle transformation in Beijing and the comparative eco-environmental impacts: A case study of electric and gasoline powered taxis. J. Clean. Prod. 2016, 137, 449–460. [Google Scholar] [CrossRef]
- Beaudet, A.; Larouche, F.; Amouzegar, K.; Bouchard, P.; Zaghib, K. Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials. Sustainability 2020, 12, 5837. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, M. Research on Spent LiFePO4 Electric Vehicle Battery Disposal and Its Life Cycle Inventory Collection in China. Int. J. Environ. Res. Public Health 2020, 17, 8828. [Google Scholar] [CrossRef]
- Koroma, M.S.; Brown, N.; Cardellini, G.; Messagie, M. Prospective Environmental Impacts of Passenger Cars under Different Energy and Steel Production Scenarios. Energies 2020, 13, 6236. [Google Scholar] [CrossRef]
- Choi, W.; Song, H.H. Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime transportation: A South Korean case study. Appl. Energy 2018, 230, 135–147. [Google Scholar] [CrossRef]
- Bobba, S.; Mathieux, F.; Ardente, F.; Blengini, G.A.; Cusenza, M.A.; Podias, A.; Pfrang, A. Life Cycle Assessment of repurposed electric vehicle batteries: An adapted method based on modelling energy flows. J. Energy Storage 2018, 19, 213–225. [Google Scholar] [CrossRef]
- Georgakellos, D.A. A polygon-based environmental appraisal of new vehicle technologies combined with renewable energy sources. Transport. Res. Part D-Transport. Environ. 2008, 13, 283–288. [Google Scholar] [CrossRef]
- Olindo, R.; Schmitt, N.; Vogtlander, J. Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity. Sustainability 2021, 13, 5250. [Google Scholar] [CrossRef]
- Weis, A.; Jaramillo, P.; Michalek, J. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection. Environ. Res. Lett. 2016, 11, 024009. [Google Scholar] [CrossRef]
- Nimesh, V.; Kumari, R.; Soni, N.; Goswami, A.K.; Reddy, V.M. Implication viability assessment of electric vehicles for different regions: An approach of life cycle assessment considering exergy analysis and battery degradation. Energy Conv. Manag. 2021, 237, 114104. [Google Scholar] [CrossRef]
- Thiruvonasundari, D.; Deepa, K. Evaluation and Comparative Study of Cell Balancing Methods for Lithium-Ion Batteries Used in Electric Vehicles. Int. J. Renew. Energy Dev.-IJRED 2021, 10, 471–479. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhou, G.G.; Li, T.; Wei, X. Comprehensive Evaluation of the Sustainable Development of Battery Electric Vehicles in China. Sustainability 2019, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, L.; Young, S.B.; Fowler, M.; Fraser, R.A.; Achachlouei, M.A. A cascaded life cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 2017, 22, 111–124. [Google Scholar] [CrossRef]
- Vargas, J.E.V.; Falco, D.G.; Walter, A.C.d.; Cavaliero, C.K.N.; Seabra, J.E.A. Life cycle assessment of electric vehicles and buses in Brazil: Effects of local manufacturing, mass reduction, and energy consumption evolution. Int. J. Life Cycle Assess. 2019, 24, 1878–1897. [Google Scholar] [CrossRef]
- Gemechu, E.D.; Sonnemann, G.; Young, S.B. Geopolitical-related supply risk assessment as a complement to environmental impact assessment: The case of electric vehicles. Int. J. Life Cycle Assess. 2017, 22, 31–39. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Jursova, S.; Folega, P.; Korol, J.; Pustejovska, P.; Blaut, A. Environmental life cycle assessment of electric vehicles in Poland and the Czech Republic. J. Clean. Prod. 2018, 202, 476–487. [Google Scholar] [CrossRef]
- Choma, E.F.; Ugaya, C.M.L. Environmental impact assessment of increasing electric vehicles in the Brazilian fleet. J. Clean. Prod. 2017, 152, 497–507. [Google Scholar] [CrossRef]
- Yang, F.; Xie, Y.; Deng, Y.; Yuan, C. Impacts of battery degradation on state-level energy consumption and GHG emissions from electric vehicle operation in the United States. In Proceedings of the 26th Cirp Conference on Life Cycle Engineering (lce), Purdue Univ, West Lafayette, IN, USA, 7–9 May 2019; Sutherland, J.W., Skerlos, S.J., Zhao, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 80, pp. 530–535. [Google Scholar] [CrossRef]
- Petrauskienė, K.; Galinis, A.; Kliaugaitė, D.; Dvarionienė, J. Comparative Environmental Life Cycle and Cost Assessment of Electric, Hybrid, and Conventional Vehicles in Lithuania. Sustainability 2021, 13, 957. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, J.; Xu, H.; Liu, J.; Chen, Y. Optimal vehicle size and driving condition for extended-range electric vehicles in China: A life cycle perspective. PLoS ONE 2020, 15, e0241967. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Zhao, F.; Liu, Z.; Hao, H.; He, X.; Przesmitzki, S.V.; Amer, A.A. Life cycle cost and GHG emission benefits of electric vehicles in China. Transport. Res. Part D-Transport. Environ. 2020, 86, 102418. [Google Scholar] [CrossRef]
- Petrauskiene, K.; Skvarnaviciute, M.; Dvarioniene, J. Comparative environmental life cycle assessment of electric and conventional vehicles in Lithuania. J. Clean. Prod. 2020, 246, 12. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Bobba, S.; Ardente, F.; Cellura, M.; di Persio, F. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J. Clean. Prod. 2019, 215, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Han, W.J.; Wallington, T.J.; Winkler, S.L. China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles. Environ. Sci. Technol. 2019, 53, 6063–6072. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Sousa, N.; Coutinho-Rodrigues, J. Quest for Sustainability: Life-Cycle Emissions Assessment of Electric Vehicles Considering Newer Li-Ion Batteries. Sustainability 2019, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, T.R.; Gausen, O.M.; Stromman, A.H. Environmental impacts of hybrid and electric vehicles-a review. Int. J. Life Cycle Assess. 2012, 17, 997–1014. [Google Scholar] [CrossRef]
- Shaukat, N.; Khan, B.; Ali, S.M.; Mehmood, C.A.; Khan, J.; Farid, U.; Majid, M.; Anwar, S.M.; Jawad, M.; Ullah, Z. A survey on electric vehicle transportation within smart grid system. Renew. Sust. Energ. Rev. 2018, 81, 1329–1349. [Google Scholar] [CrossRef]
- Aichberger, C.; Jungmeier, G. Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review. Energies 2020, 13, 6345. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Ayodele, B.V.; Mustapa, S.I. Life Cycle Cost Assessment of Electric Vehicles: A Review and Bibliometric Analysis. Sustainability 2020, 12, 2387. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.S.; Lu, L.Y.Y.; Lu, W.; Lin, B.J.Y. A survey of DEA applications. Omega-Int. J. Manag. Sci. 2013, 41, 893–902. [Google Scholar] [CrossRef]
- de Carvalho, L.S.; Stefanelli, N.O.; Viana, L.C.; Vasconcelos, D.S.C.; Oliveira, B.G. Green supply chain management and innovation: A modern review. Manag. Environ. Qual. 2020, 31, 470–482. [Google Scholar] [CrossRef]
- Patyk, A.; Reinhardt, G.A. Energy and mass flow analysis of batteries used in electric vehicles. In Life Cycle Engineering of Passenger Cars: Resources—Production—Usage—Recycling; VDI-Verlag Gmbh: Dusseldorf, Germany, 1996; Volume 1307, pp. 117–135. [Google Scholar]
- Peshin, T.; Azevedo, I.M.L.; Sengupta, S. Life-cycle greenhouse gas emissions of alternative and conventional fuel vehicles in India. In Proceedings of the 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 18 November–16 December 2020; IEEE: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Mustapa, S.I.; Ayodele, B.V.; Ishak, W.W.M.; Ayodele, F.O. Evaluation of Cost Competitiveness of Electric Vehicles in Malaysia Using Life Cycle Cost Analysis Approach. Sustainability 2020, 12, 5303. [Google Scholar] [CrossRef]
- Liu, X.; Elgowainy, A.; Vijayagopal, R.; Wang, M. Well-to-Wheels Analysis of Zero-Emission Plug-In Battery Electric Vehicle Technology for Medium- and Heavy-Duty Trucks. Environ. Sci. Technol. 2021, 55, 538–546. [Google Scholar] [CrossRef]
- Choi, H.; Shin, J.; Woo, J. Effect of electricity generation mix on battery electric vehicle adoption and it its environmental impact. Energy Policy 2018, 121, 13–24. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, S.; Ou, X. Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China. Energy 2020, 209, 118482. [Google Scholar] [CrossRef]
- Sen, B.; Onat, N.C.; Kucukvar, M.; Tatari, O. Material footprint of electric vehicles: A multiregional life cycle assessment. J. Clean Prod. 2019, 209, 1033–1043. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O.; Egilmez, G. Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: A case for electric vehicles. Int. J. Life Cycle Assess. 2016, 21, 1009–1034. [Google Scholar] [CrossRef]
- Xiong, S.; Wang, Y.; Bai, B.; Ma, X. A hybrid life cycle assessment of the large-scale application of electric vehicles. Energy 2021, 216, 119314. [Google Scholar] [CrossRef]
- Jursova, S.; Burchart-Korol, D.; Pustejovska, P. Carbon Footprint and Water Footprint of Electric Vehicles and Batteries Charging in View of Various Sources of Power Supply in the Czech Republic. Environments 2019, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Vukajlovic, N.; Milicevic, D.; Dumnic, B.; Popadic, B. Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage. J. Energy Storage 2020, 31, 101603. [Google Scholar] [CrossRef]
- Zivcak, J.; Kadarova, J.; Kocisova, M.; Lachvajderova, L.; Puskar, M. Economic Analysis of Potential Secondary Use of Batteries from Electric Vehicles. Appl. Sci. 2021, 11, 3834. [Google Scholar] [CrossRef]
- Ashnani, M.H.M.; Miremadi, T.; Johari, A.; Danekar, A. Environmental impact of alternative fuels and vehicle technologies: A Life Cycle Assessment perspective. In Environmental Forensics 2015; Aris, A.Z., Ed.; Elsevier Science BV: Amsterdam, The Netherlands, 2015; Volume 30, pp. 205–210. [Google Scholar] [CrossRef] [Green Version]
- Benajes, J.; Garcia, A.; Monsalve-Serrano, J.; Martinez-Boggio, S. Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology. Appl. Therm. Eng. 2020, 164, 114430. [Google Scholar] [CrossRef]
- Schaubroeck, S.; Schaubroeck, T.; Baustert, P.; Gibon, T.; Benetto, E. When to replace a product to decrease environmental impact?—a consequential LCA framework and case study on car replacement. Int. J. Life Cycle Assess. 2020, 25, 1500–1521. [Google Scholar] [CrossRef]
- Lin, C.; Wu, T.; Ou, X.; Zhang, Q.; Zhang, X.; Zhang, X. Life-cycle private costs of hybrid electric vehicles in the current Chinese market. Energy Policy 2013, 55, 501–510. [Google Scholar] [CrossRef]
- Wu, T.; Shang, Z.; Tian, X.; Wang, S. How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles. Energy Policy 2016, 97, 400–413. [Google Scholar] [CrossRef]
- Zhao, X.; Doering, O.C.; Tyner, W.E. The economic competitiveness and emissions of battery electric vehicles in China. Appl. Energy 2015, 156, 666–675. [Google Scholar] [CrossRef]
- Breetz, H.L.; Salon, D. Do electric vehicles need subsidies? Ownership costs for conventional, hybrid, and electric vehicles in 14 US cities. Energy Policy 2018, 120, 238–249. [Google Scholar] [CrossRef]
- Ruffini, E.; Wei, M. Future costs of fuel cell electric vehicles in California using a learning rate approach. Energy 2018, 150, 329–341. [Google Scholar] [CrossRef]
- Siragusa, C.; Tumino, A.; Mangiaracina, R.; Perego, A. Electric vehicles performing last-mile delivery in B2C e-commerce: An economic and environmental assessment. Int. J. Sustain. Transp. 2020, 16, 22–33. [Google Scholar] [CrossRef]
- Diao, Q.; Sun, W.; Yuan, X.; Li, L.; Zheng, Z. Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies. Appl. Energy 2016, 178, 567–578. [Google Scholar] [CrossRef]
- Delucchi, M.A.; Lipman, T.E. An analysis of the retail and lifecycle cost of battery-powered electric vehicles. Transport. Res. Part D-Transport. Environ. 2001, 6, 371–404. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Sugioka, S.; Shimada, Y.; Hamaguchi, T.; Kitajima, T.; Fuchio, T. LCA of the various vehicles in environment and safety aspect. In Knowledge-Based Intelligent Information and Engineering Systems; Lovrek, I., Howlett, R.J., Jain, L.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5179, p. 9. [Google Scholar]
- Friedman, P.D.; Grossweiler, P. An analysis of US federal mileage ratings for plug-in hybrid electric vehicles. Energy Policy 2014, 74, 697–702. [Google Scholar] [CrossRef]
- Abas, A.E.P.; Yong, J.E.D.; Mahlia, T.M.I.; Hannan, M.A. Techno-Economic Analysis and Environmental Impact of Electric Vehicle. IEEE Access 2019, 7, 98565–98578. [Google Scholar] [CrossRef]
- Paudel, A.M.; Kreutzmann, P. Design and performance analysis of a hybrid solar tricycle for a sustainable local commute. Renew. Sustain. Energy Rev. 2015, 41, 473–482. [Google Scholar] [CrossRef]
- Uusitalo, V.; Soukka, R.; Horttanainen, M.; Niskanen, A.; Havukainen, J. Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector. Renew. Energy 2013, 51, 132–140. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Han, Q.L. Development of electric vehicles for China’s power generation portfolio: A regional economic and environmental analysis. J. Clean. Prod. 2017, 162, 71–85. [Google Scholar] [CrossRef]
- Dattilo, C.A.; Delogu, M.; Berzi, L.; Pierini, M. A sustainability analysis for Electric Vehicles Batteries including ageing phenomena. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Leurent, F.; Windisch, E. Benefits and costs of electric vehicles for the public finances: An integrated valuation model based on input output analysis, with application to France. Res. Transp. Econ. 2015, 50, 51–62. [Google Scholar] [CrossRef]
- Bouter, A.; Hache, E.; Ternel, C.; Beauchet, S. Comparative environmental life cycle assessment of several powertrain types for cars and buses in France for two driving cycles: “Worldwide harmonized light vehicle test procedure” cycle and urban cycle. Int. J. Life Cycle Assess. 2020, 25, 1545–1565. [Google Scholar] [CrossRef]
- Lang, J.L.; Cheng, S.Y.; Zhou, Y.; Zhao, B.B.; Wang, H.Y.; Zhang, S.J. Energy and Environmental Implications of Hybrid and Electric Vehicles in China. Energies 2013, 6, 2663–2685. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Ke, R.Y.; Han, R.; Tang, B.J. The analysis of the battery electric vehicle’s potentiality of environmental effect: A case study of Beijing from 2016 to 2020. J. Clean. Prod. 2017, 145, 395–406. [Google Scholar] [CrossRef]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. An economic and environmental assessment on landfill gas to vehicle fuel conversion for waste hauling operations. Resour. Conserv. Recycl. 2019, 142, 155–166. [Google Scholar] [CrossRef]
- Xu, W.X.; Zhang, H.A.; Ma, J.; Gong, Z.Y. Life Cycle Environment Evaluation of Hydrogen Source System for Fuel Cell Vehicles. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 032055. [Google Scholar] [CrossRef]
- Yoo, E.; Kim, M.; Song, H.H. Well-to-wheel analysis of hydrogen fuel-cell electric vehicle in Korea. Int. J. Hydrogen Energy 2018, 43, 19267–19278. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, M.H.; Wright, M.M. Lifecycle energy consumption and greenhouse gas emissions from corncob ethanol in China. Biofuels Bioprod. Biorefining 2018, 12, 1037–1046. [Google Scholar] [CrossRef]
- Kim, J.; Miller, J.E.; Maravelias, C.T.; Stechel, E.B. Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production. Appl. Energy 2013, 111, 1089–1098. [Google Scholar] [CrossRef]
- Hao, H.; Cheng, X.; Liu, Z.W.; Zhao, F.Q. Electric vehicles for greenhouse gas reduction in China: A cost-effectiveness analysis. Transport. Res. Part D-Transport. Environ. 2017, 56, 68–84. [Google Scholar] [CrossRef]
- Tong, F.; Jaramillo, P.; Azevedo, I.M.L. Comparison of Life Cycle Greenhouse Gases from Natural Gas Pathways for Light-Duty Vehicles. Energy Fuels 2015, 29, 6008–6018. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Y.; Huang, K.; Zhang, Z.; Li, X. The inharmonious mechanism of CO2, NOx, SO2, and PM2.5 electric vehicle emission reductions in Northern China. J. Environ. Manag. 2020, 274, 111236. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Han, W.J.; Wallington, T.J. Current and Future Greenhouse Gas Emissions Associated with Electricity Generation in China: Implications for Electric Vehicles. Environ. Sci. Technol. 2014, 48, 7069–7075. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Reddi, K.; Elgowainy, A.; Lohse-Busch, H.; Wang, M.; Rustagi, N. Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle. Int. J. Hydrogen Energy 2020, 45, 972–983. [Google Scholar] [CrossRef]
- Benitez, A.; Wulf, C.; de Palmenaer, A.; Lengersdorf, M.; Röding, T.; Grube, T.; Robinius, M.; Stolten, D.; Kuckshinrichs, W. Ecological assessment of fuel cell electric vehicles with special focus on type IV carbon fiber hydrogen tank. J. Clean. Prod. 2021, 278, 123277. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Li, G. A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis. Energy 2016, 94, 693–704. [Google Scholar] [CrossRef]
- Ma, H.R.; Balthasar, F.; Tait, N.; Riera-Palou, X.; Harrison, A. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy Policy 2012, 44, 160–173. [Google Scholar] [CrossRef]
- Faria, R.; Marques, P.; Moura, P.; Freire, F.; Delgado, J.; de Almeida, A.T. Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renew. Sustain. Energy Rev. 2013, 24, 271–287. [Google Scholar] [CrossRef]
- Noshadravan, A.; Cheah, L.; Roth, R.; Freire, F.; Dias, L.; Gregory, J. Stochastic comparative assessment of life-cycle greenhouse gas emissions from conventional and electric vehicles. Int. J. Life Cycle Assess. 2015, 20, 854–864. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.D.; Ou, X.M.; Yan, X.Y. Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model. Chem. Eng. Res. Des. 2018, 131, 699–708. [Google Scholar] [CrossRef]
- Onat, N.C.; Abdella, G.M.; Kucukvar, M.; Kutty, A.A.; Al-Nuaimi, M.; Kumbaroğlu, G.; Bulu, M. How eco-efficient are electric vehicles across Europe? A regionalized life cycle assessment-based eco-efficiency analysis. Sustain. Dev. 2021, 29, 941–956. [Google Scholar] [CrossRef]
- Rupp, M.; Handschuh, N.; Rieke, C.; Kuperjans, I. Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany. Appl. Energy 2019, 237, 618–634. [Google Scholar] [CrossRef]
- Onn, C.C.; Mohd, N.S.; Yuen, C.W.; Loo, S.C.; Koting, S.; Abd Rashid, A.F.; Karim, M.R.; Yusoff, S. Greenhouse gas emissions associated with electric vehicle charging: The impact of electricity generation mix in a developing country. Transport. Res. Part D-Transport. Environ. 2018, 64, 15–22. [Google Scholar] [CrossRef]
- Bailey, G.; Orefice, M.; Sprecher, B.; Önal, M.A.; Herraiz, E.; Dewulf, W.; Van Acker, K. Life cycle inventory of samarium-cobalt permanent magnets, compared to neodymium-iron-boron as used in electric vehicles. J. Clean Prod. 2021, 286, 125294. [Google Scholar] [CrossRef]
- Shanmugam, K.; Gadhamshetty, V.; Yadav, P.; Athanassiadis, D.; Tysklind, M.; Upadhyayula, V.K.K. Advanced High-Strength Steel and Carbon Fiber Reinforced Polymer Composite Body in White for Passenger Cars: Environmental Performance and Sustainable Return on Investment under Different Propulsion Modes. ACS Sustain. Chem. Eng. 2019, 7, 4951–4963. [Google Scholar] [CrossRef]
- Szczechowicz, E.; Dederichs, T.; Schnettler, A. Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany. Int. J. Life Cycle Assess. 2012, 17, 1131–1141. [Google Scholar] [CrossRef]
- Hamut, H.S.; Dincer, I.; Naterer, G.F. Exergoenvironmental analysis of hybrid electric vehicle thermal management systems. J. Clean Prod. 2014, 67, 187–196. [Google Scholar] [CrossRef]
- Huang, C.-L.; Xu, M.; Cui, S.; Li, Z.; Fang, H.; Wang, P. Copper-induced ripple effects by the expanding electric vehicle fleet: A crisis or an opportunity. Resour. Conserv. Recycl. 2020, 161, 104861. [Google Scholar] [CrossRef]
- Hao, H.; Mu, Z.; Jiang, S.; Liu, Z.; Zhao, F. GHG Emissions from the Production of Lithium-Ion Batteries for Electric Vehicles in China. Sustainability 2017, 9, 504. [Google Scholar] [CrossRef] [Green Version]
- Stamp, A.; Lang, D.J.; Wäger, P.A. Environmental impacts of a transition toward e-mobility: The present and future role of lithium carbonate production. J. Clean. Prod. 2012, 23, 104–112. [Google Scholar] [CrossRef]
- Reuter, B. Assessment of sustainability issues for the selection of materials and technologies during product design: A case study of lithium-ion batteries for electric vehicles. Int. J. Interact. Des. Manuf.-IJIDeM 2016, 10, 217–227. [Google Scholar] [CrossRef]
- Wu, H.; Hu, Y.; Yu, Y.; Huang, K.; Wang, L. The environmental footprint of electric vehicle battery packs during the production and use phases with different functional units. Int. J. Life Cycle Assess. 2021, 26, 97–113. [Google Scholar] [CrossRef]
- Yang, H.; Song, X.; Zhang, X.; Lu, B.; Yang, D.; Li, B. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: A case study of China. Environ. Sci. Pollut. Res. Mar. 2021, 28, 45867–45878. [Google Scholar] [CrossRef]
- Bailey, G.; Mancheri, N.; van Acker, K. Sustainability of Permanent Rare Earth Magnet Motors in (H)EV Industry. J. Sustain. Metall. 2017, 3, 611–626. [Google Scholar] [CrossRef]
- Sharma, R.; Manzie, C.; Bessede, M.; Crawford, R.H.; Brear, M.J. Conventional, hybrid and electric vehicles for Australian driving conditions. Part 2: Life cycle CO2-e emissions. Transp. Res. Part C-Emerg. Technol. 2013, 28, 63–73. [Google Scholar] [CrossRef]
- Hernandez, M.; Messagie, M.; Hegazy, O.; Marengo, L.; Winter, O.; van Mierlo, J. Environmental impact of traction electric motors for electric vehicles applications. Int. J. Life Cycle Assess. 2017, 22, 54–65. [Google Scholar] [CrossRef]
- Ribau, J.; Silva, C.; Brito, F.P.; Martins, J. Analysis of four-stroke, Wankel, and microturbine based range extenders for electric vehicles. Energy Conv. Manag. 2012, 58, 120–133. [Google Scholar] [CrossRef]
- Warren, J.A.; Riddle, M.E.; Graziano, D.J.; Das, S.; Upadhyayula, V.K.; Masanet, E.; Cresko, J. Energy Impacts of Wide Band Gap Semiconductors in US Light-Duty Electric Vehicle Fleet. Environ. Sci. Technol. 2015, 49, 10294–10302. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Sun, J.W.; Chen, Y.S.; Liu, Q.; Gu, L. Considering Well-to-Wheels Analysis in Control Design: Regenerative Suspension Helps to Reduce Greenhouse Gas Emissions from Battery Electric Vehicles. Energies 2019, 12, 19. [Google Scholar] [CrossRef] [Green Version]
- Kanz, O.; Reinders, A.; May, J.; Ding, K. Environmental Impacts of Integrated Photovoltaic Modules in Light Utility Electric Vehicles. Energies 2020, 13, 5120. [Google Scholar] [CrossRef]
- Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M. Ecological assessment of nano-enabled supercapacitors for automotive applications. IOP Conf. Ser. Mater. Sci. Eng. 2012, 40, 012013. [Google Scholar] [CrossRef] [Green Version]
- Giordano, A.; Fischbeck, P.; Matthews, H.S. Environmental and economic comparison of diesel and battery electric delivery vans to inform city logistics fleet replacement strategies. Transport. Res. Part D-Transport. Environ. 2018, 64, 216–229. [Google Scholar] [CrossRef]
- Wang, F.; Deng, Y.; Yuan, C. Comparative Life Cycle Assessment of Silicon Nanowire and Silicon Nanotube Based Lithium Ion Batteries for Electric Vehicles. In Proceedings of the 26th Cirp Conference on Life Cycle Engineering (lce), Purdue Univ, West Lafayette, IN, USA, 7–9 May 2019; Sutherland, J.W., Skerlos, S.J., Zhao, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 80, pp. 310–315. [Google Scholar] [CrossRef]
- Kurien, C.; Srivastava, A.K.; Molere, E. Indirect Carbon Emissions and Energy Consumption Model for Electric Vehicles: Indian Scenario. Integr. Environ. Assess. Manag. 2020, 16, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Marmiroli, B.; Venditti, M.; Dotelli, G.; Spessa, E. The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles. Appl. Energy 2020, 260, 18. [Google Scholar] [CrossRef]
- Kennedy, D.; Philbin, S.P. Techno-economic analysis of the adoption of electric vehicles. Front. Eng. Manag. 2019, 6, 538–550. [Google Scholar] [CrossRef]
- Hollweck, B.; Moullion, M.; Christ, M.; Kolls, G.; Wind, J. Energy Analysis of Fuel Cell Electric Vehicles (FCEVs) under European Weather Conditions and Various Driving Behaviors. Fuel Cells 2018, 18, 669–679. [Google Scholar] [CrossRef]
- Kamath, D.; Shukla, S.; Arsenault, R.; Kim, H.C.; Anctil, A. Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications. Waste Manag. 2020, 113, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Dong, Z.Y.; Xu, Y.; Meng, K.; Zhao, J.H.; Qiu, J. Electric Vehicle Battery Charging/Swap Stations in Distribution Systems: Comparison Study and Optimal Planning. IEEE Trans. Power Syst. 2014, 29, 221–229. [Google Scholar] [CrossRef]
- Von Hoffen, M. Enrichment and Context-based Analytics of Electric Vehicle Charging Transaction Data. In Proceedings of the 2016 6th International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 30 November–1 December 2016; IEEE: New York, NY, USA, 2016; pp. 94–100. [Google Scholar]
- Van Mierlo, J.; Messagie, M.; Rangaraju, S. Comparative environmental assessment. In World Conference on Transport Research—Wctr 2016; Ulengin, F., Li, K., Boltze, M., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2017; Volume 25, pp. 3439–3449. [Google Scholar]
- Hoshing, V.; Vora, A.; Saha, T.; Jin, X.; Kurtulus, O.; Vatkar, N.; Shaver, G.; Wasynczuk, O.; García, R.E.; Varigonda, S. Evaluating emissions and sensitivity of economic gains for series plug-in hybrid electric vehicle powertrains for transit bus applications. Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 2020, 234, 3272–3287. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Q.; Pang, Y. The development pattern design of Chinese electric vehicles based on the analysis of the critical price of the life cycle cost. Energy Policy 2017, 109, 382–388. [Google Scholar] [CrossRef]
- Scharf, M.; Heide, L.; Grahle, A.; Syré, A.M.; Göhlich, D. Environmental Impact of Subsidy Concepts for Stimulating Car Sales in Germany. Sustainability 2020, 12, 10037. [Google Scholar] [CrossRef]
- Vivanco, D.F.; Tukker, A.; Kemp, R. Do Methodological Choices in Environmental Modeling Bias Rebound Effects? A Case Study on Electric Cars. Environ. Sci. Technol. 2016, 50, 11366–11376. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Gregory, J.; Freire, F. Dynamic fleet-based life-cycle greenhouse gas assessment of the introduction of electric vehicles in the Portuguese light-duty fleet. Int. J. Life Cycle Assess. 2015, 20, 1287–1299. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-Y.; Elgowainy, A.; Kotz, A.; Vijayagopal, R.; Marcinkoski, J. Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks. J. Power Sources 2018, 393, 217–229. [Google Scholar] [CrossRef]
- Yang, F.; Xie, Y.Y.; Deng, Y.L.; Yuan, C. Considering Battery Degradation in Life Cycle Greenhouse Gas Emission Analysis of Electric Vehicles. In Proceedings of the 25th Cirp Life Cycle Engineering, Copenhagen, Denmark, 30 April–2 May 2018; Laurent, A., Leclerc, A., Niero, M., Dong, Y., Olsen, S.I., Owsianiak, M., Bey, N., Ryberg, M., Hauschild, M.Z., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2018; Volume 69, pp. 505–510. [Google Scholar]
- Lucas, A.; Silva, C.A.; Neto, R.C. Life cycle analysis of energy supply infrastructure for conventional and electric vehicles. Energy Policy 2012, 41, 537–547. [Google Scholar] [CrossRef]
- Yang, L.; Yu, B.; Yang, B.; Chen, H.; Malima, G.; Wei, Y.-M. Life cycle environmental assessment of electric and internal combustion engine vehicles in China. J. Clean. Prod. 2021, 285, 124899. [Google Scholar] [CrossRef]
- Hao, H.; Qiao, Q.Y.; Liu, Z.W.; Zhao, F.Q. Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: The China 2025 case. Resour. Conserv. Recycl. 2017, 122, 114–125. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution. Waste Manag. Res. 2021, 39, 156–164. [Google Scholar] [CrossRef]
- Bobba, S.; Bianco, I.; Eynard, U.; Carrara, S.; Mathieux, F.; Blengini, G.A. Bridging Tools to Better Understand Environmental Performances and Raw Materials Supply of Traction Batteries in the Future EU Fleet. Energies 2020, 13, 25. [Google Scholar] [CrossRef]
- MCusenza, A.; Guarino, F.; Longo, S.; Ferraro, M.; Cellura, M. Energy and environmental benefits of circular economy strategies: The case study of reusing used batteries from electric vehicles. J. Energy Storage 2019, 25, 11. [Google Scholar] [CrossRef]
- Kamath, D.; Arsenault, R.; Kim, H.C.; Anctil, A. Economic and Environmental Feasibility of Second-Life Lithium-Ion Batteries as Fast-Charging Energy Storage. Environ. Sci. Technol. 2020, 54, 6878–6887. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Toward Sustainable Reuse of Retired Lithium-ion Batteries from Electric Vehicles. Resour. Conserv. Recycl. 2021, 168, 105249. [Google Scholar] [CrossRef]
- Peng, T.D.; Zhou, S.; Yuan, Z.Y.; Ou, X.M. Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China. Sustainability 2017, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.X.; Wang, M.; Zheng, J.H.; Sun, X.; Zhao, M.N.; Wang, X. Life cycle greenhouse gas emission reduction potential of battery electric vehicle. J. Clean. Prod. 2018, 190, 462–470. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Well-to-wheel water footprints of conventional versus electric vehicles in the United States: A state-based comparative analysis. J. Clean Prod. 2018, 204, 788–802. [Google Scholar] [CrossRef]
- Vivanco, D.F.; Freire-Gonzalez, J.; Kemp, R.; van der Voet, E. The Remarkable Environmental Rebound Effect of Electric Cars: A Microeconomic Approach. Environ. Sci. Technol. 2014, 48, 12063–12072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Gao, F.; Gong, X.; Wang, Z.; Liu, Y. Comparison of Climate Change Impact Between Power System of Electric Vehicles and Internal Combustion Engine Vehicles. In Advances in Energy and Environmental Materials; Han, Y., Ed.; Springer-Verlag Singapore Pte Ltd.: Singapore, 2018; pp. 739–747. [Google Scholar] [CrossRef]
- Wang, F.; Deng, Y.; Yuan, C. Life cycle assessment of lithium oxygen battery for electric vehicles. J. Clean Prod. 2020, 264, 121339. [Google Scholar] [CrossRef]
- Crossin, E.; Doherty, P.J.B. The effect of charging time on the comparative environmental performance of different vehicle types. Appl. Energy 2016, 179, 716–726. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Appl. Energy 2015, 150, 36–49. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, X.; Ding, N.; Yang, J.X. Life cycle environmental assessment of charging infrastructure for electric vehicles in China. J. Clean. Prod. 2019, 227, 932–941. [Google Scholar] [CrossRef]
- Van Mierlo, J.; Vereecken, L.; Maggetto, G.; Favrel, V.; Meyer, S.; Hecq, W. Comparison of the environmental damage caused by vehicles with different alternative fuels and drivetrains in a Brussels context. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2003, 217, 583–593. [Google Scholar] [CrossRef]
- Lombardi, L.; Tribioli, L.; Cozzolino, R.; Bella, G. Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA. Int. J. Life Cycle Assess. 2017, 22, 1989–2006. [Google Scholar] [CrossRef]
- Held, M.; Schuecking, M. Utilization effects on battery electric vehicle life-cycle assessment: A case-driven analysis of two commercial mobility applications. Transport. Res. Part D-Transport. Environ. 2019, 75, 87–105. [Google Scholar] [CrossRef]
- Hernandez, M.; Messagie, M.; de Gennaro, M.; van Mierlo, J. Resource depletion in an electric vehicle powertrain using different LCA impact methods. Resour. Conserv. Recycl. 2017, 120, 119–130. [Google Scholar] [CrossRef]
- Rapa, M.; Gobbi, L.; Ruggieri, R. Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources. Energies 2020, 13, 6292. [Google Scholar] [CrossRef]
- Delogu, M.; Zanchi, L.; Dattilo, C.A.; Ierides, M. Parameters affecting the sustainability trade-off between production and use stages in the automotive lightweight design. In Proceedings of the 25th Cirp Life Cycle Engineering, Copenhagen, Denmark, 30 April–2 May 2018; Laurent, A., Leclerc, A., Niero, M., Dong, Y., Olsen, S.I., Owsianiak, M., Bey, N., Ryberg, M., Hauschild, M.Z., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2018; Volume 69, pp. 534–539. [Google Scholar]
- Bauer, C.; Hofer, J.; Althaus, H.J.; del Duce, A.; Simons, A. The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Appl. Energy 2015, 157, 871–883. [Google Scholar] [CrossRef]
- Upadhyayula, V.K.K.; Parvatker, A.G.; Baroth, A.; Shanmugam, K. Lightweighting and electrification strategies for improving environmental performante of passenger cars in India by 2030: A critical perspective based on life cycle assessment. J. Clean. Prod. 2019, 209, 1604–1613. [Google Scholar] [CrossRef]
- de Souza, L.L.; Lora, E.E.S.; Palacio, J.C.E.; Rocha, M.H.; Reno, M.L.G.; Venturini, O.J. Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. J. Clean. Prod. 2018, 203, 444–468. [Google Scholar] [CrossRef]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Stromman, A.H. Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. J. Ind. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Onat, N.C.; Aboushaqrah, N.N.M.; Kucukvar, M. Supply Chain Linked Sustainability Assessment of Electric Vehicles: The Case for Qatar. In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokyo, Japan, 12–15 April 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Weinberg, J.; Kaltschmitt, M. Life cycle assessment of mobility options using wood based fuels—Comparison of selected environmental effects and costs. Bioresour. Technol. 2013, 150, 420–428. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Folega, P. Environmental footprints of current and future electric battery charging and electric vehicles in poland. Transp. Probl. 2020, 15, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liang, M.; Cheng, W.; Wang, S. Life cycle cost of conventional, battery electric, and fuel cell electric vehicles considering traffic and environmental policies in China. Int. J. Hydrogen Energy 2021, 46, 9553–9566. [Google Scholar] [CrossRef]
- Deutz, S.; Bongartz, D.; Heuser, B.; Kätelhön, A.; Langenhorst, L.S.; Omari, A.; Walters, M.; Klankermayer, J.; Leitner, W.; Mitsos, A.; et al. Cleaner production of cleaner fuels: Wind-to-wheel—Environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ. Sci. 2018, 11, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Yu, A.; Wei, Y.Q.; Chen, W.W.; Peng, N.J.; Peng, L.H. Life cycle environmental impacts and carbon emissions: A case study of electric and gasoline vehicles in China. Transport. Res. Part D-Transport. Environ. 2018, 65, 409–420. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, R.T. Study on Effect of Electric Vehicle Industry to Energy and Environment. In Energy and Power Technology, Pts 1 and 2; Yu, X.W., Ji, H.B., Chen, S.Z., Liu, X.G., Zeng, Q.Z., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013; Volume 805–806, pp. 1664–1667. [Google Scholar]
- Nansai, K.; Tohno, S.; Kono, M.; Kasahara, M.; Moriguchi, Y. Life-cycle analysis of charging infrastructure for electric vehicles. Appl. Energy 2001, 70, 251–265. [Google Scholar] [CrossRef]
- Narasipuram, R.P.; Mopidevi, S. A technological overview & design considerations for developing electric vehicle charging stations. J. Energy Storage 2021, 43, 103225. [Google Scholar] [CrossRef]
- Evtimov, I.; Ivanov, R.; Stanchev, H.; Kadikyanov, G.; Staneva, G. Life cycle assessment of fuel cells electric vehicles. Transp. Probl. 2020, 15, 153–166. [Google Scholar] [CrossRef]
- Patil, V.; Shastry, V.; Himabindu, M.; Ravikrishna, R.V. Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2—Well-to-wheels analysis. Energy 2016, 96, 699–712. [Google Scholar] [CrossRef]
- Gifford, J.D.; Brown, R.C. Four economies of sustainable automotive transportation. Biofuels Bioprod. Bioref. 2011, 5, 293–304. [Google Scholar] [CrossRef]
- Huo, H.; Cai, H.; Zhang, Q.; Liu, F.; He, K.B. Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the US. Atmos. Environ. 2015, 108, 107–116. [Google Scholar] [CrossRef]
- Li, Y.; Ha, N.; Li, T. Research on Carbon Emissions of Electric Vehicles throughout the Life Cycle Assessment Taking into Vehicle Weight and Grid Mix Composition. Energies 2019, 12, 3612. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.R.; Choi, H.; Ahn, J. Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transport. Res. Part D-Transport. Environ. 2017, 51, 340–350. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Jursova, S.; Folega, P.; Pustejovska, P. Life cycle impact assessment of electric vehicle battery charging in European Union countries. J. Clean Prod. 2020, 257, 120476. [Google Scholar] [CrossRef]
- Bartos, M.D.; Chester, M.V. The Conservation Nexus: Valuing Interdependent Water and Energy Savings in Arizona. Environ. Sci. Technol. 2014, 48, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- Stillwell, A.S.; King, C.W.; Webber, M.E.; Duncan, I.J.; Hardberger, A. The Energy-Water Nexus in Texas. Ecol. Soc. 2011, 16, 1. [Google Scholar] [CrossRef] [Green Version]
- Onat, N.C.; Kucukvar, M.; Afshar, S. Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis. J. Clean. Prod. 2019, 212, 515–526. [Google Scholar] [CrossRef]
- Strecker, B.; Hausmann, A.; Depcik, C. Well to wheels energy and emissions analysis of a recycled 1974 VW Super Beetle converted into a plug-in series hybrid electric vehicle. J. Clean. Prod. 2014, 68, 93–103. [Google Scholar] [CrossRef]
- Chang, W.R.; Hwang, J.J.; Wu, W. Environmental impact and sustainability study on biofuels for transportation applications. Renew. Sustain. Energy Rev. 2017, 67, 277–288. [Google Scholar] [CrossRef]
- Cai, Y.; Applegate, S.; Yue, W.; Cai, J.; Wang, X.; Liu, G.; Li, C. A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing’s taxi fleet. Energy Policy 2017, 100, 314–325. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, J. The impact of the Chinese automotive industry: Scenarios based on the national environmental goals. J. Clean. Prod. 2015, 96, 102–109. [Google Scholar] [CrossRef]
- Liu, Z.; He, Y.; Zhang, Y.-J.; Qin, C.-X. The life cycle environmental rebound effect of battery electric vehicles in China: A provincial level analysis. Appl. Econ. 2021, 53, 2888–2904. [Google Scholar] [CrossRef]
- Vinodh, S.; Jayakrishna, K.; Joy, D. Environmental impact assessment of an automotive component using eco-indicator and CML methodologies. Clean Technol. Environ. Policy 2012, 14, 333–344. [Google Scholar] [CrossRef]
- Onat, N.C.; Noori, M.; Kucukvar, M.; Zhao, Y.; Tatari, O.; Chester, M. Exploring the suitability of electric vehicles in the United States. Energy 2017, 121, 631–642. [Google Scholar] [CrossRef]
Year | Author | CO2 of NEVs (gCO2-eq/km) | CO2 of ICEVs (gCO2-eq/km) | Standpoint |
---|---|---|---|---|
2021 | Nimesh V [24] | 187 | 215 | YES |
2021 | Petrauskiene K [33] | 212 | 159 | NO |
2020 | Koroma MS [18] | 170 | 213 | YES |
2020 | Liu YT [34] | 244 | 92 | NO |
2020 | Qiao QY [35] | 253 | 340 | YES |
2020 | Petrauskiene K [36] | 142 | 104 | NO |
2019 | Kim S [11] | 100 | 170 | YES |
2019 | Cusenza MA [37] | 240 | 180 | NO |
2019 | Shen W [38] | 163 | 199 | YES |
2019 | Almeida A [39] | 141 | 193 | YES |
Rank | Method Selection | Numbers |
---|---|---|
1 | LCA | 233 |
2 | LCI | 79 |
3 | LCC | 63 |
4 | LCIA | 35 |
5 | SLCA | 6 |
6 | ALCA | 2 |
7 | CLCA | 1 |
8 | PLCA | 1 |
9 | EIO-LCA | 1 |
Rank | Stage Division | Numbers |
---|---|---|
1 | Driving route and energy conservation | 206 |
2 | Equipment manufacture | 154 |
3 | Energy refinement and distribution | 135 |
4 | Equipment end of life | 92 |
5 | Material extraction and collection | 88 |
6 | Energy resources: extraction and collection | 86 |
7 | Carrier production and energy transportation | 56 |
8 | Maintenance and replacement | 52 |
Rank | Database/Software | Numbers |
---|---|---|
1 | Greet | 62 |
2 | Ecoinvent | 52 |
3 | Simapro | 29 |
4 | Gabi | 22 |
5 | TLCAM | 6 |
6 | OPENLCA | 5 |
7 | AFLEET | 3 |
8 | Umberto | 2 |
9 | MRIO | 2 |
10 | NREL | 2 |
11 | EXIOBASE | 2 |
12 | E3OIT | 2 |
13 | CMLCA | 1 |
14 | CALCD | 1 |
15 | MiLCA | 1 |
16 | COPERT5 | 1 |
17 | ELCD | 1 |
18 | IEA | 1 |
19 | JEC | 1 |
20 | CNMLCA | 1 |
21 | ADVISOR | 1 |
22 | WIOD | 1 |
23 | IDEA | 1 |
24 | EVRO | 1 |
25 | No instructions | 100 |
Rank | Vehicle Brand | Numbers |
---|---|---|
1 | Toyota | 53 |
2 | Ford | 40 |
3 | Nissan | 40 |
4 | Volkswagen | 37 |
5 | Tesla | 24 |
6 | BYD | 23 |
7 | Chevrolet | 18 |
8 | Honda | 18 |
9 | BMW | 17 |
10 | BAIC | 16 |
11 | Hyundai | 16 |
12 | Kia | 10 |
13 | Chery | 9 |
14 | Mercedes-Benz | 9 |
15 | Mitsubishi | 8 |
16 | Fiat | 7 |
17 | Renault | 7 |
18 | Smart | 7 |
19 | Volvo | 7 |
20 | Geely | 6 |
Total | 372 |
Rank | Vehicle Model | Numbers | Power Type |
---|---|---|---|
1 | Nissan Leaf | 40 | EV |
2 | Toyota Prius | 14 | HEV |
3 | Tesla Model S | 12 | EV |
4 | Volkswagen Golf | 9 | EV |
5 | Toyota Prius | 9 | PHEV |
6 | Toyota Corolla | 8 | ICEV |
7 | Toyota Mirai | 7 | FCEV |
8 | Volkswagen Golf | 6 | ICEV |
9 | BMW i3 EV | 6 | EV |
10 | BYD e6 | 5 | EV |
Rank | Evaluation Scale | Numbers |
---|---|---|
1 | ISO 14040/ISO 14044 | 66 |
2 | Recipe | 27 |
3 | CML | 24 |
4 | IPCC | 16 |
5 | ILCD | 7 |
6 | CED | 5 |
7 | EI99 | 5 |
8 | Eco-indicator | 4 |
9 | IMPACT | 4 |
10 | Environmental Footprint | 1 |
11 | CEENE | 1 |
12 | TRACI | 1 |
13 | EPS | 1 |
14 | UseTox | 1 |
15 | HBEFA | 1 |
16 | EPD | 1 |
17 | No introduction | 81 |
Rank | Environmental Efficiency Index | Numbers |
---|---|---|
1 | GWP (g CO2-eq/km) | 520 |
2 | POF (g NMVOC-eq /km) | 143 |
3 | TA (g SO2-eq/km) | 140 |
4 | PMF (g PM2.5-eq/km) | 137 |
5 | HT (g 1,4-DCB/km) | 88 |
6 | FE (g P-eq/km) | 79 |
7 | FDP (g Oil-eq/km) | 73 |
8 | OD (g CFC-11-eq/km) | 70 |
9 | FE (g 1,4-DCB-eq/km) | 53 |
10 | IR (bq U235-eq /km) | 43 |
11 | TE (g 1,4-DCB/km) | 39 |
12 | Water Consumption (l/km) | 37 |
13 | Land Use (m2/km) | 34 |
14 | MDP (g Cu-eq/km) | 30 |
15 | AD (g Sb-eq/km) | 29 |
16 | MT (g 1,4-DCB/km) | 27 |
17 | ME (g N-eq/km) | 27 |
18 | TE (g N-eq/km) | 16 |
19 | OFP-Terrestrial Ecological (g NOx-eq/km) | 11 |
20 | ODP-Human Toxicity (g NOx-eq/km) | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Tang, G. A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis. Sustainability 2022, 14, 3371. https://doi.org/10.3390/su14063371
Wang N, Tang G. A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis. Sustainability. 2022; 14(6):3371. https://doi.org/10.3390/su14063371
Chicago/Turabian StyleWang, Nenming, and Guwen Tang. 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis" Sustainability 14, no. 6: 3371. https://doi.org/10.3390/su14063371
APA StyleWang, N., & Tang, G. (2022). A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis. Sustainability, 14(6), 3371. https://doi.org/10.3390/su14063371