Assessment of the Thermo-Hydraulic Efficiency of an Indoor-Designed Jet Impingement Solar Thermal Collector Roughened with Single Discrete Arc-Shaped Ribs
Abstract
:1. Introduction
2. Roughness and Experimental Parameters
3. Experimental Setup Details
Experimental Process
- Pressure head variation across the orifice plate to find out the .
- Target plate temperature ().
- Inlet air temperature ().
- Outlet air temperature ().
- Pressure head falls across the assessed segment ().
4. Validation of Experimental Values
5. Data Diminution
6. Results and Discussion
6.1. Effect on Heat Transfer Characteristics
6.2. Friction Factor Characteristics
7. Thermohydraulic Performance
8. Conclusions
- The single discrete arc-shaped ribs with a spacer length = 0 mm results in increased and compared with other values of .
- The and of the JISTC with SDASR were improved by 5.25 and 5.98 times compared to the STC without SDASR.
- The highest % increase in and of the JISTC with SDASR at compared to was 77% and 18%, respectivey.
- The single discrete arc-shaped ribs JISTC provided the highest of 2.9 at = 0 mm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Absorber plate surface area, mm2 | |
Orifice meter area, mm2 | |
Air specific heat, J/kg k | |
Coefficient of discharge | |
Length of single arc rib | |
Relative discrete distance | |
Discrete width | |
Relative discrete width | |
Hydraulic diameter, mm | |
Height of rib, mm | |
Height of duct, mm | |
Relative rib height | |
Jet diameter, mm | |
Jet diameter ratio | |
Friction factor, dimensionless | |
Friction factor for single discete arc-shaped ribs, dimensionless | |
Friction factor of smooth surface, dimensionless | |
Convective heat transfer coefficient, W/m2 K | |
Thermal conductivity, W/m K | |
Length of test section, mm | |
Nusselt number for single discrete arc-shaped ribs, dimensionless | |
Nusselt number, dimensionless | |
Smooth surface Nusselt number, dimensionless | |
Air mass flow rate, kg/s | |
Prandtl number, dimensionless | |
Pressure head drop across the test segment, Pa | |
Pressure drop across the orifice meter, Pa | |
Heat transfer rate, W | |
Heat transfer rate for single discrete arc ribs, W | |
Reynolds number, dimensionless | |
Temperature of target plate, K | |
Inlet air temperature, K | |
Outlet air temperature, K | |
Mean air temperature, K | |
Velocity of air, m/s | |
Width of duct, mm | |
Streamwise variation, mm | |
Streamwise variation to hydraulic diameter ratio, dimensionless | |
Spanwise variation, mm | |
Spanwise variation to hydraulic diameter ratio, dimensionless | |
Absolute uncertainty, dimensionless | |
Relative uncertainty, dimensionless | |
TP | Thermal performance |
HT | Heat transfer |
HTR | Heat transfer rate |
SAH | Solar air heater |
STC | Solar thermal collector |
JISTC | Jet impingement solar thermal collector |
SDASR | Single discrete arc-shaped ribs |
Greek Letters | |
Angle of attack, degree | |
Absolute velocity of air, Ns/m2 | |
Density of air, kg/m3 | |
Kinematic viscosity of air, m2/s | |
Ratio of orifice meter to pipe diameter, dimensionless | |
Thermo-hydraulic performance parameter, dimensionless | |
Thermohydraulic performance parameter for single discrete arc-shaped ribs, dimensionless |
References
- Thapa, S.; Samir, S.; Kumar, K.; Singh, S. A review study on the active methods of heat transfer enhancement in heat exchangers using electroactive and magnetic materials. Mater. Today Proc. 2021, 45, 4942–4947. [Google Scholar] [CrossRef]
- Thapa, S.; Samir, S.; Kumar, K. A review study on the performance of a parabolic trough receiver using twisted tape inserts. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2021. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, P.; Xiao, H.; Liu, Z.; Liu, W. A study on heat transfer enhancement for solar air heaters with ripple surface. Renew. Energy 2021, 172, 477–487. [Google Scholar] [CrossRef]
- Bhuvad, S.S.; Azad, R.; Lanjewar, A. Thermal performance analysis of apex-up discrete arc ribs solar air heater-an experimental study. Renew. Energy 2022, 185, 403–415. [Google Scholar] [CrossRef]
- Parsa, H.; Saffar-Avval, M.; Hajmohammadi, M. 3D simulation and parametric optimization of a solar air heater with a novel staggered cuboid baffles. Int. J. Mech. Sci. 2021, 205, 106607. [Google Scholar] [CrossRef]
- Farahani, S.D.; Shadi, M. Optimization-decision making of roughened solar air heaters with impingement jets based on 3E analysis. Int. Commun. Heat Mass Transf. 2021, 129, 105742. [Google Scholar] [CrossRef]
- Avargani, V.M.; Zendehboudi, S.; Rahimi, A.; Soltani, S. Comprehensive energy, exergy, enviro-exergy, and thermo-hydraulic performance assessment of a flat plate solar air heater with different obstacles. Appl. Therm. Eng. 2022, 203, 117907. [Google Scholar] [CrossRef]
- Saravanan, A.; Murugan, M.; Reddy, M.S.; Ranjit, P.; Elumalai, P.; Kumar, P.; Sree, S.R. Thermo-hydraulic performance of a solar air heater with staggered C-shape finned absorber plate. Int. J. Therm. Sci. 2021, 168, 107068. [Google Scholar] [CrossRef]
- Moshery, R.; Chai, T.Y.; Sopian, K.; Fudholi, A.; Al-Waeli, A.H. Thermal performance of jet-impingement solar air heater with transverse ribs absorber plate. Sol. Energy 2021, 214, 355–366. [Google Scholar] [CrossRef]
- Chauhan, R.; Singh, T.; Thakur, N.S. Investigation of the Thermal Performance of Solar Thermal Collector Provided with Impinging Air Jets. Adv. Sci. Lett. 2016, 22, 3928–3932. [Google Scholar] [CrossRef]
- Chaudhri, K.; Bhagoria, J.L.; Kumar, V. Transverse wedge-shaped rib roughened solar air heater (SAH)-Exergy based experimental investigation. Renew. Energy 2022, 184, 1150–1164. [Google Scholar] [CrossRef]
- Aboghrara, A.M.; Baharudin, B.; Alghoul, M.; Adam, N.M.; Hairuddin, A.A.; Hasan, H.A. Performance analysis of solar air heater with jet impingement on corrugated absorber plate. Case Stud. Therm. Eng. 2017, 10, 111–120. [Google Scholar] [CrossRef]
- Roy, S.; Patel, P. Study of heat transfer for a pair of rectangular jets impinging on an inclined surface. Int. J. Heat Mass Transf. 2003, 46, 411–425. [Google Scholar] [CrossRef]
- Chauhan, R.; Thakur, N. Investigation of the thermohydraulic performance of impinging jet solar air heater. Energy 2014, 68, 255–261. [Google Scholar] [CrossRef]
- Babic, D.; Murray, D.; Torrance, A. Mist jet cooling of grinding processes. Int. J. Mach. Tools Manuf. 2005, 45, 1171–1177. [Google Scholar] [CrossRef]
- Röger, M.; Buck, R.; Müller-Steinhagen, H. Numerical and Experimental Investigation of a Multiple Air Jet Cooling System for Application in a Solar Thermal Receiver. J. Heat Transf. 2005, 127, 863–876. [Google Scholar] [CrossRef]
- Caliskan, S.; Baskaya, S. Experimental investigation of impinging jet array heat transfer from a surface with V-shaped and convergent-divergent ribs. Int. J. Therm. Sci. 2012, 59, 234–246. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, J.; Huang, T. Experimental investigation on impingement heat transfer from rib roughened surface within arrays of the circular jet: Effect of geometric parameters. In Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, Stockolm, Sweden, 2–5 June 1998. [Google Scholar]
- Yan, W.; Mei, S. Measurement of detailed heat transfer along rib-roughened surface under arrays of impinging elliptic jets. Int. J. Heat Mass Transf. 2006, 49, 159–170. [Google Scholar] [CrossRef]
- Xing, Y.; Spring, S.; Weigand, B. Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes. Int. J. Therm. Sci. 2011, 50, 1293–1307. [Google Scholar] [CrossRef]
- Goodro, M.; Park, J.; Ligrani, P.; Fox, M.; Moon, H.-K. Effects of hole spacing on spatially-resolved jet array impingement heat transfer. Int. J. Heat Mass Transf. 2008, 51, 6243–6253. [Google Scholar] [CrossRef]
- Huber, A.M.; Viskanta, R. Comparison of convective heat transfer to perimeter and center jets in a confined, impinging array of axisymmetric air jets. Int. J. Heat Mass Transf. 1994, 37, 3025–3030. [Google Scholar] [CrossRef]
- Chambers, A.C.; Gillespie, D.R.H.; Ireland, P.T.; Kingston, R. Enhancement of Impingement Cooling in a High Cross Flow Channel Using Shaped Impingement Cooling Holes. J. Turbomach. 2009, 132, 021001. [Google Scholar] [CrossRef]
- Lewis, M. Optimising the thermohydraulic performance of rough surfaces. Int. J. Heat Mass Transf. 1975, 18, 1243–1248. [Google Scholar] [CrossRef]
- Matheswaran, M.; Arjunan, T.; Somasundaram, D. Analytical investigation of solar air heater with jet impingement using energy and exergy analysis. Sol. Energy 2018, 161, 25–37. [Google Scholar] [CrossRef]
- Yadav, S.; Saini, R.P. Comparative study of simple and impinging jet solar air heater using CFD analysis. AIP Conf. Proc. 2020, 2273, 050043. [Google Scholar] [CrossRef]
- Aboghrara, A.M.; Alghoul, M.A.; Baharudin, B.T.H.T.; Elbreki, A.; Ammar, A.A.; Sopian, K.; Hairuddin, A.A. Parametric Study on the Thermal Performance and Optimal Design Elements of Solar Air Heater Enhanced with Jet Impingement on a Corrugated Absorber Plate. Int. J. Photoenergy 2018, 2018, 1469385. [Google Scholar] [CrossRef] [Green Version]
- Rajaseenivasan, T.; Prasanth, S.R.; Antony, M.S.; Srithar, K. Experimental investigation on the performance of an impinging jet solar air heater. Alex. Eng. J. 2017, 56, 63–69. [Google Scholar] [CrossRef]
- Goel, A.K.; Singh, S.N. Experimental study of heat transfer characteristics of an impinging jet solar air heater with fins. Environ. Dev. Sustain. 2019, 22, 3641–3653. [Google Scholar] [CrossRef]
- Mokashi, I.; Afzal, A.; Khan, S.A.; Abdullah, N.A.; Azami, M.H.; Jilte, R.D.; Samuel, O.D. Nusselt number anal-ysis from a battery pack cooled by different fluids and multiple back-propagation modelling using feed-forward networks. Int. J. Therm. Sci. 2021, 161, 106738. [Google Scholar] [CrossRef]
- Afzal, A.; Samee, A.D.M.; Razak, R.K.A.; Ramis, M.K. Steady and Transient State Analyses on Conjugate Laminar Forced Convection Heat Transfer. Arch. Comput. Methods Eng. 2019, 27, 135–170. [Google Scholar] [CrossRef]
- Afzal, A.; Mohammed Samee, A.D.; Javad, A.; Shafvan, S.A.; Ajinas, P.V.; Ahammedul Kabeer, K.M. Heat transfer analysis of plain and dimpled tubes with different spacings. Heat Transf.—Asian Res. 2018, 47, 556–568. [Google Scholar] [CrossRef]
- Samylingam, L.; Aslfattahi, N.; Saidur, R.; Yahya, S.M.; Afzal, A.; Arifutzzaman, A.; Tan, K.; Kadirgama, K. Thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid. Sol. Energy Mater. Sol. Cells 2020, 218, 110754. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Kalam, M.A.; Sajid, M.U.; Afzal, A.; Banapurmath, N.R.; Akram, N.; Mane, S.; Saleel, C.A. Thermal analyses of minichannels and use of mathematical and numerical models. Numer. Heat Transf. Part A Appl. 2020, 77, 497–537. [Google Scholar] [CrossRef]
- Afzal, A.; Samee, A.M.; Jilte, R.; Islam, T.; Manokar, A.M.; Razak, K.A. Battery thermal management: An optimization study of parallelized conjugate numerical analysis using Cuckoo search and Artificial bee colony algorithm. Int. J. Heat Mass Transf. 2021, 166, 120798. [Google Scholar] [CrossRef]
- Attia, M.E.H.; Driss, Z.; Kabeel, A.E.; Afzal, A.; Manokar, A.M.; Sathyamurthy, R. Phosphate bed as energy storage materials for augmentation of conventional solar still productivity. Environ. Prog. Sustain. Energy 2021, 40, e13581. [Google Scholar] [CrossRef]
- García, D.; Prieto, J.I. A non-tubular Stirling engine heater for a micro solar power unit. Renew. Energy 2012, 46, 127–136. [Google Scholar] [CrossRef]
- Singh, A.P.; Goel, V.; Sharma, S. Effect of artificial roughness on heat transfer and friction characteristics having multiple arc shaped roughness element on the absorber plate. Sol. Energy 2014, 105, 479–493. [Google Scholar] [CrossRef]
- Benoudina, B.; Attia, M.E.H.; Driss, Z.; Afzal, A.; Manokar, A.M.; Sathyamurthy, R. Enhancing the solar still output using micro/nano-particles of aluminum oxide at different concentrations: An experimental study, energy, exergy and economic analysis. Sustain. Mater. Technol. 2021, 29, e00291. [Google Scholar] [CrossRef]
- Nidhul, K.; Yadav, A.K.; Anish, S.; Arunachala, U.C. Thermo-hydraulic and exergetic performance of a cost-effective solar air heater: CFD and experimental study. Renew. Energy 2022, 184, 627–641. [Google Scholar] [CrossRef]
- Prasad, A.R.; Attia, M.E.; Al-Kouz, W.; Afzal, A.; Athikesavan, M.M.; Sathyamurthy, R. Energy and exergy efficiency analysis of solar still incorporated with copper plate and phosphate pellets as energy storage material. Environ. Sci. Pollut. Res. 2021, 28, 48628–48636. [Google Scholar] [CrossRef]
- Vaithilingam, S.; Muthu, V.; Athikesavan, M.M.; Afzal, A.; Sathyamurthy, R. Energy and exergy analysis of conventional acrylic solar still with and without copper fins. Environ. Sci. Pollut. Res. 2022, 29, 6194–6204. [Google Scholar] [CrossRef] [PubMed]
- Azadani, L.N.; Gharouni, N. Multi objective optimization of cylindrical shape roughness parameters in a solar air heater. Renew. Energy 2021, 179, 1156–1168. [Google Scholar] [CrossRef]
- Kumar, P.S.; Naveenkumar, R.; Sharifpur, M.; Issakhov, A.; Ravichandran, M.; Mohanavel, V.; Aslfattahi, N.; Afzal, A. Experimental investigations to improve the electrical efficiency of photovoltaic modules using different convection mode. Sustain. Energy Technol. Assess. 2021, 48, 101582. [Google Scholar] [CrossRef]
- Murugan, M.; Saravanan, A.; Elumalai, P.; Kumar, P.; Saleel, C.A.; Samuel, O.D.; Setiyo, M.; Enweremadu, C.C.; Afzal, A. An overview on energy and exergy analysis of solar thermal collectors with passive performance enhancers. Alex. Eng. J. 2022, 61, 8123–8147. [Google Scholar] [CrossRef]
Geometric Factors | |||
---|---|---|---|
Sr. No. | Factors | Symbols | Range |
1. | Relative discrete distance | 0.67 | |
2. | Relative discrete width | 0.87 | |
3. | Relative rib height | 0.047 | |
4. | Relative rib pitch | 1.7 | |
5. | Angle of attack | 60° | |
6. | Streamwise pitch ratio | 1.72 | |
7. | Spanwise pitch ratio | 0.82 | |
8. | Jet diameter ratio | 0.065 | |
9. | Spacer length | 0 mm to 300 mm | |
10 | Absorber plate surface area | mm2 | |
11 | Orifice meter area | mm2 | |
12 | Height of duct | 25 mm | |
13 | Width of duct | 300 mm | |
14 | Length of test section | 1200 mm | |
Flow Factors | |||
Sr. No. | Factors | Symbols | Range |
1. | Reynolds number | 3000–19,000 (8 steps) | |
2 | Mass flow rate | 0.008–0.05 kg/s (8 steps) | |
3 | Velocity | 1.02–6.47 m/s (8 steps) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Cuce, E.; Kumar, S.; Thapa, S.; Gupta, P.; Goel, B.; Saleel, C.A.; Shaik, S. Assessment of the Thermo-Hydraulic Efficiency of an Indoor-Designed Jet Impingement Solar Thermal Collector Roughened with Single Discrete Arc-Shaped Ribs. Sustainability 2022, 14, 3527. https://doi.org/10.3390/su14063527
Kumar R, Cuce E, Kumar S, Thapa S, Gupta P, Goel B, Saleel CA, Shaik S. Assessment of the Thermo-Hydraulic Efficiency of an Indoor-Designed Jet Impingement Solar Thermal Collector Roughened with Single Discrete Arc-Shaped Ribs. Sustainability. 2022; 14(6):3527. https://doi.org/10.3390/su14063527
Chicago/Turabian StyleKumar, Raj, Erdem Cuce, Sushil Kumar, Sashank Thapa, Paras Gupta, Bhaskar Goel, C. Ahamed Saleel, and Saboor Shaik. 2022. "Assessment of the Thermo-Hydraulic Efficiency of an Indoor-Designed Jet Impingement Solar Thermal Collector Roughened with Single Discrete Arc-Shaped Ribs" Sustainability 14, no. 6: 3527. https://doi.org/10.3390/su14063527
APA StyleKumar, R., Cuce, E., Kumar, S., Thapa, S., Gupta, P., Goel, B., Saleel, C. A., & Shaik, S. (2022). Assessment of the Thermo-Hydraulic Efficiency of an Indoor-Designed Jet Impingement Solar Thermal Collector Roughened with Single Discrete Arc-Shaped Ribs. Sustainability, 14(6), 3527. https://doi.org/10.3390/su14063527