Evaluating Water Fertilizer Coupling on the Variations in Millet Chaff Size during the Late Seventh Century in Northwest China: Morphological and Carbon and Nitrogen Isotopic Evidence from the Chashancun Cemetery
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chaff Size of Foxtail and Broomcorn Millet Remains from the Chashancun Cemetery
3.2. Carbon and Nitrogen Isotopes of Foxtail and Broomcorn Millet Chaffs from the Chashancun Cemetery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeder, M.A. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc. Natl. Acad. Sci. USA 2008, 105, 11597–11604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.J. New archaeobotanic data for the study of the origins of agriculture in China. Curr. Anthropol. 2011, 52, S295–S306. [Google Scholar] [CrossRef]
- Dong, G.H.; Yang, Y.S.; Han, J.Y.; Wang, H.; Chen, F.H. Exploring the history of cultural exchange in prehistoric Eurasia from the perspectives of crop diffusion and consumption. Sci. China Earth. Sci. 2017, 60, 1110–1123, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, X.Y.; Jones, P.J.; Matuzeviciute, G.M.; Hunt, H.V.; Lister, D.L.; An, T.; Przelomska, N.; Kneale, C.J.; Zhao, Z.J.; Jones, M.K. From ecological opportunism to multi–cropping: Mapping food globalisation in prehistory. Quat. Sci. Rev. 2019, 206, 21–28. [Google Scholar] [CrossRef] [Green Version]
- D’Alpoim Guedes, J.; Bocinsky, R.K. Climate change stimulated agricultural innovation and exchange across Asia. Sci. Adv. 2018, 4, eaar4491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Lv, F.Y.; Yang, L.; Liu, F.W.; Liu, R.L.; Dong, G.H. Spatial–Temporal Variation of Cropping Patterns in Relation to Climate Change in Neolithic China. Atmosphere 2020, 11, 677. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Yu, J.J.; Spengler, R.N.; Shen, H.; Zhao, K.L.; Ge, J.Y.; Bao, Y.G.; Liu, J.C.; Yang, Q.J.; Chen, G.H.; et al. 5200-Year-Old Cereal Grains from the Eastern Altai Mountains Redate the Trans–Eurasian Crop Exchange. Nat. Plants 2020, 6, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Willcox, G. Carbonized Plant Remains from Shortughai, Afghanistan; Edinburgh University Press: Edinburgh, UK, 1991; pp. 139–153. [Google Scholar]
- Fuller, D.Q.; Qin, L.; Zheng, Y.F.; Zhao, Z.J.; Chen, X.G.; Hosoya, L.A.; Sun, G.P. The domestication process and domestication rate in rice: Spikelet bases from the lower Yangtze. Science 2009, 323, 1607–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spengler, R.; Frachetti, M.; Doumani, P.; Rouse, L.; Cerasetti, B.; Bullion, E.; Mar’yashev, A. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia. Proc. Biol. Sci. 2014, 281, 20133382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, S.H.; Jin, G.Y.; Tauxe, L.; Deng, C.L.; Qin, H.F.; Pan, Y.X.; Zhu, R.X. Archaeointensity Results Spanning the Past 6 Kiloyears from Eastern China and Implications for Extreme Behaviors of the Geomagnetic Field. Proc. Natl. Acad. Sci. USA 2017, 114, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Fuller, D.Q.; Denham, T.; Arroyo–Kalin, M.; Lucas, L.; Stevens, C.J.; Qin, L.; Allaby, R.G.; Purugganan, M.D. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl. Acad. Sci. USA 2014, 111, 6147–6152. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.J.; Shelach–Lavi, G.; Zhang, H.; Teng, M.Y.; Fuller, D.Q. A model for the domestication of Panicum miliaceum (common, proso or broomcorn millet) in China. Veg. Hist. Archaeobot. 2021, 30, 21–33. [Google Scholar] [CrossRef]
- Dennell, R.W. Botanical evidence for prehistoric crop processing activities. J. Archaeol. Sci. 1974, 1, 275–284. [Google Scholar] [CrossRef]
- Zhang, H.; Bevan, A.; Fuller, D.Q.; Fang, Y.M. Archaeobotanical and GIS–based approaches to prehistoric agriculture in the upper Ying Valley, Henan, China. J. Archaeol. Sci. 2010, 37, 1480–1489. [Google Scholar] [CrossRef] [Green Version]
- Larsson, M. Barley grain at Uppåkra, Sweden: Evidence for selection in the Iron Age. Veg. Hist. Archaeobot. 2018, 27, 419–435. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Lister, D.L.; Zhao, Z.J.; Staff, R.A.; Jones, P.J.; Zhou, L.P.; Pokharia, A.K.; Petrie, J.J.; Pathak, A.P.; Lu, H.L.; et al. The virtues of small grain size: Potential pathways to a distinguishing feature of Asian wheats. Quat. Int. 2016, 426, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Wallace, M.; Jones, G.; Charles, M.; Fraser, R.; Halstead, P.; Heaton, T.H.; Bogaard, A. Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeol. 2013, 45, 388–409. [Google Scholar] [CrossRef]
- Bogaard, A.; Fraser, R.; Heaton, T.; Wallace, M.; Vaiglova, P.; Charles, M.; Jones, G.; Evershed, R.P.; Styring, A.K.; Andersen, N.H.; et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA 2013, 110, 12589–12594. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.A.; Bogaard, A.; Heaton, T.; Charles, M.; Jones, G.; Christensen, B.T.; Halstead, P.; Merbach, I.; Poulton, P.R.; Sparkes, D.; et al. Manuring and stable nitrogen isotope ratios in cereals and pulses: Towards a new archaeobotanical approach to the inference of land use and dietary practices. J. Archaeol. Sci. 2011, 38, 2790–2804. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.M.; Williams, R.J.; Farquhar, G.D. Carbon isotope discrimination by a sequence of Eucalyptus species along a sub–continental rainfall gradient in Australia. Funct. Ecol. 2001, 15, 222–232. [Google Scholar] [CrossRef]
- Li, H.M. Ancient Strategies of Crop Use on the Western Chinese Loess Plateau from Neolithic to Historical Periods. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Yang, X.Y.; Wan, Z.W.; Perry, L.; Lu, H.Y.; Wang, Q.; Zhao, C.H.; Li, J.; Xie, F.; Yu, J.C.; Cui, T.X.; et al. Early millet use in Northern China. Proc. Natl. Acad. Sci. USA 2012, 109, 3726–3730. [Google Scholar] [CrossRef] [Green Version]
- Barton, L.; Newsome, S.D.; Chen, F.H.; Wang, H.; Guilderson, T.P.; Bettinger, R.L. Agricultural origins and the isotopic identity of domestication in northern China. Proc. Natl. Acad. Sci. USA 2009, 106, 5523–5528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.W.; Wang, S.G.; Luan, F.S.; Wang, C.S.; Richards, M. Stable isotope analysis of humans from Xiaojingshan site: Implications for understanding the origin of millet agriculture in China. J. Archaeol. Sci. 2008, 35, 2960–2965. [Google Scholar] [CrossRef]
- Qin, L. Plant archaeological studies and prospects on the origin of Agriculture in China. Archaeol. Res. 2012, 9, 260–315. (In Chinese) [Google Scholar]
- Dong, G.H.; Zhang, S.J.; Yang, Y.S.; Chen, J.H.; Chen, F.H. Agricultural intensification and its impact on environment during Neolithic Age in northern China. Chin. Sci. Bull. 2016, 61, 2913–2925. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.J. The process of origin of agriculture in China: Archaeological evidence from flotation results. Quat. Sci. 2014, 34, 73–84, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jia, X.; Dong, G.H.; Li, H.; Brunson, K.; Chen, F.H.; Ma, M.M.; Wang, H.; An, C.B.; Zhang, K.R. The development of agriculture and its impact on cultural expansion during the late Neolithic in the Western Loess Plateau, China. Holocene 2013, 23, 85–92. [Google Scholar] [CrossRef]
- Jia, X.; Sun, Y.G.; Wang, L.; Sun, W.F.; Zhao, Z.J.; Lee, H.F.; Huang, W.B.; Wu, S.Y.; Lu, H.Y. The transition of human subsistence strategies in relation to climate change during the Bronze Age in the West Liao River Basin, Northeast China. Holocene 2016, 26, 781–789. [Google Scholar] [CrossRef]
- Yang, L.; Ma, M.M.; Chen, T.T.; Cui, Y.F.; Chen, P.P.; Zheng, L.C.; Lu, P. How did trans-Eurasian exchanges affect spatial–temporal variation in agricultural patterns during the late prehistoric period in the Yellow River valley (China)? Holocene 2021, 31, 247–257. [Google Scholar] [CrossRef]
- Chen, X.X.; Wang, L.Z.; Wang, Q. Discussion on the plant remains of Xijincheng site (2006–2007), Boai county, Henan Province. Huaxia Archaeol. 2010, 3, 67–76, (In Chinese with English Abstract). [Google Scholar]
- Xin, Y.H. The yield of millet in northern dryland during Han and Tang dynasties. Agricul. Archaeol. 2001, 1, 103–104, (In Chinese with English Abstract). [Google Scholar]
- Chen, F.H.; Dong, G.H.; Zhang, D.J.; Liu, X.Y.; Jia, X.; An, C.B.; Ma, M.M.; Xie, Y.W.; Barton, L.; Ren, X.Y.; et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science 2015, 347, 248–250. [Google Scholar] [CrossRef]
- Chen, T.T.; Qiu, M.H.; Liu, R.L.; Li, H.M.; Hou, H.W.; Howarth, P.; Bowring, S.; Zhou, A.F. Human responses to climate change in the late prehistoric Western Loess Plateau, Northwest China. Radiocarbon 2020, 62, 1193–1207. [Google Scholar] [CrossRef]
- Ma, M.M.; Dong, G.H.; Jia, X.; Wang, H.; Cui, Y.F.; Chen, F.H. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes. Quat. Sci. Rev. 2016, 145, 57–70. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Li, X.Q.; Dodson, J.; Zhao, K.L. Rapid agricultural transformation in the prehistoric Hexi corridor, China. Quat Int. 2016, 426, 33–41. [Google Scholar] [CrossRef]
- Li, X.; Lu, M.X.; Cui, Y.F.; Liu, R.L.; Ma, M.M. The Integration of Farmers and Nomads: Archaeological Evidence for the Human Subsistence Strategy in Northwestern China during the Han Dynasty. Acta Geol. Sin.–Engl. 2020, 94, 603–611. [Google Scholar] [CrossRef]
- Gao, T.X. The cultivation of main crops in Dunhuang area in Tang Dynasty is seen from the dunhuang manuscript “Suwuyaominglin”. Agricul. Archaeol. 2017, 3, 36–40. (In Chinese) [Google Scholar]
- Gansu Provincial Institute of Cultural Relics and Archaeology; Wuwei Institute of Cultural Relics and Archaeology; Tianzhu Tibetan Autonomous County Museum. A brief report on the excavation of the Tomb of King Murong Zhi in Tuyuhun during the Wuzhou Period in Gansu Province. Archaeol. Cult. Reli. 2021, 2, 15–93, (In Chinese with English abstract). [Google Scholar]
- Song, J.X.; Zhao, Z.J.; Fu, D.L. The archaeological significance of immature millet grains: An experimental case study of Chinese millet crop processing. Cult. Relics South. China 2014, 3, 60–67. (In Chinese) [Google Scholar]
- Li, Y.B.; Fan, C.C.; Xing, Y.Z.; Jiang, Y.H.; Luo, L.J.; Sun, L.; Shao, D.; Xu, C.J.; Li, X.H.; Xiao, J.H.; et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 2011, 43, 1266–1269. [Google Scholar] [CrossRef]
- Fuller, D.Q.; Zhang, H. A preliminary report of the survey archaeobotany of the upper Ying Valley (Henan Province). In Dengfeng Wangchenggang Yizhi de Faxian yu Yanjiu [Archaeological Discovery and Research at the Wangchenggang Site in Dengfeng (2002–2005)]; School of Archaeology and Museology, Peking University and Henan Provincial Institute of Cultural Relics and Archaeology, Ed.; Great Elephant Publisher: Zhengzhou, China, 2007; pp. 916–958, (In Chinese with English Abstract). [Google Scholar]
- Motuzaite–Matuzeviciute, G.; Hunt, H.V.; Jones, M.K. Experimental approaches to understanding variation in grain size in Panicum miliaceum (broomcorn millet) and its relevance for interpreting archaeobotanical assemblages. Veg. Hist. Archaeobot. 2012, 21, 69–77. [Google Scholar] [CrossRef]
- Araus, J.L.; Febrero, A.; Catala, M.; Molist, M.; Voltas, J.; Romagosa, I. Crop water availability in early agriculture: Evidence from carbon isotope discrimination of seeds from a tenth millennium BP site on the Euphrates. Glob. Chang. Biol. 1999, 5, 201–212. [Google Scholar] [CrossRef]
- Willcox, G. Measuring grain size and identifying Near Eastern cereal domestication: Evidence from the Euphrates valley. J. Archaeol. Sci. 2004, 31, 145–150. [Google Scholar] [CrossRef]
- Zhang, J.H. Archaeological Observations of the Development of Tomb Status of Qi during East Zhou Dynasty in the Linzi Area. Ph.D. Thesis, Nanjing University, Nanjing, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Xu, L. Funeral Customs of Qin tombs in Xinfeng as Seen from the Location of Burial Objects. Master’s Thesis, Beijing, Minzu University of China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Hao, E.X. A Study on Agricultural Techniques in Dunhuang during Tang and Five Dynasties. Master’s Thesis, Lanzhou University, Lanzhou, China, 2007. (In Chinese with English Abstract). [Google Scholar]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Richards, R.A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Bio. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Lin, Z.F.; Lin, G.Z.; Kong, G.H. Effect of growth irradiance on stable carbon isotope ratio, intercellular CO2 concentration and water-use efficiency of two woody plants in a subtropical natural forest. J. Trop. Subtrop. Bot. 1995, 2, 77–82, (In Chinese with English Abstract). [Google Scholar]
- Feng, H.Y.; An, L.Z.; Wang, X.L. A review on effect of environmental factors on stable carbon isotope composition in plants. Chin. Bull. Bot. 2000, 17, 312–318, (In Chinese with English Abstract). [Google Scholar]
- Li, M.Q.; Shao, X.M.; Yin, Z.Y.; Xu, X.G. Tree-ring dating of the reshui-1 tomb in Dulan County, Qinghai Province, north-west China. PLoS ONE 2015, 10, e0133438. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Bian, J.J.; Ge, Q.S.; Hao, Z.X.; Yin, Y.H.; Liao, Y.M. The climate regionalization in China for 1981–2010. Chin. Sci. Bull. 2013, 58, 3088–3099, (In Chinese with English Abstract). [Google Scholar]
- Kohn, M.J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proc. Natl. Acad. Sci. USA 2010, 107, 19691–19695. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.A.; Han, J.M. Relations between δ13C values of C-3 plants in northwestern China and annual precipitation. Chin. J. Geol. 2001, 36, 494–499, (In Chinese with English abstract). [Google Scholar]
- Wang, G.A.; Han, J.M.; Liu, D.S. Carbon isotopic composition of C3 herbaceous plants in the loess region of northern China. Sci. Chin. 2003, 33, 555–556. (In Chinese) [Google Scholar]
- Williams, D.G.; Gempko, V.; Fravolini, A.; Leavitt, S.W.; Wall, G.W.; Kimball, B.A.; Pinter Jr, P.J.; LaMorte, R.; Ottman, M. Carbon isotope discrimination by Sorghum bicolor under CO2 enrichment and drought. New Phytol. 2001, 150, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Cabrera–Bosquet, L.; Sánchez, C.; Araus, J.L. How yield relates to ash content, Δ13C and Δ18O in maize grown under different water regimes. Ann. Bot. 2009, 104, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Tieszen, L.L.; Fagre, T. Carbon isotopic variability in modern and archaeological maize. J. Archaeol. Sci. 1993, 20, 25–40. [Google Scholar] [CrossRef]
- Reid Rachel, E.B.; Lalk, E.; Marshall, F.; Liu, X.Y. Carbon and nitrogen isotope variability in the seeds of two African millet species: Pennisetum glaucum and Eleusine coracana. Rapid Commun. Mass Spectrum. 2018, 32, 1693–1702. [Google Scholar] [CrossRef]
- Sanborn, L.H.; Reid Rachel, E.B.; Bradley Alexander, S.; Liu, X.Y. The effect of water availability on the carbon and nitrogen isotope composition of a C4 plant (pearl millet, Pennisetum glaucum). J. Archaeol. Sci.-Rep. 2021, 38, 103047. [Google Scholar] [CrossRef]
- Kohls, S.J.; Kessel, C.V.; Baker, D.; Grigal, D.F.; Lawrence, D.B. Assessment of N2 fixation and N cycling by Dryas along achronosequence within the forelands of the Athabasca Glacier, Canada. Soil Biol. Biochem. 1994, 26, 623–632. [Google Scholar] [CrossRef]
- Handley, L.L.; Austin, A.T.; Stewart, G.R.; Robinson, D.; Scrimgeour, C.M.; Raven, J.A.; Heaton, T.H.E.; Schmidt, S. The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust. J. Plant Physiol. 1999, 26, 185–199. [Google Scholar] [CrossRef]
- Liu, W.G.; Wang, Z. Modern plant-soil nitrogen isotopic composition and its response to environmental changes in the Loess Plateau. Chin. Sci. Bull. 2008, 53, 2917–2924. (In Chinese) [Google Scholar]
- Bogaard, A.; Heaton, T.H.; Poulton, P.R.; Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: Archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci. 2007, 34, 335–343. [Google Scholar] [CrossRef]
- Canti, M.G. An investigation of microscopic calcareous spherulites from herbivore dungs. J. Archaeol. Sci. 1997, 24, 219–231. [Google Scholar] [CrossRef]
- Evershed, R.P.; Bethell, P.H.; Reynolds, P.J.; Walsh, N.J. 5b-Stigmastanol and related 5b-stanols as biomarkers of manuring: Analysis of modern experimental material and assessment of the archaeological potential. J. Archaeol. Sci. 1997, 24, 485–495. [Google Scholar] [CrossRef]
- Wang, X.; Fuller, B.T.; Zhang, P.; Hu, S.; Hu, Y.; Shang, X. Millet manuring as a driving force for the Late Neolithic agricultural expansion of north China. Sci. Rep. 2018, 8, 5552. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gong, Y.; Zhang, G.W.; Wang, X.; Chen, T.; Hou, L.L. Grain in the Metropolis’ Granary on the east end of the Silk Road: Carbon and nitrogen stable isotopic analysis of the charred millet (Setaria italica) in the Taiguan Granary site of Northern Wei Dynasty in Datong. Quat. Sci. 2022, 42, 144–157, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Sponheimer, M.; Robinson, T.; Ayliffe, L.K.; Roeder, B.; Hammer, J.; Passey, B.H.; Adam, G.W.; Thure, E.C.; Maria, D.D.; Ehleringer, J.R. Nitrogen isotopes in mammalian herbivores: Hair δ15N values from a controlled feeding study. Int. J. Osteoarchaeol. 2003, 13, 80–87. [Google Scholar] [CrossRef]
- Hartman, G. Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology? Funct. Ecol. 2010, 25, 122–131. [Google Scholar] [CrossRef]
- Yao, J.Q.; Yang, Q.; Liu, Z.H.; Li, C.Z. Spatio-temporal change of precipitation in arid region of the Northwest China. Acta Ecologica Sinica 2015, 35, 5846–5855, (In Chinese with English Abstract). [Google Scholar]
- Deng, X.Y.; Liu, Y.; Liu, Z.H.; Yao, J.Q. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of Northwest China. Acta Ecologica Sinica 2017, 37, 2994–3008, (In Chinese with English Abstract). [Google Scholar]
- Styring, A.K.; Charles, M.; Fantone, F.; Hald, M.M.; Mcmahon, A.; Meadow, R.H.; Nicholls, G.K.; Patel, A.K.; Pitre, M.C.; Smith, A.; et al. Isotope evidence for agricultural extensification reveals how the world’s first cities were fed. Nat. Plants 2017, 3, 17076. [Google Scholar] [CrossRef]
- Hao, E.X. On fertilizer in tang Dynasty. Agricul. Archaeol. 2016, 4, 24–28, (In Chinese with English Abstract). [Google Scholar]
- Sheng, P.F.; Storozum, M.; Tian, X.H.; Wu, Y. Foodways on the Han Dynasty’s western frontier: Archeobotanical and isotopic investigations at Shichengzi, Xinjiang, China. Holocene 2020, 30, 1174–1185. [Google Scholar] [CrossRef]
- Marshall, F.; Reid, R.E.B.; Goldstein, S.; Storozum, M.; Wreschnig, A.; Hu, L.; Kiura, P.; Shahack-Gross, R.; Ambrose, S.H. Ancient herders enriched and restructured African grasslands. Nature 2018, 561, 387–390. [Google Scholar] [CrossRef]
- Yin, W.X. Animal husbandry studies in Northwest area in Sui and Tang period. J. Northwest Univ. Natl. (Philos. Soc. Sci.) 2009, 3, 46–62, (In Chinese with English Abstract). [Google Scholar]
- Hu, Z.Y. On Land Utilization in Ancient Times. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2009. (In Chinese with English Abstract). [Google Scholar]
- Su, J.H. Characteristics of ancient western oasis agriculture irrigation: Based on comparison between Shazhou and Xizhou of Tang dynasty. Res. Chin. Econ. Hist. 2015, 6, 72–79, (In Chinese with English Abstract). [Google Scholar]
- Du, H.B. Food Security during the Tang Dynasty. Ph.D. Thesis, Shaanxi Normal University, Xi’an, China, 2013. (In Chinese with English Abstract). [Google Scholar]
Species | Type | Number | Mean (mm) | SD | Range (mm) |
---|---|---|---|---|---|
Large broomcorn millet chaff | Length | 910 | 3.11 | 0.14 | 2.60–3.51 |
Width | 910 | 2.06 | 0.12 | 1.66–2.38 | |
Thickness | 910 | 1.71 | 0.13 | 1.32–2.24 | |
Small broomcorn millet chaff | Length | 909 | 3.18 | 0.18 | 2.65–3.62 |
Width | 909 | 1.63 | 0.15 | 1.11–2.01 | |
Thickness | 909 | 1.30 | 0.15 | 0.95–1.76 | |
Large foxtail millet chaff | Length | 904 | 2.33 | 0.15 | 1.71–2.78 |
Width | 904 | 1.67 | 0.10 | 1.35–1.94 | |
Thickness | 904 | 1.34 | 0.15 | 1.01–1.90 | |
Small foxtail millet chaff | Length | 910 | 2.36 | 0.19 | 1.76–2.90 |
Width | 910 | 1.34 | 0.12 | 0.95–1.66 | |
Thickness | 910 | 1.04 | 0.14 | 0.69–1.47 |
Species | Number | δ15N (‰) | δ13C (‰) | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Range | Mean | SD | Range | ||
Large broomcorn millet chaff | 15 | 17.3 | 0.2 | 17.0–17.7 | −12.5 | 0.3 | −13.0–−12.0 |
Small broomcorn millet chaff | 15 | 15.9 | 0.1 | 15.7–16.2 | −12.4 | 0.2 | −12.8–−12.0 |
Large foxtail millet chaff | 15 | 17.7 | 0.7 | 16.6–18.5 | −13.2 | 0.2 | −13.5–−12.9 |
Small foxtail millet chaff | 15 | 17.4 | 1.2 | 15.7–18.8 | −13.7 | 0.2 | −14.0–−13.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Lu, Y.; Yang, Y.; Wei, W.; Chen, G. Evaluating Water Fertilizer Coupling on the Variations in Millet Chaff Size during the Late Seventh Century in Northwest China: Morphological and Carbon and Nitrogen Isotopic Evidence from the Chashancun Cemetery. Sustainability 2022, 14, 3581. https://doi.org/10.3390/su14063581
Liu B, Lu Y, Yang Y, Wei W, Chen G. Evaluating Water Fertilizer Coupling on the Variations in Millet Chaff Size during the Late Seventh Century in Northwest China: Morphological and Carbon and Nitrogen Isotopic Evidence from the Chashancun Cemetery. Sustainability. 2022; 14(6):3581. https://doi.org/10.3390/su14063581
Chicago/Turabian StyleLiu, Bingbing, Yongxiu Lu, Yishi Yang, Wenyu Wei, and Guoke Chen. 2022. "Evaluating Water Fertilizer Coupling on the Variations in Millet Chaff Size during the Late Seventh Century in Northwest China: Morphological and Carbon and Nitrogen Isotopic Evidence from the Chashancun Cemetery" Sustainability 14, no. 6: 3581. https://doi.org/10.3390/su14063581
APA StyleLiu, B., Lu, Y., Yang, Y., Wei, W., & Chen, G. (2022). Evaluating Water Fertilizer Coupling on the Variations in Millet Chaff Size during the Late Seventh Century in Northwest China: Morphological and Carbon and Nitrogen Isotopic Evidence from the Chashancun Cemetery. Sustainability, 14(6), 3581. https://doi.org/10.3390/su14063581