Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Material
2.3. Methods
2.3.1. Fraction of Vegetation Cover (FVC)
2.3.2. NPP Estimation Using CASA
2.3.3. Dynamic Change of Oasis Areas
2.3.4. RSEI Estimation
2.3.5. Trend and Correlation Analysis
3. Results
3.1. Oasis Dynamic Change
3.2. Indictors of Oasis Change
3.2.1. NDVI
3.2.2. FVC
3.2.3. NPP
3.3. Evaluation of Ecological Environment
4. Discussion
4.1. Climatic Influences
4.2. Human Activities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Yang, G.; Zhou, L.; Liao, J.; Wei, X. Quantitative Analysis of Natural and Human Factors of Oasis Change in the Tail of Shiyang River over the Past 60 Years. Acta Geol. Sin. 2020, 94, 637–645. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, X.; Shi, M. Human Driving Forces of Oasis Expansion in Northwestern China During the Last Decade—A Case Study of the Heihe River Basin. Land Degrad. Dev. 2016, 28, 412–420. [Google Scholar] [CrossRef]
- Sun, F.; Wang, Y.; Chen, Y.; Li, Y.; Zhang, Q.; Qin, J.; Kayumba, P.M. Historic and Simulated Desert-Oasis Ecotone Changes in the Arid Tarim River Basin, China. Remote Sens. 2021, 13, 647. [Google Scholar] [CrossRef]
- Huang, J.; Ji, F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. Int. J. Biometeorol. 2015, 59, 877–888. [Google Scholar] [CrossRef]
- Cao, G.L.; Zheng, C.M.; Simmons, C.T. Groundwater recharge and mixing in arid and semiarid regions: Heihe River Basin, Northwest China. Acta Geol. Sin. 2016, 3, 971–987. (In Chinese) [Google Scholar]
- Zhou, X.; Lei, W. Hydrological interactions between oases and water vapor transportation in the Tarim Basin, northwestern China. Sci. Rep. 2018, 8, 13431. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Zhang, Z.; Zhao, X.; Wang, X.; Wu, W.; Yi, L.; Liu, F. Multitemporal analysis of cropland transition in a climate-sensitive area: A case study of the arid and semiarid region of northwest China. Reg. Environ. Chang. 2014, 14, 75–89. [Google Scholar] [CrossRef]
- Feistel, R.; Hellmuth, O. Relative Humidity: A Control Valve of the Steam Engine Climate. J. Hum. Earth Future 2021, 2. [Google Scholar] [CrossRef]
- Hao, X.; Hao, H.; Zhang, J. Soil moisture influenced the variability of air temperature and oasis effect in a large inland basin of an arid region. Hydrol. Process. 2021, 35, e14246. [Google Scholar] [CrossRef]
- Liu, R.; Sogachev, A.; Yang, X.; Liu, S.; Xu, T.; Zhang, J. Investigating microclimate effects in an oasis-desert interaction zone. Agr. Forest Meteorol. 2020, 290, 107992. [Google Scholar] [CrossRef]
- Xue, J.; Gui, D.; Lei, J.; Sun, H.; Zeng, F.; Mao, D.; Zhang, Z.; Jin, Q.; Liu, Y. Oasis microclimate effects under different weather events in arid or hyper arid regions: A case analysis in southern Taklimakan desert and implication for maintaining oasis sustainability. Theor. Appl. Climatol. 2019, 137, 89–101. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Zhang, Q.; Li, Y. Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia. J. Hydrol. 2020, 590, 125355. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, S.; Zhang, Q.; Liu, Y.; Zhou, H. Ecological Water Demand of Taitema Lake in the Lower Reaches of the Tarim River and the Cherchen River. Remote Sens. 2022, 14, 832. [Google Scholar] [CrossRef]
- Ekwueme, B.; Agunwamba, J. Trend Analysis and Variability of Air Temperature and Rainfall in Regional River Basins. Civ. Eng. J. 2021, 7, 816–826. [Google Scholar] [CrossRef]
- Gampe, D.; Zscheischler, J.; Reichstein, M.; Sullivan, O.M.; Smith, W.K.; Sitch, S.; Buermann, W. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Chang. 2021, 11, 772–779. [Google Scholar] [CrossRef]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. Discuss. 2013, 13, 14637–14665. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.F.; Shen, Y.J.; Chen, Y.N.; Guo, Y. Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin, China. Ecohydrology 2013, 6, 927–936. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, W.; Wei, H.; Zhang, P.; Ren, J.; Gao, Z.; Ulgiati, S.; Kong, W.; Dong, X. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas River Basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef]
- Hao, X.; Li, W.; Deng, H. The oasis effect and summer temperature rise in arid regions—Case study in Tarim Basin. Sci. Rep 2016, 6, 35418. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, K.; Zhou, Y. Progress in the study of oasis-desert interactions. Agr. Forest Meteorol. 2016, 230–231, 1–7. [Google Scholar] [CrossRef]
- Xue, L.; Zhu, B.; Wu, Y.; Wei, G.; Liao, S.; Yang, C.; Wang, J.; Zhang, H.; Ren, L.; Han, Q. Dynamic projection of ecological risk in the Manas River basin based on terrain gradients. Sci. Total Environ. 2019, 653, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Kasimu, A.; Zhao, Y.; Lin, B.; Chai, J.; Ruzi, T.; Zhao, H. Evaluation of the Temporal and Spatial Changes of Ecological Quality in the Hami Oasis Based on RSEI. Sustainability 2020, 12, 7716. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, E.; Zhang, H. Complex network and redundancy analysis of spatial–temporal dynamic changes and driving forces behind changes in oases within the Tarim Basin in northwestern China. Catena 2021, 201, 105216. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Yang, W.; Wang, L.; Wu, M.; Zhang, Q.; Han, W.; Khoi, D.N. The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015). Sustainability 2019, 11, 7243. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.; Li, X.; Duan, H. Oasis land-use change and its environmental impact in Jinta Oasis, arid northwestern China. Environ. Monit. Assess. 2007, 134, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Gong, J.; Sun, P.; Gou, X. Oasis dynamics change and its influence on landscape pattern on Jinta oasis in arid China from 1963a to 2010a: Integration of multi-source satellite images. Int. J. Appl. Earth Obs. 2014, 33, 181–191. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Global Planet. Chang. 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Shi, G.; Ye, P.; Ding, L.; Quinones, A.; Li, Y.; Jiang, N. Spatio-Temporal Patterns of Land Use and Cover Change from 1990 to 2010: A Case Study of Jiangsu Province, China. Int. J. Environ. Res. Public Health 2019, 16, 907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Hao, X.; Hao, H.; Fan, X.; Li, Y. Climate Change Decreased Net Ecosystem Productivity in the Arid Region of Central Asia. Remote Sens. 2021, 13, 4449. [Google Scholar] [CrossRef]
- Li, P.; Xu, L.; Liu, X.; Wu, P. Ecological security evaluation of an oasis in the north of the Tianshan Mountains based on three-dimensional ecological footprint model. Arid Zone Res. 2020, 37, 1337–1345. (In Chinese) [Google Scholar]
- Leng, C.; Chen, Y.; Li, X.; Sun, Y. Evaluation of oasis stability in the lower reaches of the Tarim River. J. Arid land 2011, 3, 123–131. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Li, W. Hydrological extreme variability in the headwater of Tarim River: Links with atmospheric teleconnection and regional climate. Stoch. Environ. Res. Risk Assess. 2014, 28, 443–453. [Google Scholar] [CrossRef]
- Zhang, Y.; An, C.; Liu, L.; Zhang, Y.; Lu, C.; Zhang, W. High Mountains Becoming Wetter While Deserts Getting Drier in Xinjiang, China since the 1980s. Land 2021, 10, 1131. [Google Scholar] [CrossRef]
- Huang, J.; Wang, R.; Zhang, H. Analysis of patterns and ecological security trend of modern oasis landscapes in Xinjiang, China. Environ. Monit. Assess. 2007, 134, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, Y.; Li, Z.; Fang, G.; Li, Y.; Wang, X.; Zhang, X.; Kayumba, P.M. Developing a Long Short-Term Memory (LSTM)-Based Model for Reconstructing Terrestrial Water Storage Variations from 1982 to 2016 in the Tarim River Basin, Northwest China. Remote Sens. 2021, 13, 889. [Google Scholar] [CrossRef]
- Fang, G.; Yang, J.; Chen, Y.; Li, Z.; Ji, H.; De, M. How Hydrologic Processes Differ patially in a Large Basin: Multisite and Multiobjective Modeling in the Tarim River Basin. J. Geophys. Res. Atmos. 2018, 123, 7098–7113. [Google Scholar]
- Zhang, Q.; Chen, Y.; Li, Z.; Fang, G.; Xiang, Y.; Li, Y.; Ji, H. Recent Changes in Water Discharge in Snow and Glacier Melt-Dominated Rivers in the Tienshan Mountains, Central Asia. Remote Sens. 2020, 12, 2704. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Li, W.; Li, Z. Quantifying the contributions of snow/glacier meltwater to river runoff in the Tianshan Mountains, Central Asia. Global Planet. Chang. 2019, 174, 47–57. [Google Scholar] [CrossRef]
- Duethmann, D.; Menz, C.; Jiang, T.; Vorogushyn, S. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large. Environ. Res. Lett. 2016, 11, 54024. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lu, Y.; Van Der Werf, W.; Huang, J.; Wu, F.; Zhou, K.; Deng, X.; Jiang, Y.; Wu, K.; Rosegrant, M.W. Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. Proc. Nat. Acad. Sci. USA 2018, 115, E7700–E7709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serbin, G.; Hunt, E.R.; Daughtry, C.S.T.; McCarty, G.W. Assessment of spectral indices for cover estimation of senescent vegetation. Remote Sens. lett. 2013, 4, 552–560. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Ma, J.; Cheng, Y.; Wang, L. Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin. J. Arid Land 2021, 13, 40–55. [Google Scholar] [CrossRef]
- Shobairi, E.A. Dynamic estimation model of vegetation fractional coverage and drivers. Int. J. Adv. Appl. Sci. 2018, 5, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Chen, W.; Zeng, Y.; Zhao, Q.; Wu, B. Improving Estimates of Grassland Fractional Vegetation Cover Based on a Pixel Dichotomy Model: A Case Study in Inner Mongolia, China. Remote Sens. 2014, 6, 4705–4722. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Yang, Y.; Mu, X. Monitoring Dynamic Changes of Vegetation Cover in the Tarim River Basin Based with Landsat Imagery and Google Earth Engine. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Li, Y.; Chen, Y.; Ye, Z.; Wang, F.; Sun, F.; Qin, J. Ecological responses of ecological water conveyance in the lower reaches of Tarim River for 20 years. Arid Land Geogr. 2021, 44, 700–707. (In Chinese) [Google Scholar]
- Jiapaer, G.; Chen, X.; Bao, A. A comparison of methods for estimating fractional vegetation cover in arid regions. Agr. Forest Meteorol. 2011, 151, 1698–1710. [Google Scholar] [CrossRef]
- Zeng, X.; Dickinson, R.; Walker, A.; Shaikh, M.; DeFries, R.; Qi, J. Derivation and Evaluation of Global 1-km Fractional Vegetation Cover Data for Land Modeling. J. Appl. Meteorol. 2000, 39, 826–839. [Google Scholar] [CrossRef]
- Potter, C.; Klooster, S.; Genovese, V. Net primary production of terrestrial ecosystems from 2000 to 2009. Clim. Chang. 2012, 115, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production; a process model based on global satellite and surface data. Global Biogeochem. Cy. 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Springer: Boston, MA, USA, 1975. [Google Scholar]
- Zhao, Y.; Zhang, H. Impacts of SST Warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia. Clim. Dynam. 2016, 46, 3223–3238. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Kang, S.; Wu, H.; Yuan, X. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 2018, 203, 141–163. [Google Scholar] [CrossRef]
- Liu, S.; Ding, Y.; Shangguan, D.; Zhang, Y.; Li, J.; Han, H.; Wang, J.; Xie, C. Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Ann. Glaciol. 2006, 43, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yang, J.; Chen, Y. NDVI-based vegetation responses to climate change in an arid area of China. Theor. Appl. Climatol. 2016, 126, 213–222. [Google Scholar] [CrossRef]
- Song, W.; Zhang, Y. Expansion of agricultural oasis in the Heihe River Basin of China: Patterns, reasons and policy implications. Phys. Chem. Earth. 2015, 89–90, 46–55. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Tao, H.; Gemme, M.; Bai, Y.; Su, B.; Mao, W. Trends of streamflow in the Tarim River Basin during the past 50 years: Human impact or climate change? J. Hydrol. 2011, 400, 1–9. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, Y.; Fink, M.; Kralisch, S.; Sven, K.; Chen, Y.; Brenning, A. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains. J. Hydrol. 2018, 557, 173–181. [Google Scholar] [CrossRef]
- Duethmann, D.; Bolch, T.; Farinotti, D.; Kriegel, D.; Vorogushyn, S.; Merz, B.; Pieczonka, T.; Jiang, T.; Su, B.; Untner, G.A. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resour. Res. 2015, 51, 4727–4750. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Chen, Y.; Zhang, Q.; Bian, W. Trends of snow cover and streamflow variation in Kaidu River and their influential factors. Resour. Sci. 2018, 40, 1855–1865. (In Chinese) [Google Scholar]
- Li, B.; Chen, Y.; Chipman, J.W.; Shi, X. Why does the runoff in Hotan River show a slight decreased trend in northwestern China? Atmos. Sci. Lett. 2018, 19, e800. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.; Long, A.; Yu, J.; Yin, Z.; Zhang, J. Effects of climate and underlying surface changes on runoff of Yarkant River Source. Arid Land Geogr. 2021, 44, 1373–1383. [Google Scholar]
- Ye, Z.; Liu, H.; Chen, Y.; Shu, S.; Wu, Q.; Wang, S. Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009). PLoS ONE 2017, 12, e183800. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Liu, S.; Wei, J.; Jiang, Z. Heterogeneity of glacial lake expansion and its contrasting signals with climate change in Tarim Basin, Central Asia. Environ. Earth Sci. 2016, 75, 696. [Google Scholar] [CrossRef]
- Zhang, L.; Wylie, B.K.; Ji, L.; Gilmanov, T.G.; Tieszen, L.L.; Howard, D.M. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources. J. Geophys. Res. 2011, 116, G3. [Google Scholar]
- Xiang, Y.; Wang, Y.; Chen, Y.; Bai, Y.; Zhang, L.; Zhang, Q. Hydrological Drought Risk Assessment Using a Multidimensional Copula Function Approach in Arid Inland Basins, China. Water 2020, 12, 1888. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, Y.; Chen, Y.; Zhang, Q. Impact of Climate Change on the Hydrological Regime of the Yarkant River Basin, China: An Assessment Using Three SSP Scenarios of CMIP6 GCMs. Remote Sens. 2022, 14, 115. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Fang, G.; Li, Z.; Wang, F.; Qin, J.; Sun, F. Potential risks and challenges of climate change in the arid region of northwestern China. Reg. Sustain. 2020, 1, 20–30. [Google Scholar] [CrossRef]
- Ćosić-Flajsig, G.; Vučković, I.; Karleuša, B. An Innovative Holistic Approach to an E-flow Assessment Model. Civ. Eng. J. 2020, 6, 2188–2202. [Google Scholar] [CrossRef]
- Amuti, T.; Luo, G. Analysis of land cover change and its driving forces in a desert oasis landscape of Xinjiang, northwest China. Solid Earth 2014, 5, 1071–1085. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Luo, G.; Lu, L. Processes and trends of the land use change in Aksu watershed in the central Asia from 1960 to 2008. J. Arid Land 2010, 2, 157–166. [Google Scholar]
- Zhang, P.; Deng, X.; Long, A.; Xu, H.; Ye, M.; Li, J. Change in Spatial Distribution Patterns and Regeneration of Populus euphratica under Different Surface Soil Salinity Conditions. Sci. Rep. 2019, 9, 9123. [Google Scholar] [CrossRef]
- Ling, H.; Guo, B.; Yan, J.; Deng, X.; Xu, H.; Zhang, G. Enhancing the positive effects of ecological water conservancy engineering on desert riparian forest growth in an arid basin. Ecol. Indic. 2020, 118, 106797. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, L.; He, C. Analysis of Agricultural Land Use Change in the Middle Reach of the Heihe River Basin, Northwest China. Int. J. Environ. Res. Public Health 2014, 11, 2698–2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, H.; Chen, Y. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 2017, 544, 46–57. [Google Scholar] [CrossRef]
Basin | Basin Area (104 km2) | Oasis Region (104 km2) | Fraction of Oasis Region to Basin Area (%) | Fraction of Basin Glacier Area Proportion (%) | Basin Elevation (m) | Annual Mean Runoff (108 km3) |
---|---|---|---|---|---|---|
Bosten Lake | 1.9 | 0.69 | 36.32 | 1.21 | 3100 | 11.69 |
Aksu River | 5.0 | 1.56 | 31.20 | 8.92 | 2233 | 79.89 |
Yarkand River | 3.29 | 1.74 | 52.89 | 11.09 | 4630 | 65.46 |
Hotan River | 4.89 | 0.91 | 18.61 | 9.02 | 1800 | 23.1 |
Tarim River | 92.6 | 4.90 | 4.80 | 16.34 | 3730 | 180.14 |
Product | Variable | Spatial Resolution | Temporal Resolution | Source |
---|---|---|---|---|
MOD13A1/Q1 | NDVI | 500/250 m | 16 d | https://modis.gsfc.nasa.gov/ accessed on 10 November 2021 |
MOD09A1 | SR | 500 m | 8 d | https://modis.gsfc.nasa.gov/ accessed on 10 November 2021 |
MOD11A2 | LST | 1 km | 8 d | https://modis.gsfc.nasa.gov/ accessed on 10 November 2021 |
MOD15A2H | FPAR | 500 m | 8 d | https://modis.gsfc.nasa.gov/ accessed on 10 November 2021 |
MOD17A3H | NPP | 500 m | 8 d | https://modis.gsfc.nasa.gov/ accessed on 10 November 2021 |
MCD12Q1 | Landcover (IGBP) | 500 m | yearly | https://modis.gsfc.nasa.gov/ accessed on 10 November 2021 |
TerraClimate | SOL | 4 km | monthly | https://www.ecmwf.int accessed on 10 November 2021 |
TerraClimate | Pre | 4 km | monthly | https://www.ecmwf.int accessed on 10 November 2021 |
T3H(GLDAS) | Tem | 0.25° | 3 h | http:/ldas.gsfc.nasa.gov/ accessed on 10 November 2021 |
LUCC Data | Landcover | 1 km | 10 yearly | https://www.resdc.cn/ accessed on 10 November 2021 |
Meteorological Data | Tem/Pre | - | yearly | http://data.cma.cn/ accessed on 10 November 2021 |
SRTM | DEM | 30 m | - | https://earthexplorer.usgs.gov/ accessed on 10 November 2021 |
Basin | Variables | High FVC | Medium FVC | Low FVC |
---|---|---|---|---|
BLB | Average (%) | 69.17 | 37.19 | 13.37 |
Change (%) | 9.23 | −4.09 | 11.52 | |
Z value (FVC) | 3.96 (**) | −3.71 (**) | 3.93 (**) | |
Area change (%) | 44.79 | 6.99 | −20.51 | |
Z value (Area) | 5.41 (**) | 2.39 (*) | −4.80 (**) | |
ARB | Average (%) | 68.40 | 37.01 | 15.66 |
Change (%) | 10.32 | −2.32 | 28.26 | |
Z value (FVC) | 3.65 (**) | −1.51 | 1.36 | |
Area change (%) | 74.82 | −12.10 | −52.74 | |
Z value (Area) | 6.01 (**) | −2.26 (*) | −5.59 (**) | |
YRB | Average (%) | 68.44 | 36.11 | 16.46 |
Change (%) | 10.32 | −2.32 | 28.26 | |
Z value (FVC) | 0.51 | 1.90 | 1.54 | |
Area change (%) | 52.96 | 9.55 | −45.50 | |
Z value (Area) | 5.10 (**) | −0.09 | −3.84 (**) | |
HRB | Average (%) | 66.75 | 36.45 | 11.79 |
Change (%) | 0.80 | 2.16 | −8.22 | |
Z value (FVC) | −1.78 | 2.66 (**) | 0.82 | |
Area change (%) | 33.89 | 22.53 | −20.20 | |
Z value (Area) | 3.77 (**) | 3.96 (**) | −3.23 (**) | |
TRB | Average (%) | 65.63 | 32.43 | 21.37 |
FVC Change (%) | 3.48 | −5.39 | 31.77 | |
Z value (FVC) | 4.50 (**) | −0.91 | 5.16 (**) | |
Area change (%) | 67.99 | 145.07 | −29.17 | |
Z value (Area) | 4.50 (**) | 4.80 (**) | −4.86 (**) |
Region | RSEI | TRB | BRB | ARB | YRB | HRB |
---|---|---|---|---|---|---|
% | ||||||
Significant degraded region | <−0.2 | 1.24 | 0.1 | 1.69 | 0.01 | 0.07 |
Relatively degraded region | −0.2~−0.05 | 3.77 | 6.02 | 3.20 | 0.73 | 6.66 |
Stable region | −0.05~0.05 | 26.08 | 57.63 | 43.92 | 23.20 | 35.57 |
Relatively improved region | 0.05~0.2 | 62.69 | 34.24 | 49.71 | 74.34 | 48.50 |
Significantly improved region | >0.2 | 6.23 | 2.01 | 1.48 | 1.72 | 9.21 |
Year | Basin | Oasis | Non-Oasis | |||||
---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Industrial Land | Water | Unused Land | |||
Area change | Km² | TRB | 15,324 | −1150 | −17,639 | −14,629 | 1620 | 16,902 |
% | 56.95 | −8.36 | −7.28 | −40.55 | 112.73 | 2.91 | ||
Km² | BLB | 633.00 | −171.00 | −217.00 | −61.00 | 90.00 | −274.00 | |
% | 35.24 | −90.48 | −19.60 | −5.46 | 86.54 | −10.59 | ||
Km² | ARB | 2852.00 | −631.00 | −1198.00 | −130.00 | 245.00 | −1138.00 | |
% | 50.68 | −55.94 | −30.65 | −17.36 | 107.46 | −28.55 | ||
Km² | YRB | 1903.00 | −500.00 | −638.00 | −421.00 | 209.00 | −553.00 | |
% | 34.26 | −43.67 | −10.55 | −45.96 | 87.82 | −15.71 | ||
Km² | HRB | 1011.00 | −161.00 | −721.00 | −31.00 | −7.00 | −91.00 | |
% | 53.10 | −57.50 | −20.77 | −7.81 | −4.19 | −3.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Sun, C.; Chen, Y.; Chen, W.; Xiang, Y.; Li, J.; Liu, Y. Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia. Sustainability 2022, 14, 3372. https://doi.org/10.3390/su14063372
Zhang Q, Sun C, Chen Y, Chen W, Xiang Y, Li J, Liu Y. Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia. Sustainability. 2022; 14(6):3372. https://doi.org/10.3390/su14063372
Chicago/Turabian StyleZhang, Qifei, Congjian Sun, Yaning Chen, Wei Chen, Yanyun Xiang, Jiao Li, and Yuting Liu. 2022. "Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia" Sustainability 14, no. 6: 3372. https://doi.org/10.3390/su14063372
APA StyleZhang, Q., Sun, C., Chen, Y., Chen, W., Xiang, Y., Li, J., & Liu, Y. (2022). Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia. Sustainability, 14(6), 3372. https://doi.org/10.3390/su14063372