Yard Operations and Management in Automated Container Terminals: A Review
Abstract
:1. Introduction
The Background of This Research
2. Yard Management in Automated Container Terminals
2.1. The Operation of Automated Container Terminals
2.2. Yard Management in the Automated Container Terminals
3. Research Method
4. Results
5. The Literature Review for Different Clusters
5.1. The Yard Management in Automated Container Terminal
5.2. Yard Space Management
5.2.1. Yard Layout
5.2.2. Storage Strategy Planning
5.2.3. Re-Marshalling
5.3. Automated Handling Equipment Management
5.3.1. AQC Management
5.3.2. A-SHC Management
- (1)
- AGV MANAGEMENT
- (2)
- ALV MANAGEMENT
- (3)
- IAV MANAGEMENT
5.3.3. AYC Management
- (1)
- SINGLE CRANE PROBLEM
- (2)
- MULTI CRANES PROBLEM
5.4. Integrated Scheduling
6. Summary and Research Challenges
6.1. Yard Template Generation for Automated Container Terminals
6.2. Housekeeping Strategies for Yard Operations
6.3. Integrated Optimization of Space Allocation and Other Operational Systems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stahlbock, R.; Voß, S. Operations research at container terminals: A literature update. OR Spectr. 2008, 30, 1–52. [Google Scholar] [CrossRef]
- Wen, W.; Fan, H.; Zhang, W.; Ma, M.; Li, Y. Simulating the growth of container ship size and port city economy development. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 2574–2579. [Google Scholar]
- Dulebenets, M.A. Application of evolutionary computation for berth scheduling at marine container terminals: Parameter tuning versus parameter control. IEEE Transactions on Intelligent. Transp. Syst. 2017, 19, 25–37. [Google Scholar]
- Febbraro, A.D.; Gattorna, E.; Sacco, N. Optimizing dynamic ride-sharing systems. Transp. Res. Rec. 2013, 2359, 44–50. [Google Scholar] [CrossRef]
- Roeksukrungrueang, C.; Kusonthammrat, T.; Kunapronsujarit, N.; Aruwong, T.N.; Chivapreecha, S. An implementation of automatic container number recognition system. In Proceedings of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai, Thailand, 7–10 January 2018; pp. 1–4. [Google Scholar]
- Su, E.; Lai, K.K.; Lee, Y.P. Risk Management in Container Terminal Operation: A Comprehensive Study on Risk Decision Attributes. In Proceedings of the 2013 Sixth International Conference on Business Intelligence and Financial Engineering, Hangzhou, China, 14–16 November 2013; pp. 333–337. [Google Scholar]
- Schmidt, J.; Meyer-Barlag, C.; Eisel, M.; Kolbe, L.; Appelrath, H. Using battery-electric AGVs in container terminals—Assessing the potential and optimizing the economic viability. Res. Transp. Bus. Manag. 2015, 17, 99–111. [Google Scholar] [CrossRef]
- Esser, A.; Sys, C.; Vanelslander, T.; Verhetsel, A. The labour market for the port of the future: A case study for the port of Antwerp. Case Stud. Transp. Policy 2020, 8, 349–360. [Google Scholar] [CrossRef]
- Angeloudis, P.; Bell, M.G. An uncertainty-aware AGV assignment algorithm for automated container terminals. Transp. Res. Part E: Logist. Transp. Rev. 2010, 46, 354–366. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, M.; Dessouky, Y.; Postolache, O. An integrated scheduling method for AGV routing in automated container terminals. Comput. Ind. Eng. 2018, 126, 482–493. [Google Scholar] [CrossRef]
- Luo, J.; Wu, Y. Scheduling of container-handling equipment during the loading process at an automated container terminal. Comput. Ind. Eng. 2020, 149, 106848. [Google Scholar] [CrossRef]
- Wang, N.; Chang, D.; Shi, X.; Yuan, J.; Gao, Y. Analysis and design of typical automated container terminals layout considering carbon emissions. Sustainability 2019, 11, 2957. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.G.; Lee, D.-H.; Cao, J.X. Storage Yard Management in Maritime Container Terminals. Transp. Sci. 2016, 50, 1300–1313. [Google Scholar] [CrossRef]
- Budiyanto, M.A.; Huzaifi, M.H.; Sirait, S.J.; Prayoga, P.H.N. Evaluation of CO2 emissions and energy use with different container terminal layouts. Sci. Rep. 2021, 11, 5476. [Google Scholar] [CrossRef] [PubMed]
- Sahin, B.; Soylu, A. Multi-layer, multi-segment iterative optimization for maritime supply chain operations in a dynamic fuzzy environment. IEEE Access 2020, 8, 144993–145005. [Google Scholar] [CrossRef]
- Caballini, C.; Paolucci, M. A rostering approach to minimize health risks for workers: An application to a container terminal in the Italian port of Genoa. Omega 2020, 95, 102094. [Google Scholar] [CrossRef]
- Yue, L.; Fan, H.; Ma, M. Optimizing configuration and scheduling of double 40 ft dual-trolley quay cranes and AGVs for improving container terminal services. J. Clean. Prod. 2021, 292, 126019. [Google Scholar] [CrossRef]
- Günther, H.-O.; Kim, K.-H. Container terminals and terminal operations. OR Spektr. 2006, 28, 437–445. [Google Scholar] [CrossRef]
- Covic, F. Container Handling in Automated Yard Blocks Based on Time Information. Ph.D. Thesis, University of Hamburg systems, Hamburg, Germany, 2018. [Google Scholar]
- Rintanen, K.; Konecranes; Thomas, A. Container Terminal Automation. A PEMA Information Paper; PEMA Port Equipment Manufacturers Association: Brussel, Belgium, 2016. [Google Scholar]
- Hu, Z.-H.; Sheu, J.-B.; Luo, J.X. Sequencing twin automated stacking cranes in a block at automated container terminal. Transp. Res. Part C Emerg. Technol. 2016, 69, 208–227. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, Y.M.; Jin, M.J. An optimal layout of container yards. OR Spectr. 2008, 30, 675–695. [Google Scholar] [CrossRef]
- Luo, J.; Wu, Y.; Halldorsson, A.; Song, X. Storage and stacking logistics problems in container terminals. OR Insight 2011, 24, 256–275. [Google Scholar] [CrossRef]
- Steenken, D.; Voß, S.; Stahlbock, R. Container terminal operation and operations research—A classification and literature review. OR Spectr. 2014, 26, 3–49. [Google Scholar]
- Zhen, L.; Jiang, X.; Lee, L.H.; Chew, E.P. A Review on Yard Management in Container Terminals. Ind. Eng. Manag. Syst. 2013, 12, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Gharehgozli, A.; Yu, Y.; de Koster, R.; Du, S. Sequencing storage and retrieval requests in a container block with multiple open locations. Transp. Res. Part E: Logist. Transp. Rev. 2019, 125, 261–284. [Google Scholar] [CrossRef]
- Linn, R.J.; Liu, J.Y.; Wan, Y.W.; Zhang, C.Q.; Murty, K.G. Rubber tired gantry crane deployment for container yard operation. Comput. Ind. Eng. 2003, 45, 429–442. [Google Scholar] [CrossRef]
- Tan, C.; He, J.; Wang, Y. Storage yard management based on flexible yard template in container terminal. Adv. Eng. Inform. 2017, 34, 101–113. [Google Scholar] [CrossRef]
- Kim, K.H.; Won, S.H.; Lim, J.K.; Takahashi, T. An architectural design of control software for automated container terminals. Comput. Ind. Eng. 2004, 46, 741–754. [Google Scholar] [CrossRef]
- Zhen, L.; Lee, L.H.; Chew, E.P.; Chang, D.-F.; Xu, Z.-X. A Comparative Study on Two Types of Automated Container Terminal Systems. IEEE Trans. Autom. Sci. Eng. 2011, 9, 56–69. [Google Scholar] [CrossRef]
- Hu, H.; Lee, B.K.; Huang, Y.; Lee, L.H.; Chew, E.P. Performance analysis on transfer platforms in frame bridge based automated container terminals. Math. Probl. Eng. 2013, 2013, 593847. [Google Scholar] [CrossRef]
- Hu, H.; Huang, Y.; Zhen, L.; Lee, B.K.; Lee, L.H.; Chew, E.P. A decomposition method to analyze the performance of frame bridge based automated container terminal. Expert Syst. Appl. 2014, 41, 357–365. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Y.; Yang, B. Study on equipment network scheduling of ZPMC automated container terminal based on simulation. International Information Institute (Tokyo). Information 2012, 15, 2499–2502. [Google Scholar]
- Yang, Y.C.; Shen, K.Y. Comparison of the operating performance of automated and traditional container terminals. Int. J. Logist. Res. Appl. 2013, 16, 158–173. [Google Scholar] [CrossRef]
- Hu, Y.H.; Zhu, Z.D.; Hsu, W.J. AS/RS based yard and yard planning. J. Zhejiang Univ. Sci. A 2008, 9, 1083–1089. [Google Scholar] [CrossRef]
- Kemme, N. Effects of storage block layout and automated yard crane systems on the performance of seaport container terminals. OR Spectr. 2012, 34, 563–591. [Google Scholar] [CrossRef]
- Gharehgozli, A.H.; Vernooij, F.G.; Zaerpour, N. A simulation study of the performance of twin automated stacking cranes at a seaport container terminal. Eur. J. Oper. Res. 2017, 261, 108–128. [Google Scholar] [CrossRef] [Green Version]
- Dragović, B.; Tzannatos, E.; Park, N.K. Simulation modelling in ports and container terminals: Literature overview and analysis by research field, application area and tool. Flex. Serv. Manuf. J. 2017, 29, 4–34. [Google Scholar] [CrossRef]
- Kizilay, D.; Eliiyi, D.T. A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals. Flex. Serv. Manuf. J. 2020, 33, 1–42. [Google Scholar] [CrossRef]
- Liu, C.-I.; Jula, H.; Vukadinovic, K.; Ioannou, P. Automated guided vehicle system for two container yard layouts. Transp. Res. Part C: Emerg. Technol. 2004, 12, 349–368. [Google Scholar] [CrossRef]
- Zhong, M.; Yang, Y.; Zhou, Y.; Postolache, O. Application of hybrid GA-PSO based on intelligent control fuzzy system in the integrated scheduling in automated container terminal. J. Intell. Fuzzy Syst. 2020, 39, 1525–1538. [Google Scholar] [CrossRef]
- Gharehgozli, A.; Zaerpour, N.; De Koster, R. Container terminal layout design: Transition and future. Marit. Econ. Logist. 2019, 22, 610–639. [Google Scholar] [CrossRef]
- Dekker, R.; Voogd, P.; van Asperen, E. Advanced methods for container stacking. OR Spectr. 2006, 28, 563–586. [Google Scholar] [CrossRef]
- Ku, L.P.; Lee, L.H.; Chew, E.P.; Tan, K.C. An optimization framework for yard planning in a container terminal: Case with automated rail-mounted gantry cranes. OR Spectr. 2010, 32, 519–541. [Google Scholar] [CrossRef]
- Ku, L.P.; Chew, E.P.; Lee, L.H.; Tan, K.C. A novel approach to yard planning under vessel arrival uncertainty. Flex. Serv. Manuf. J. 2012, 24, 274–293. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, J.; Zhang, D.; Dong, M. An integrated programming model for storage management and vehicle scheduling at container terminals. Res. Transp. Econ. 2013, 42, 13–27. [Google Scholar] [CrossRef]
- Park, T.; Choe, R.; Kim, Y.H.; Ryu, K.R. Dynamic adjustment of container stacking policy in an automated container terminal. Int. J. Prod. Econ. 2011, 133, 385–392. [Google Scholar] [CrossRef]
- Yu, M.; Qi, X. Storage space allocation models for inbound containers in an automatic container terminal. Eur. J. Oper. Res. 2013, 226, 32–45. [Google Scholar] [CrossRef]
- Zheng, S.; Sha, J. Path Optimum Algorithm for Container-Integrated Scheduling Under Dynamic Mode in Port Terminals Worldwide. J. Coast. Res. 2020, 36, 885–895. [Google Scholar] [CrossRef]
- Park, K.; Park, T.; Ryu, K.R. Planning for remarshaling in an automated container terminal using cooperative coevolutionary algorithms. In Proceedings of the 2009 ACM symposium on Applied Computing, Honolulu, HI, USA, 8–12 March 2009; pp. 1098–1105. [Google Scholar]
- Choe, R.; Park, T.; Oh, M.S.; Kang, J.; Ryu, K.R. Generating a rehandling-free intra-block remarshaling plan for an automated container yard. J. Intell. Manuf. 2011, 22, 201–217. [Google Scholar] [CrossRef]
- Choe, R.; Kim, T.S.; Kim, T.; Ryu, K.R. Crane scheduling for opportunistic remarshaling of containers in an automated stacking yard. Flex. Serv. Manuf. J. 2015, 27, 331–349. [Google Scholar] [CrossRef]
- Covic, F. Re-marshalling in automated container yards with terminal appointment systems. Flex. Serv. Manuf. J. 2017, 29, 433–503. [Google Scholar] [CrossRef]
- Maglić, L.; Gulić, M.; Maglić, L. Optimization of container relocation operations in port container terminals. Transport 2020, 35, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; He, J. Integrated proactive and reactive strategies for sustainable berth allocation and quay crane assignment under uncertainty. Ann. Oper. Res. 2021, 1–32. [Google Scholar] [CrossRef]
- He, J.; Wang, Y.; Tan, C.; Yu, H. Modeling berth allocation and quay crane assignment considering QC driver cost and operating efficiency. Adv. Eng. Informatics 2021, 47, 101252. [Google Scholar] [CrossRef]
- Liu, D.; Ge, Y.-E. Modeling assignment of quay cranes using queueing theory for minimizing CO 2 emission at a container terminal. Transp. Res. Part D: Transp. Environ. 2018, 61, 140–151. [Google Scholar] [CrossRef]
- Xin, J.; Negenborn, R.R.; Lodewijks, G. Energy-aware control for automated container terminals using integrated flow shop scheduling and optimal control. Transp. Res. Part C Emerg. Technol. 2014, 44, 214–230. [Google Scholar] [CrossRef]
- Yang, X.M.; Jiang, X.J. Yard Crane Scheduling in the Ground Trolley-Based Automated Container Terminal. Asia-Pac. J. Oper. Res. 2020, 37, 2050007. [Google Scholar] [CrossRef]
- Yue, L.; Fan, H.; Zhai, C. Joint configuration and scheduling optimization of a dual-trolley quay crane and automatic guided vehicles with consideration of vessel stability. Sustainability 2019, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M.; Yang, Y.; Zhou, Y.; Postolache, O. Adaptive Autotuning Mathematical Approaches for Integrated Optimization of Automated Container Terminal. Math. Probl. Eng. 2019, 2019, 7641670. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Luan, D.; Chen, Z.; Guo, D. Integrated scheduling in automated container terminals considering AGV conflict-free routing. Transp. Lett. 2020, 13, 501–513. [Google Scholar]
- Carlo, H.J.; Vis, I.F.A.; Roodbergen, K.J. Transport operations in container terminals: Literature overview, trends, research directions and classification scheme. Eur. J. Oper. Res. 2014, 236, 1–13. [Google Scholar] [CrossRef]
- Saurí, S.; Morales-Fusco, P.; Martín, E.; Benítez, P. Comparing manned and automated horizontal handling equipment at container terminals: Productivity and economic analysis. Transp. Res. Rec. 2014, 2409, 40–48. [Google Scholar] [CrossRef]
- Liu, C.-I.; Ioannou, P.A. Petri Net Modeling and Analysis of Automated Container Terminal Using Automated Guided Vehicle Systems. Transp. Res. Rec. J. Transp. Res. Board 2002, 1782, 73–83. [Google Scholar] [CrossRef]
- Kim, K.H.; Bae, J.W. A look-ahead dispatching method for automated guided vehicles in automated port container terminals. Transp. Sci. 2004, 38, 224–234. [Google Scholar] [CrossRef]
- Xu, Y.; Qi, L.; Luan, W.; Guo, X.; Ma, H. Load-In-Load-Out AGV Route Planning in Automatic Container Terminal. IEEE Access 2020, 8, 157081–157088. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, L.; Xu, L. Multi-AGV dispatching and routing problem based on a three-stage decomposition method. Math. Biosci. Eng. 2020, 17, 5150–5172. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Yang, Y.; Sun, S.; Zhou, Y.; Postolache, O.; Ge, Y.-E. Priority-based speed control strategy for automated guided vehicle path planning in automated container terminals. Trans. Inst. Meas. Control 2020, 42, 3079–3090. [Google Scholar] [CrossRef]
- Yang, C.H.; Choi, Y.S.; Ha, T.Y. Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectr. 2004, 26, 149–170. [Google Scholar] [CrossRef]
- Bae, H.Y.; Choe, R.; Park, T.; Ryu, K.R. Comparison of operations of AGVs and ALVs in an automated container terminal. J. Intell. Manuf. 2011, 22, 413–426. [Google Scholar] [CrossRef]
- Kumawat, G.L.; Roy, D. AGV or Lift-AGV? Performance trade-offs and design insights for container terminals with robotized transport vehicle technology. IISE Trans. 2020, 53, 751–769. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Kim, K.H. A dispatching method for automated lifting vehicles in automated port container terminals. Comput. Ind. Eng. 2009, 56, 1002–1020. [Google Scholar] [CrossRef]
- Roy, D.; de Koster, R. Stochastic modeling of unloading and loading operations at a container terminal using automated lifting vehicles. Eur. J. Oper. Res. 2018, 266, 895–910. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Skinner, B.T.; Huang, S.; Liu, D.K.; Dissanayake, G.; Lau, H.; Pagac, D. A job grouping approach for planning container transfers at automated seaport container terminals. Adv. Eng. Inform. 2021, 25, 413–426. [Google Scholar] [CrossRef]
- Hansen, I. Automated shunting of rail container wagons in ports and terminal areas. Transp. Plan. Technol. 2004, 27, 385–401. [Google Scholar] [CrossRef]
- Gelareh, S.; Merzouki, R.; McGinley, K.; Murray, R. Scheduling of intelligent and autonomous vehicles under pairing/unpairing collaboration strategy in container terminals. Transp. Res. Part C Emerg. Technol. 2013, 33, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Speer, U.; Fischer, K. Scheduling of Different Automated Yard Crane Systems at Container Terminals. Transp. Sci. 2017, 51, 305–324. [Google Scholar] [CrossRef]
- Park, T.; Choe, R.; Ok, S.M.; Ryu, K.R. Real-time scheduling for twin RMGs in an automated container yard. OR Spectr. 2010, 32, 593–615. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, C.; Yang, Y. The optimum route problem by genetic algorithm for loading/unloading of yard crane. Comput. Ind. Eng. 2008, 56, 993–1001. [Google Scholar] [CrossRef]
- Shu, F.; Mi, W.; Li, X.; Zhao, N.; Mi, C.; Yang, X. A double-population genetic algorithm for asc loading sequence optimization in automated container terminals. J. Coast. Res. 2015, 73, 64–70. [Google Scholar] [CrossRef]
- Dell, R.F.; Royset, J.O.; Zyngiridis, I. Optimizing container movements using one and two automated stacking cranes. J. Ind. Manag. Optim. 2009, 5, 285–302. [Google Scholar]
- Gharehgozli, A.; Laporte, G.; Yu, Y.; De Koster, R. Scheduling Twin Yard Cranes in a Container Block. Transp. Sci. 2015, 49, 686–705. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Wang, S. A study on multi-ASC scheduling method of automated container terminals based on graph theory. Comput. Ind. Eng. 2019, 129, 404–416. [Google Scholar] [CrossRef]
- Eilken, A. A decomposition-based approach to the scheduling of identical automated yard cranes at container terminals. J. Sched. 2019, 22, 517–541. [Google Scholar] [CrossRef]
- Carlo, H.J.; Martínez-Acevedo, F.L. Priority rules for twin automated stacking cranes that collaborate. Comput. Ind. Eng. 2015, 89, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Wang, Q.; Huang, J. Scheduling cooperative twin automated stacking cranes in automated container terminals. Comput. Ind. Eng. 2018, 128, 553–558. [Google Scholar] [CrossRef]
- Dorndorf, U.; Schneider, F. Scheduling automated triple cross-over stacking cranes in a container yard. OR Spectr. 2010, 32, 617–632. [Google Scholar] [CrossRef]
- Briskorn, D.; Angeloudis, P. Scheduling co-operating stacking cranes with predetermined container sequences. Discret. Appl. Math. 2016, 201, 70–85. [Google Scholar] [CrossRef] [Green Version]
- Ehleiter, A.; Jaehn, F. Scheduling crossover cranes at container terminals during seaside peak times. J. Heuristics 2008, 24, 899–932. [Google Scholar] [CrossRef]
- Nossack, J.; Briskorn, D.; Pesch, E. Container Dispatching and Conflict-Free Yard Crane Routing in an Automated Container Terminal. Transp. Sci. 2018, 52, 1059–1076. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, Q.; Hu, Y. Scheduling optimization for two crossover automated stacking cranes considering relocation. Oper. Res. 2020, 1–22. [Google Scholar] [CrossRef]
- Jiang, X.J.; Xu, Y.; Zhou, C.; Chew, E.P.; Lee, L.H. Frame trolley dispatching algorithm for the frame bridge based automated container terminal. Transp. Sci. 2018, 52, 722–737. [Google Scholar] [CrossRef]
- Fibrianto, H.Y.; Kang, B.; Hong, S. A Job Sequencing Problem of an Overhead Shuttle Crane in a Rail-Based Automated Container Terminal. IEEE Access 2020, 8, 156362–156377. [Google Scholar] [CrossRef]
- Homayouni, S.M.; Tang, S.H.; Motlagh, O. A genetic algorithm for optimization of integrated scheduling of cranes, vehicles, and storage platforms at automated container terminals. J. Comput. Appl. Math. 2014, 270, 545–556. [Google Scholar] [CrossRef]
- Hu, H.; Chen, X.; Wang, T.; Zhang, Y. A three-stage decomposition method for the joint vehicle dispatching and storage allocation problem in automated container terminals. Comput. Ind. Eng. 2019, 129, 90–101. [Google Scholar] [CrossRef]
- Zhao, Q.; Ji, S.; Zhao, W.; De, X. A Multilayer Genetic Algorithm for Automated Guided Vehicles and Dual Automated Yard Cranes Coordinated Scheduling. Math. Probl. Eng. 2020, 2020, 5637874. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, B.K.; Li, H. Integrated optimization on yard crane scheduling and vehicle positioning at container yards. Transp. Res. Part E Logist. Transp. Rev. 2020, 138, 101966. [Google Scholar] [CrossRef]
- Chen, X.; He, S.; Zhang, Y.; Tong, L.C.; Shang, P.; Zhou, X. Yard crane and AGV scheduling in automated container terminal: A multi-robot task allocation framework. Transp. Res. Part C Emerg. Technol. 2020, 114, 241–271. [Google Scholar] [CrossRef]
Port | Terminal | Start of Operation | Operation Mode | Yard Layout |
---|---|---|---|---|
Port Of Rotterdam | ECT Delta Terminal | 1993 | Single Trolley QC+ASC+AGV | Perpendicular |
Port Of London | Thames port | 1996 | Single Trolley QC+ARTG+IT | Parallel |
Port Of Kawasaki | Kawasaki Automated Terminal | 1996 | Double Trolley QC+ARMG+IT | Parallel |
Port Of Singapore | Pasir Panjang Terminal | 1998 | Single Trolley QC+ARMG+AGV/IT | Mixed |
Port Of Hong Kong | Hongkong International Terminal | 1999 | Single Trolley QC+RMG/ARMG+IT | Mixed |
Port Of Germany | Altenwerde port | 2002 | Double Trolley QC+ARMG+AGV/ASC | Perpendicular |
Port of Tokyo | Wanhai Terminal | 2003 | Single Trolley QC+ARMG+IT | Parallel |
Port of Nagoya | Tobishima | 2005 | Single Trolley QC+ARTG+AGV | Parallel |
Kaohsiung Port | Evergreen Terminal | 2006 | Single Trolley QC+ARMG+IT | Parallel |
Virginia Port | Virginia terminal | 2007 | Single Trolley QC+ARMG+SC | Perpendicular |
Port of Busan | Hanjin New Port Company Terminal | 2008 | Single Trolley QC+ARMG+IT | Parallel |
Port of Busan | Hyuandai Pusan New-port Terminal | 2009 | Single Trolley QC+ARMG+IT | Parallel |
Port of Busan | Pusan New Port Company Terimal | 2009 | Single Trolley QC+ARMG+ASC/IT | Parallel |
Taipei Port | Taipei port container terminal | 2009 | Single Trolley QC+ARMG+IT | Parallel |
Port Of Rotterdam | Euromax port | 2010 | Double Trolley QC+ARMG+ASC | Perpendicular |
Port Of Belgium | Uantwerp DPW | 2010 | Double Trolley QC+ARMG+SC | Perpendicular |
Port Of SPAIN | TTI Algeciras | 2010 | Single Trolley QC+ASC+SC | Perpendicular |
ABU DHABI Port | Khalifa terminal | 2012 | Double Trolley QC+ARMG+IT | Perpendicular |
BUSAN Port | Pusan NewPort Container Terminal | 2012 | Single Trolley QC+ARMG+SC | Perpendicular |
Port Of SPAIN | BEST port | 2013 | Single Trolley QC+ARTG+SC | Perpendicular |
Port Of London | London Gateway Terminal | 2013 | Double Trolley QC+ARMG+SC | Perpendicular |
Kaohsiung Port | GaoMing terminal | 2013 | Double Trolley QC+ARMG+IT | Parallel |
Port of Brisbane | Brisbane container terminal | 2013 | Single Trolley QC+ARMG+SC | Perpendicular |
Port of Sydney | Sydney International Container Terminal | 2013 | Single Trolley QC+ARMG+SC | Perpendicular |
Port Of Rotterdam | APM Terminal Maasvlakte Ⅱ | 2014 | Double Trolley QC+ARMG+AGV | Perpendicular |
Port Of Rotterdam | Rotterdam World Gateway Terminal | 2014 | Double Trolley QC+ARMG+AGV | Perpendicular |
Xiamen Port | Xiamen Ocean Gate Container Terminal | 2014 | Double Trolley QC+ARMG+AGV | Parallel |
Port of New Jersey | Global container terminal | 2014 | Single Trolley QC+ARMG+SC | Parallel |
Port of Brisbane | Patrick Terminal | 2014 | Single Trolley QC+ARMG+ASC | Perpendicular |
Indonesia’s Surabaya port | Lamong Bay Terminal | 2016 | Single Trolley QC+RTG+SC | Parallel |
Long Beach port | Long beach container terminal | 2016 | Double Trolley QC+ARMG+AGV | Perpendicular |
Port of Los Angeles | TraPac Terminal | 2016 | Single Trolley QC+ARMG+ASC | Perpendicular |
Shanghai Port | Yangshan Phase VI Automated Terminal | 2017 | Double Trolley QC+ARMG+AGV | Perpendicular |
Qingdao Port | Qianwan Phase IV Automated Terminal | 2017 | Double Trolley QC+ARMG+AGV | Perpendicular |
Port of Melbourne | Victoria International Container Terminal | 2017 | Single Trolley QC+ARMG+ASC | Perpendicular |
Tianjin Port | Five Continents International Container Terminal | 2019 | Single Trolley QC+ARMG+IAV | Parallel |
Ningbo Zhoushan Port | Ningbo Zhoushan Port Meishan | 2020 | Double Trolley QC+ARTG+IAV | Parallel |
Guangxi Qingzhou Port | Dalanping South. Qingzhou Port | 2021 | Double Trolley QC+ARMG+AGV | Perpendicular |
Guangzhou Port | Nansha Phase IV Automated Terminal | 2021 | Single Trolley QC+ARMG+AGV | Parallel |
Abbreviation |
---|
QC (Quay Crane) |
AQC (Automated Quay Crane) |
A-SHC (Automated SHuttle Carrier) |
IT (Internal Truck) |
AGV (Automated Guided Vehicles) |
IAV (Intelligent and Autonomous Vehicle) |
ALV (Automated Lifting Vehicle) |
SC (Straddle Carrier) |
ASC (Automated Straddle Carrier) |
YC (Yard Crane) |
AYC (Automated Yard Cranes) |
RMG (Rail-Mounted Gantry cranes) |
ARMG (Automated Rail-Mounted Gantry cranes) |
ARTG (Automated Rubber Tyre Gantry) |
RTG (Rubber Tyre Gantry) |
XT (eXternal Truck) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Deng, Y.; Zhang, L.; Xiao, X.; Tan, C. Yard Operations and Management in Automated Container Terminals: A Review. Sustainability 2022, 14, 3419. https://doi.org/10.3390/su14063419
Yu H, Deng Y, Zhang L, Xiao X, Tan C. Yard Operations and Management in Automated Container Terminals: A Review. Sustainability. 2022; 14(6):3419. https://doi.org/10.3390/su14063419
Chicago/Turabian StyleYu, Hang, Yiyun Deng, Leijie Zhang, Xin Xiao, and Caimao Tan. 2022. "Yard Operations and Management in Automated Container Terminals: A Review" Sustainability 14, no. 6: 3419. https://doi.org/10.3390/su14063419
APA StyleYu, H., Deng, Y., Zhang, L., Xiao, X., & Tan, C. (2022). Yard Operations and Management in Automated Container Terminals: A Review. Sustainability, 14(6), 3419. https://doi.org/10.3390/su14063419