A Review of the Combined Effect of Fibers and Nano Materials on the Technical Performance of Mortar and Concrete
Abstract
:1. Introduction
2. Materials and Methods
3. The Performance of Construction Materials Made with Different Types of Fibers and Nano Materials
3.1. Basalt Fiber and Nanomaterials
3.2. Steel Fiber and Nanomaterials
3.3. Polypropylene Fiber and Nanomaterials
3.4. PVA Fiber and Nanomaterials
3.5. Glass Fiber and Nanomaterials
3.6. Other Fibers and Nanomaterials
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Acronyms
PPF | Polypropylene fiber |
PVA | Polyvinyl alcohol |
NS | Nano silica |
HF | Hemp fabric |
nCaCO3 | Nano calcium carbonate |
CNT | Carbon nano tube |
NMK | Nano metakaolin |
SF | Steel fiber |
GF | Glass fiber |
NC | Nano clay |
nTiO2 | Nano titanium dioxide |
GNP | Graphene nan oplatelets |
BF | Basalt fiber |
CF | Carbon fiber |
SCM | Supplementary cementitious material |
nFe | Nano Iron |
nAl2O3 | Nano aluminium oxid |
RNCB | Recycled nano carbon black |
References
- Shafei, B.; Kazemian, M.; Dopko, M.; Najimi, M. State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete. Materials 2021, 14, 409. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, M.T.; Nosraty, H.; Shokrieh, M.M.; Minak, G.; Ghelli, D. The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Mater. Des. 2013, 43, 283–290. [Google Scholar] [CrossRef]
- López-Buendía, A.M.; Romero-Sánchez, M.D.; Climent, V.; Guillem, C. Surface treated polypropylene (PP) fibres for reinforced concrete. Cem. Concr. Res. 2013, 54, 29–35. [Google Scholar] [CrossRef]
- de Brito, J.; Kurda, R. The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. J. Clean. Prod. 2021, 281, 123558. [Google Scholar] [CrossRef]
- Liu, F.; Xu, K.; Ding, W.; Qiao, Y.; Wang, L. Microstructural characteristics and their impact on mechanical properties of steel-PVA fiber reinforced concrete. Cem. Concr. Compos. 2021, 123, 104196. [Google Scholar] [CrossRef]
- Xu, H.; Shao, Z.; Wang, Z.; Cai, L.; Li, Z.; Jin, H.; Chen, T. Experimental study on mechanical properties of fiber reinforced concrete: Effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber. Constr. Build. Mater. 2020, 261, 120610. [Google Scholar] [CrossRef]
- Si, W.; Cao, M.; Li, L. Establishment of fiber factor for rheological and mechanical performance of polyvinyl alcohol (PVA) fiber reinforced mortar. Constr. Build. Mater. 2020, 265, 120347. [Google Scholar] [CrossRef]
- Liew, K.; Akbar, A. The recent progress of recycled steel fiber reinforced concrete. Constr. Build. Mater. 2020, 232, 117232. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Luo, D.; Shi, X. Effect of chemically modified recycled carbon fiber composite on the mechanical properties of cementitious mortar. Compos. Part B Eng. 2019, 173, 106853. [Google Scholar] [CrossRef]
- Bheel, N. Basalt fibre-reinforced concrete: Review of fresh and mechanical properties. J. Build. Pathol. Rehabil. 2021, 6, 1–9. [Google Scholar] [CrossRef]
- Safiuddin, M.; Gonzalez, M.; Cao, J.; Tighe, S.L. State-of-the-art report on use of nano-materials in concrete. Int. J. Pavement Eng. 2014, 15, 940–949. [Google Scholar] [CrossRef]
- Olafusi, O.S.; Sadiku, E.R.; Snyman, J.; Ndambuki, J.M.; Kupolati, W.K. Application of nanotechnology in concrete and supplementary cementitious materials: A review for sustainable construction. SN Appl. Sci. 2019, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Balaguru, P.; Chong, K. Nanotechnology and concrete: Research opportunities. In Proceedings of the ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, Denver, CO, USA, 7 November 2006; pp. 15–28. [Google Scholar]
- Gay, C.; Sanchez, F. Performance of carbon nanofiber–cement composites with a high-range water reducer. Transp. Res. Rec. 2010, 2142, 109–113. [Google Scholar] [CrossRef]
- Norhasri, M.M.; Hamidah, M.; Fadzil, A.M. Applications of using nano material in concrete: A review. Constr. Build. Mater. 2017, 133, 91–97. [Google Scholar] [CrossRef]
- Nazar, S.; Yang, J.; Thomas, B.S.; Azim, I.; Rehman, S.K.U. Rheological properties of cementitious composites with and without nano-materials: A comprehensive review. J. Clean. Prod. 2020, 272, 122701. [Google Scholar] [CrossRef]
- Roussel, N. Thixotropy: From measurement to casting of concrete. In Understanding the Rheology of Concrete; Elsevier: Amsterdam, The Netherlands, 2012; pp. 286–295. [Google Scholar]
- Morsy, M.; Alsayed, S.; Aqel, M. Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr. Build. Mater. 2011, 25, 145–149. [Google Scholar] [CrossRef]
- Bautista-Gutierrez, K.P.; Herrera-May, A.L.; Santamaría-López, J.M.; Honorato-Moreno, A.; Zamora-Castro, S.A. Recent progress in nanomaterials for modern concrete infrastructure: Advantages and challenges. Materials 2019, 12, 3548. [Google Scholar] [CrossRef] [Green Version]
- Muzenski, S.; Flores-Vivian, I.; Sobolev, K. Ultra-high strength cement-based composites designed with aluminum oxide nano-fibers. Constr. Build. Mater. 2019, 220, 177–186. [Google Scholar] [CrossRef]
- Xing, X.; Xu, J.; Bai, E.; Zhu, J.; Wang, Y. Response surface research of the preparation of nano-Fe2O3 cement-based composite. Mater. Rep. 2018, 32, 1367–1372. [Google Scholar]
- Mutuk, H.; Mutuk, T.; Gümüş, H.; Oktay, B.M. Shielding behaviors and analysis of mechanical treatment of cements containing nanosized powders. Acta Phys. Pol. A 2016, 130, 172–174. [Google Scholar] [CrossRef]
- Barbhuiya, G.H.; Moiz, M.A.; Hasan, S.D.; Zaheer, M.M. Effects of the nanosilica addition on cement concrete: A review. Mater. Today: Proc. 2020, 32, 560–566. [Google Scholar] [CrossRef]
- Li, G.; Cui, H.; Zhou, J.; Hu, W. Improvements of nano-TiO2 on the long-term chloride resistance of concrete with polymer coatings. Coatings 2019, 9, 323. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Hu, W.; Cui, H.; Zhou, J. Long-term effectiveness of carbonation resistance of concrete treated with nano-SiO2 modified polymer coatings. Constr. Build. Mater. 2019, 201, 623–630. [Google Scholar] [CrossRef]
- Forood Torabian Isfahani, E.R.; Lollini, F.; Li, W.; Bertolini, L. Effects of Nanosilica on Compressive Strength and Durability Properties of Concrete with Different Water to Binder Ratios. Adv. Mater. Sci. Eng. 2016, 2016, 845–3567. [Google Scholar] [CrossRef] [Green Version]
- Piro, N.S.; Mohammed, A.S.; Hamad, S.M. Multiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste. Sustainability 2021, 13, 12544. [Google Scholar] [CrossRef]
- Wang, Y.; Hughes, P.; Niu, H.; Fan, Y. A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica. J. Clean. Prod. 2019, 236, 117602. [Google Scholar] [CrossRef]
- Hasan-Nattaj, F.; Nematzadeh, M. The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica. Constr. Build. Mater. 2017, 137, 557–572. [Google Scholar] [CrossRef]
- Ghanbari, M.; Kohnehpooshi, O.; Tohidi, M. Experimental study of the combined use of fiber and nano silica particles on the properties of lightweight self compacting concrete. Int. J. Eng. 2020, 33, 1499–1511. [Google Scholar]
- Zhang, P.; Wang, K.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram. Int. 2020, 46, 20027–20037. [Google Scholar] [CrossRef]
- Ling, Y.-F.; Zhang, P.; Wang, J.; Shi, Y. Effect of sand size on mechanical performance of cement-based composite containing PVA fibers and nano-SiO2. Materials 2020, 13, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belli, A.; Mobili, A.; Bellezze, T.; Tittarelli, F.; Cachim, P. Evaluating the self-sensing ability of cement mortars manufactured with graphene nanoplatelets, virgin or recycled carbon fibers through piezoresistivity tests. Sustainability 2018, 10, 4013. [Google Scholar] [CrossRef] [Green Version]
- Salemi, N.; Behfarnia, K. Effect of nano-particles on durability of fiber-reinforced concrete pavement. Constr. Build. Mater. 2013, 48, 934–941. [Google Scholar] [CrossRef]
- Feng, H.; Lv, L.; Pang, Y.; Wang, Z.; Gao, D.; Zhang, Z. Experimental study on the effects of the fiber and nano-Fe2O3 on the properties of the magnesium potassium phosphate cement composites. J. Mater. Res. Technol. 2020, 9, 14307–14320. [Google Scholar] [CrossRef]
- Gupta, M.; Kumar, M. Effect of nano silica and coir fiber on compressive strength and abrasion resistance of concrete. Constr. Build. Mater. 2019, 226, 44–50. [Google Scholar] [CrossRef]
- Lumingkewas, R.H.; Yuwono, A.H.; Hadiwardoyo, S.P.; Saparudin, D. The Compressive Strength of Coconut Fibers Reinforced Nano Concrete Composite; Materials Science Forum; Trans Tech Publications: Shenzhen, China, 2019; pp. 105–110. [Google Scholar]
- Ibrahim, K. The effect of fibers type and content on nano silica concrete Nsc. J. Mech. Civ. Eng. 2017, 14, 27–34. [Google Scholar] [CrossRef]
- Zhang, M.-h.; Li, H. The Resistance to Chloride Penetration of Concrete Containing Nano-Particles for Pavement. In Testing, Reliability, and Application of Micro-and Nano-Material Systems IV; International Society for Optics and Photonics: Belengham, WA, USA, 2006; p. 61750. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, P.; Wang, J.; Taylor, P.; Hu, S. Effects of nanoparticles on engineering performance of cementitious composites reinforced with PVA fibers. Nanotechnol. Rev. 2020, 9, 504–514. [Google Scholar] [CrossRef]
- Fallah, S.; Nematzadeh, M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr. Build. Mater. 2017, 132, 170–187. [Google Scholar] [CrossRef]
- Chu, S.; Li, L.; Kwan, A. Development of extrudable high strength fiber reinforced concrete incorporating nano calcium carbonate. Addit. Manuf. 2021, 37, 101617. [Google Scholar] [CrossRef]
- Bakar, A.A. Effects of Nano Silica and Basalt Fibers on Fly Ash Based Geopolymer Concrete; North Dakota State University: Fargo, ND, USA, 2018. [Google Scholar]
- Adetukasi, A.; Fadugba, O.; Adebakin, I.; Omokungbe, O. Strength characteristics of fibre-reinforced concrete containing nano-silica. Mater. Today Proc. 2021, 38, 584–589. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A. The impact resistance and mechanical properties of fiber reinforced self-compacting concrete (SCC) containing nano-SiO2 and silica fume. Eur. J. Environ. Civ. Eng. 2018, 22, 1–27. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Achara, B.E.; Nuruddin, M.F.; Yaw, M.; Zulkefli, M.Z. Properties of nano-silica-modified self-compacting engineered cementitious composites. J. Clean. Prod. 2017, 162, 1225–1238. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Q.; Wang, H.; Chen, L. Influence of multi-walled nanotubes on the fresh and hardened properties of a 3D printing PVA mortar ink. Constr. Build. Mater. 2020, 247, 118590. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; Khayat, K.H. Multi-scale investigation of microstructure, fiber pullout behavior, and mechanical properties of ultra-high performance concrete with nano-CaCO3 particles. Cem. Concr. Compos. 2018, 86, 255–265. [Google Scholar] [CrossRef]
- Shalby, O.B.; Elkady, H.M.; Nasr, E.A.R.; Kohail, M. Assessment of mechanical and fire resistance for hybrid nano-clay and steel fibres concrete at different curing ages. J. Struct. Fire Eng. 2019, 11, 189–203. [Google Scholar] [CrossRef]
- Sheng, Z.L.; Duan, Y.F.; Xia, D.T.; Thierry, O. Effect of Nanomaterials on Mechanical Properties of Fiber Reinforced Concrete; Key Engineering Materials; Trans Tech Publications: Shenzhen, China, 2020; pp. 59–69. [Google Scholar]
- Ghazy, A.; Bassuoni, M.T.; Maguire, E.; O’Loan, M. Properties of fiber-reinforced mortars incorporating nano-silica. Fibers 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, K.; Ghazy, A.; Bassuoni, M.T.; El-Salakawy, E. Properties of nanomodified fiber-reinforced cementitious composites. J. Mater. Civ. Eng. 2017, 29, 04017173. [Google Scholar] [CrossRef]
- Bedwiy, A.; Bassuoni, M.T.; El-Salakawy, E. Post-Cracking Behavior of Cementitious Composite Incorporating Nano-Silica and Basalt Fiber Pellets. In Proceedings of the International Conference on Durability of Concrete Structures, Leeds, UK, 18–20 July 2018. [Google Scholar]
- Azzam, A.; Bassuoni, M.; Shalaby, A. Nano-Modified Cementitious Composites with High Volume Supplementary Cementitious Materials Incorporating Basalt Fiber Pellets. In Proceedings of the Fifth International Conference on Sustainable Construction Materials and Technologies, London, UK, 14–17 July 2019. [Google Scholar]
- Larisa, U.; Solbon, L.; Sergei, B. Fiber-reinforced concrete with mineral fibers and nanosilica. Procedia Eng. 2017, 195, 147–154. [Google Scholar] [CrossRef]
- Ghadikolaeea, M.R.; Korayem, A.H. Asghar Habibnejad Korayem c, Development of the mechanical properties of basalt fiberreinforced cementitious composite using nano-silica. In Proceedings of the 2nd International Congress on Engineering, Technology and Innovation, Darmstadt, Germany, 24–26 April 2020. [Google Scholar]
- Saraykina, K.; Shamanov, V. Nanostructured BasaltfiberConcrete Exploitational Characteristics; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Chelyabinsk, Russia, 2017; p. 012016. [Google Scholar]
- Girgin, Z.C. Effect of slag, nano clay and metakaolin on mechanical performance of basalt fibre cementitious composites. Constr. Build. Mater. 2018, 192, 70–84. [Google Scholar] [CrossRef]
- Tanzadeh, J. Laboratory evaluation of self-compacting fiber-reinforced concrete modified with hybrid of nanomaterials. Constr. Build. Mater. 2020, 232, 117211. [Google Scholar]
- Khaloo, A.; Mobini, M.H.; H osseini, P. Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Constr. Build. Mater. 2016, 113, 188–201. [Google Scholar] [CrossRef]
- Mohammadyan-Yasouj, S.E.; Ghaderi, A. Experimental investigation of waste glass powder, basalt fibre, and carbon nanotube on the mechanical properties of concrete. Constr. Build. Mater. 2020, 252, 119115. [Google Scholar] [CrossRef]
- Niaki, M.H.; Fereidoon, A.; Ahangari, M.G. Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Compos. Struct. 2018, 191, 231–238. [Google Scholar] [CrossRef]
- Nik, A.S.; Omran, O.L. Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO2 using ultrasonic pulse velocity. Constr. Build. Mater. 2013, 44, 654–662. [Google Scholar]
- Zhang, P.; Zhao, Y.-N.; Li, Q.-F.; Zhang, T.-H.; Wang, P. Mechanical properties of fly ash concrete composite reinforced with nano-SiO 2 and steel fibre. Curr. Sci. 2014, 1529–1537. [Google Scholar]
- Zhang, P.; Li, Q.; Chen, Y.; Shi, Y.; Ling, Y.-F. Durability of steel fiber-reinforced concrete containing SiO2 nano-particles. Materials 2019, 12, 2184. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.Q.K.; Do, T.M.D.; Ngo, V.; Nguyen, T.C. Increased plasticity of nano concrete with steel fibers. Инженернo-Стрoительный Журнал 2020, 1, 27–34. [Google Scholar]
- Rabiaa, E.; Mohamed, R.; Sofi, W.; Tawfik, T.A. Developing Geopolymer Concrete Properties by Using Nanomaterials and Steel Fibers. Adv. Mater. Sci. Eng. 2020, 2020, 5186091. [Google Scholar] [CrossRef]
- Elboghdadi, A.S.; Elkady, H.M.; Salem, H.M.; Farahat, A.M. Combined Effect of Nano Silica and Steel Fiber on Compressive Strength and Water Permeability of Concrete. Int. J. Mod. Eng. Res. 2015, 5, 27–34. [Google Scholar]
- Elkady, H.M.; Yasien, A.M.; Elfeky, M.S.; Serag, M.E. Assessment of mechanical strength of nano silica concrete (NSC) subjected to elevated temperatures. J. Struct. Fire Eng. 2019, 10, 90–109. [Google Scholar] [CrossRef]
- Dehghanpour, H.; Yilmaz, K.; Ipek, M. Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes. Constr. Build. Mater. 2019, 221, 109–121. [Google Scholar] [CrossRef]
- Sanchez, F.; Ince, C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Compos. Sci. Technol. 2009, 69, 1310–1318. [Google Scholar] [CrossRef]
- Beigi, M.H.; Berenjian, J.; Omran, O.L.; Nik, A.S.; Nikbin, I.M. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater. Des. 2013, 50, 1019–1029. [Google Scholar] [CrossRef]
- Alhozaimy, A.; Soroushian, P.; Mirza, F. Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cem. Concr. Compos. 1996, 18, 85–92. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res. 2006, 36, 1263–1267. [Google Scholar] [CrossRef]
- Berra, M.; Carassiti, F.; Mangialardi, T.; Paolini, A.; Sebastiani, M. Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Constr. Build. Mater. 2012, 35, 666–675. [Google Scholar] [CrossRef]
- Toutanji, H.; McNeil, S.; Bayasi, Z. Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cem. Concr. Res. 1998, 28, 961–968. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.; Wang, J.; Shi, Y.; Zheng, Y.; Ling, Y. Effect of Nano-particle on Durability of PVA Fiber Reinforced Cementitious Composite. Sci. Adv. Mater. 2020, 12, 249–262. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Liu, A.; Wang, X. Effect of nano-CaCO3 on properties of cement paste. Energy Procedia 2012, 16, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.M.; Tsai, W.T. Effect of Elevated Temperature on the Strength and Ultrasonic Pulse Velocity of Glass Fiber and Nano-Clay Concrete. In Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2011; pp. 1532–1539. [Google Scholar] [CrossRef]
- Abbas, A.-A. The effect of steel fiber on some mechanical properties of self compacting concrete. Am. J. Civ. Eng. 2013, 1, 102–110. [Google Scholar]
- Mukharjee, B.B.; Barai, S.V. Influence of nano-silica on the properties of recycled aggregate concrete. Constr. Build. Mater. 2014, 55, 29–37. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J. Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability. Cem. Concr. Res. 2005, 35, 913–917. [Google Scholar] [CrossRef]
- Shoukry, H.; Kotkata, M.; Abo-EL-Enein, S.; Morsy, M.; Shebl, S. Thermo-physical properties of nanostructured lightweight fiber reinforced cementitious composites. Constr. Build. Mater. 2016, 102, 167–174. [Google Scholar] [CrossRef]
- Lumingkewas, R.H. Development of Materials for Construction with Low Environmental Impact Made with Low Content of Cement and with Natural Fibers; Université de Bretagne Sud: 2015. Available online: https://tel.archives-ouvertes.fr/tel-01321478 (accessed on 20 September 2021).
- Yazdani, N.; Mohanam, V. Carbon nano-tube and nano-fiber in cement mortar: Effect of dosage rate and water-cement ratio. Int. J. Mater. Sci. 2014, 4, 45–52. [Google Scholar] [CrossRef]
- Sassani, A.; Ceylan, H.; Kim, S.; Arabzadeh, A.; Taylor, P.C.; Gopalakrishnan, K. Development of carbon fiber-modified electrically conductive concrete for implementation in Des Moines International Airport. Case Stud. Constr. Mater. 2018, 8, 277–291. [Google Scholar] [CrossRef]
- Hakamy, A.; Shaikh, F.; Low, I.M. Microstructures and mechanical properties of hemp fabric reinforced organoclay–cement nanocomposites. Constr. Build. Mater. 2013, 49, 298–307. [Google Scholar] [CrossRef]
- Hakamy, A.; Shaikh, F.; Low, I.M. Effect of calcined nanoclay on microstructural and mechanical properties of chemically treated hemp fabric-reinforced cement nanocomposites. Constr. Build. Mater. 2015, 95, 882–891. [Google Scholar] [CrossRef] [Green Version]
- El-Feky, M.S.; Youssef, P.; El-Tair, A.M.; Ibrahim, S.; Serag, M. Effect of nano silica addition on enhancing the performance of cement composites reinforced with nano cellulose fibers. AIMS Mater. Sci. 2019, 6, 864–883. [Google Scholar] [CrossRef]
- Assaedi, H.; Alomayri, T.; Shaikh, F.; Low, I.-M. Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites. Materials 2019, 12, 1459. [Google Scholar] [CrossRef] [Green Version]
- Hakamy, A.; Shaikh, F.; Low, I.M. Effect of calcined nanoclay on the durability of NaOH treated hemp fabric-reinforced cement nanocomposites. Mater. Des. 2016, 92, 659–666. [Google Scholar] [CrossRef]
- Aly, M.; Hashmi, M.; Olabi, A.; Messeiry, M.; Hussain, A.; Abadir, E. Effect of nano-clay and waste glass powder on the properties of flax fibre reinforced mortar. ARPN J. Eng. Appl. Sci. 2011, 6, 19–28. [Google Scholar]
- Assaedi, H.; Shaikh, F.; Low, I.M. Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites. J. Asian Ceram. Soc. 2017, 5, 62–70. [Google Scholar] [CrossRef] [Green Version]
Nanomaterials | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NO. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Materials * | NS | NC | nFe | nCaCO3 | nTiO2 | nAl2O3 | CNT | GNP | NMK | RNCB | ||
Fibers | 1 | BF | 16 | 4 | - | - | - | - | 4 | - | 2 | - |
2 | BF + PPF | 4 | - | - | - | - | - | - | - | - | - | |
3 | PPF | 15 | - | 2 | - | 2 | 2 | - | - | - | - | |
4 | PVA | 9 | - | - | 2 | - | - | 2 | - | - | - | |
5 | SF | 20 | 2 | 2 | 4 | - | - | - | - | 2 | 2 | |
6 | GF | 7 | 2 | - | 2 | - | - | - | - | - | - | |
7 | CF | - | - | - | 2 | - | - | 2 | 2 | - | 2 | |
8 | SF + CF | - | - | - | - | - | - | - | - | - | 2 | |
9 | Linen F | - | - | - | - | - | - | - | 2 | - | ||
10 | HF | - | 7 | - | - | - | - | - | - | - | - | |
11 | Coconut F | 2 | - | - | - | - | - | - | - | - | - | |
12 | Coir F | 2 | - | - | - | - | - | - | - | - | - | |
13 | Flax F | 2 | 2 | - | - | - | - | - | - | - | - |
Fiber Type * | Length (mm) | Diameter | Elasticity Modulus (GPa) | Tensile Strength (GPa) | Elongation at Break (%) | Specific Density (g/cm3) | Content |
---|---|---|---|---|---|---|---|
(mm) | % of Total Volume | ||||||
BF | 3–36 | 0.013–0.07 | 65–115 | 2.3–4.8 | 2.9–3.3 | 2.65–3.05 | 0.0377–4.5 |
PPF | 12–20 | 0.019–0.92 | 3.5–10 | 0.35–0.8 | 15–25 | 0.9–0.91 | 0.1–1.2 |
PVA | 12–Sep | 0.02–0.4 | 4.1–4.3 | 1.4–1.6 | 6.5–15 | 1.3–1.32 | 0.2–2.0 |
SF | 13–50 | 0.2–2.4 | 200 | 0.8–2.85 | 0.5–3.5 | 7.85 | 0.2–2.5 |
GF | 12.25.4 | 0.01–0.02 | 70–77 | 2.4 | 2–3.5 | 2.6 | 0.2–1.5 |
CF | 6 | 0.007 | 230–380 | 2.5–4 | 0.5–1.5 | 1.6–1.7 | 0.1–0.5 |
HF | - | 0.0027 | 38–58 | 0.59–0.86 | 1.6 | 1.37 | 2.5–6.9 |
Coconut F | 20 | 0.1–0.4 | - | 0.15 | 10-25 | 1.12–1.15 | 1 |
Coir F | 20–50 | 0.45 | 2.8 | 0.21 | 27 | 1.538 | 1.66–5.34 |
Type of Nano Material * | Content wt% of Cement | Particle Size (nm) | Specific Surface Area (m2/g) |
---|---|---|---|
Ns | 0.6–10 | 5–35 | 45–280 |
NC | 0.1–7.5 | 6–10 | 10–750 |
NFe | 1–4 | 50 | - |
NCaCO3 | 1.6–6.4 | 15–150 | 180 |
NTiO2 | 1–5 | 15 | 240 ± 50 |
NAl2O3 | 1–3 | <100 nm | - |
CNT | 0.1–0.2 | 9.5 | 250–300 |
NMK | 2–6 | 20 | 380 |
RNCB | 3–10 | - | 80–90 |
Ref. | Nano Content | Fiber Type | Fiber Content | R.Sl | R. Fc | R. Fl | R. ST | R. W A | R. Porosity | R. AR |
---|---|---|---|---|---|---|---|---|---|---|
[30] | 0 | FF | 0 | 1 | 1 | - | 1.00 | 1.00 | 1.00 | - |
1 | FF | 0.5 | 0.75 | 1.07 | - | 1.13 | 1.18 | 1.18 | - | |
2 | FF | 0.5 | 0.59 | 1.14 | - | 1.15 | 1.04 | 1.05 | - | |
3 | FF | 0.5 | 0.47 | 1.10 | - | 1.18 | 1.05 | 1.04 | - | |
[90] | 0 | N Cel | 0 | 1 | 1 | - | 1.00 | - | - | - |
1 | N Cel | 0.35 | 0.83 | - | 1.26 | - | - | - | ||
1 | N Cel | 0.55 | 1.07 | - | 0.96 | - | - | - | ||
1 | N Cel | 0.75 | 1.13 | - | 1.04 | - | - | - | ||
1.5 | N Cel | 0.35 | 1.07 | - | 1.19 | - | - | - | ||
1.5 | N Cel | 0.55 | 1.16 | - | 1.10 | - | - | - | ||
1.5 | N Cel | 0.75 | 0.94 | - | 1.55 | - | - | - | ||
2 | N Cel | 0.35 | 1.22 | - | 1.22 | - | - | - | ||
2 | N Cel | 0.55 | 0.94 | - | 1.26 | - | - | - | ||
2 | N Cel | 0.75 | 1.02 | - | 1.26 | - | - | - | ||
[37] | 0.0 | Coir | 0 | 1 | 1 | - | - | - | - | 1 |
2.4 | Coir | 0.1 | 0.96 | 1.43 | - | - | - | - | 0.85 | |
2.4 | Coir | 0.2 | 0.9 | 1.48 | - | - | - | - | 0.93 | |
2.4 | Coir | 0.3 | 0.8 | 1.28 | - | - | - | - | 1.03 | |
3.7 | Coir | 0.1 | 0.87 | 1.48 | - | - | - | - | 0.83 | |
3.7 | Coir | 0.2 | 0.96 | 1.54 | - | - | - | - | 0.90 | |
3.7 | Coir | 0.3 | 0.91 | 1.35 | - | - | - | - | 0.93 | |
[85] | 0 | Coconut | 0 | 1 | 1.00 | - | - | - | - | - |
0.5 | Coconut | 1 | 1.01 | 1.57 | - | - | - | - | - | |
1 | Coconut | 1 | 0.90 | 1.41 | - | - | - | - | - | |
1.5 | Coconut | 1 | 0.78 | 1.42 | - | - | - | - | - | |
2 | Coconut | 1 | 0.67 | 1.12 | - | - | - | - | - | |
[91] | 0 | Fl | 0 | - | - | 1.00 | - | - | - | - |
0.5 | Fl | 4.1 | - | - | 6.09 | - | - | - | - | |
1 | Fl | 4.1 | - | 6.54 | - | - | - | - | ||
2 | Fl | 4.1 | - | - | 6.33 | - | - | - | - | |
3 | Fl | 4.1 | - | - | 5.87 | - | - | - | - |
Ref. | Nano Type | Nano Content | Fiber Type | Fiber Content | R. Fc | R. Fl | R. Ca | R. TC | R. ER |
---|---|---|---|---|---|---|---|---|---|
[84] | NK | 10 | LF | 2 | - | 1 | 1 | 1 | |
NK | 10 | LF | 1.7 | - | 0.95 | 8.57 | 0.831 | ||
NK | 10 | LF | 1.6 | - | 0.90 | 10.43 | 0.658 | ||
NK | 10 | LF | 1.37 | - | 0.82 | 16.57 | 0.538 | ||
NK | 10 | LF | 1.1 | - | 0.74 | 19.43 | 0.444 | ||
NK | 10 | LF | 0.9 | - | 0.66 | 22.00 | 0.324 | ||
NK | 10 | LF | 0.7 | - | 0.6 | 25.71 | 0.244 | ||
NK | 10 | LF | 0.6 | - | 0.55 | 34.14 | 0.160 | ||
[71] | RNCB | 0 | WWE | 0 | 1.00 | 1.00 | - | - | 1.000 |
RNCB | 6 | WWE | 0.005 | 1.18 | 1.42 | - | - | 0.075 | |
RNCB | 6 | WWE | 0.01 | 1.31 | 1.54 | - | - | 0.069 | |
RNCB | 6 | WWE + CF | 0.01 + 0.2 | 0.95 | 1.52 | - | - | 0.017 | |
RNCB | 6 | WWE + CF | 0.015 + 0.2 | 0.90 | 1.45 | - | - | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, T.; Kurda, R.; Mosaberpanah, M.; Alyousef, R. A Review of the Combined Effect of Fibers and Nano Materials on the Technical Performance of Mortar and Concrete. Sustainability 2022, 14, 3464. https://doi.org/10.3390/su14063464
Hussein T, Kurda R, Mosaberpanah M, Alyousef R. A Review of the Combined Effect of Fibers and Nano Materials on the Technical Performance of Mortar and Concrete. Sustainability. 2022; 14(6):3464. https://doi.org/10.3390/su14063464
Chicago/Turabian StyleHussein, Twana, Rawaz Kurda, Mohammad Mosaberpanah, and Rayed Alyousef. 2022. "A Review of the Combined Effect of Fibers and Nano Materials on the Technical Performance of Mortar and Concrete" Sustainability 14, no. 6: 3464. https://doi.org/10.3390/su14063464
APA StyleHussein, T., Kurda, R., Mosaberpanah, M., & Alyousef, R. (2022). A Review of the Combined Effect of Fibers and Nano Materials on the Technical Performance of Mortar and Concrete. Sustainability, 14(6), 3464. https://doi.org/10.3390/su14063464