Energy Balance, Productivity and Resource-Use Efficiency of Diverse Sustainable Intensification Options of Rainfed Lowland Rice Systems under Different Fertility Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Climate
2.2. Experiment Details
2.3. Crop Management Practices
2.4. Biometric Observations, Yield and Economics
2.5. Input–Output Energy Analysis and Sustainability
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect on Growth, Yield Attributes and Productivity of Rice
3.2. Residual Effect on Succeeding Rabi Crops
3.3. Effect of Inclusion of Pulses and Oilseeds in Rice Fallows on System Productivity
3.4. Effect of Inclusion of Pulses and Oilseeds in Rice Fallows on Production Efficiency and Profitability
3.5. Water-Use, Land-Use Efficiency and Sustainability
3.6. Energy Budgeting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLean, J.L.; Dawe, D.C.; Hardy, B.; Hettel, G.P. Rice Almanac; CABI Publishing: Wallingford, UK, 2002; p. 253. [Google Scholar]
- Bana, R.C.; Gupta, A.K.; Bana, R.S.; Shivay, Y.S.; Bamboriya, S.D.; Thakur, N.P.; Puniya, R.; Gupta, M.; Jakhar, S.R.; Kailash; et al. Zinc-Coated Urea for Enhanced Zinc Biofortification, Nitrogen Use Efficiency and Yield of Basmati Rice under Typic Fluvents. Sustainability 2021, 14, 104. [Google Scholar] [CrossRef]
- Singh, A.K.; Das, B.; Mali, S.S.; Bhavana, P.; Shinde, R.; Bhatt, B.P. Intensification of rice-fallow cropping systems in the Eastern Plateau region of India: Diversifying cropping systems and climate risk mitigation. Clim. Dev. 2019, 12, 791–800. [Google Scholar] [CrossRef]
- Bana, R.S.; Singh, D.; Nain, M.S.; Kumar, H.; Kumar, V.; Sepat, S. Weed control and rice yield stability studies across diverse tillage and crop establishment systems under on-farm environments. Soil Tillage Res. 2020, 204, 104729. [Google Scholar] [CrossRef]
- Singh, T.; Pun, K.B.; Saikia, K.; Satapathy, B.S. Improving Productivity of Rice Fallows through Intensification of Oilseed and Pulses in Shallow Lowlands of Assam. In Technological Options for Bringing Second Green Revolution in North East; ICAR-Agricultural Technology Application Research Institute: Umuam, Meghalaya, 2016; pp. 80–85. [Google Scholar]
- Kar, G.; Kumar, A. Evaluation of post-rainy season crops with residual soil moisture and different tillage methods in rice fallow of eastern India. Agric. Water Manag. 2009, 96, 931–938. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P.K.; Singh, A.K. Effect of green manuring on physicochemical properties of soil and productivity of rice. Oryza 2009, 46, 120–123. [Google Scholar]
- Prasad, R. Rice-wheat cropping system. Adv. Agron. 2005, 86, 285–339. [Google Scholar]
- Saharawat, Y.S.; Singh, B.; Malik, R.K.; Ladha, J.K.; Gathala, M.; Jat, M.L.; Kumar, V. Evaluation of alternative till-age and crop establishment methods in a rice–wheat rotation in North Western IGP. Field Crops Res. 2010, 116, 260–267. [Google Scholar] [CrossRef]
- Shibu, M.; Van Keulen, H.; Leffelaar, P.; Aggarwal, P. Soil carbon balance of rice-based cropping systems of the Indo-Gangetic Plains. Geoderma 2010, 160, 143–154. [Google Scholar] [CrossRef]
- NAAS. Improving Productivity of Rice Fallows; Policy Paper No. 64; National Academy of Agricultural Sciences: New Delhi, India, 2013; p. 16. [Google Scholar]
- Surekha, K.; Pavan Chandra Reddy, K. Contribution of crop residues to yield and nutrient uptake of irrigated rice (Oryza sativa) in rice-rice cropping system. Indian J. Agric. Sci. 2005, 75, 392–395. [Google Scholar]
- Singh, G.; Kumar, D.; Sharma, P. Effect of organics, biofertilizers and crop residue application on soil microbial activity in rice–wheat and rice-wheat mungbean cropping systems in the Indo-Gangetic plains. Cogent Geosci. 2015, 1, 1–14. [Google Scholar] [CrossRef]
- Faiz, M.A.; Bana, R.S.; Choudhary, A.K.; Laing, A.M.; Bansal, R.; Bhatia, A.; Bana, R.C.; Singh, Y.V.; Kumar, V.; Bamboriya, S.D.; et al. Zero Tillage, Residue Retention and System-Intensification with Legumes for Enhanced Pearl Millet Productivity and Mineral Biofortification. Sustainability 2022, 14, 543. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, B.; Timsina, J. Crop Residue Management for Nutrient Cycling and Improving Soil Productivity in Rice-Based Cropping Systems in the Tropics. Adv. Agron. 2005, 85, 269–407. [Google Scholar] [CrossRef]
- Singh, B.; Shan, Y.H.; Johnson-Beebout, S.E.; Yadvinder-Singh, S.; Buresh, R. Crop residue management for lowland rice-based cropping system in Asia. Adv. Agron. 2008, 98, 117–199. [Google Scholar]
- Huang, S.; Zeng, Y.; Wu, J.; Shi, Q.; Pan, X. Effect of crop residue retention on rice yield in China: A meta-analysis. Field Crops Res. 2013, 154, 188–194. [Google Scholar] [CrossRef]
- Choudhary, M.; Rana, K.S.; Bana, R.S.; Parihar, C.M.; Kantwa, S.R. Conservation agriculture practices and sul-phur fertilization effects on productivity and resource-use efficiency of rainfed mustard (Brassica juncea). Indian J. Agric. Sci. 2001, 91, 49–53. [Google Scholar]
- Peoples, M.; Swan, T.; Goward, L.; Hunt, J.; Li, G.; Harris, R.; Ferrier, D.; Browne, C.; Craig, S.; van Rees, H.; et al. Legume Effects on Soil N Dynamics—Comparisons of Crop Response to Legume and Fertilizer N. Grain Research and Development Corporation, Government of Australia. 2015. Available online: https://grdc.com.au/Research-and-Development/GRDC-Update%20Papers/2015/02/Legume%20ef-fects-on-soil-N-dynamics--comparisons-of-crop-response-to-legume-and%20fertiliserN%20#%20sthash.9ncTiq1C.dpuf (accessed on 9 January 2022).
- Bhattacharyya, P.N.; Goswami, M.P.; Bhattacharyya, L.H. Perspective of beneficial microbes in agriculture under changing climatic scenario: A review. J. Phytol. 2016, 8, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Zentner, R.P.; Walla, D.; Nagy, C.; Smith, E.; Young, D.; Miller, P.; Campbell, A.; McConkey, B.; Brandt, S.; Lafond, G.; et al. Economics of crop diversification and soil tillage opportunities in the Canadian Prairies. Agron. J. 2002, 94, 216–230. [Google Scholar] [CrossRef]
- Prasad, R. A pragmatic approach to increase pulse production in north India. Proc. Natl. Acad. Sci. India Sect. B-Biol. Sci. 2011, 81, 243–249. [Google Scholar]
- Devasenapathy, P.; Senthilkumar, G.; Shanmugam, P.M. Energy management in crop production. Indian J. Agron. 2009, 54, 80–90. [Google Scholar]
- Lal, B.; Panda, B.B.; Gautam, P.; Raja, R.; Singh, T.; Mohanty, S.; Shahid, M.; Tripathi, R.; Kumar, A.; Nayak, A.K. Input–Output Energy Analysis of Rainfed Rice-Based Cropping Systems in Eastern India. Agron. J. 2015, 107, 1750–1756. [Google Scholar] [CrossRef]
- Lal, B.; Gautam, P.; Panda, B.; Tripathi, R.; Shahid, M.; Bihari, P.; Guru, P.; Singh, T.; Meena, R.; Nayak, A. Identification of energy and carbon efficient cropping system for ecological sustainability of rice fallow. Ecol. Indic. 2020, 115, 106431. [Google Scholar] [CrossRef]
- Guggari, A.K.; Kalaghatagi, S.B. Effect of in situ moisture conservation techniques on pearl millet in medium black soil under dry land conditions. J. Farming Syst. Res. Dev. 2004, 10, 22–28. [Google Scholar]
- Pooniya, V.; Shivay, Y.S.; Rana, A.; Nain, L.; Prasanna, R. Enhancing soil nutrient dynamics and productivity of Basmati rice through residue incorporation and zinc fertilization. Eur. J. Agron. 2012, 41, 28–37. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, G.; Zhou, W.; Sun, J.; Wang, X.; He, P. Fatty-Acid Profiles and Enzyme Activities in Soil Particle-Size Fractions under Long-Term Fertilization. Soil Sci. Soc. Am. J. 2016, 80, 97–111. [Google Scholar] [CrossRef]
- Zhou, G.; Gao, S.; Lu, Y.; Liao, Y.; Nie, J.; Cao, W. Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil Tillage Res. 2019, 197, 104499. [Google Scholar] [CrossRef]
- Kumar, R.; Mahajan, G.; Srivastava, S.; Sinha, A. Green manuring: A boon for sustainable agriculture and pest man-agement—A review. Agric. Rev. 2014, 35, 196–206. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Xu, J.; Cao, K.; Wang, J.; Xu, C.; Cao, W. Green manure incorporation with reductions in chemical fertilizer inputs improves rice yield and soil organic matter accumulation. J. Soils Sediments 2020, 20, 2784–2793. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, J.S.; Upadhyay, P.K.; Hans, H. Rice fallows in the eastern India: Problems and prospects. Indian J. Agric. Sci. 2019, 89, 567–577. [Google Scholar]
- Baishya, A.; Gogoi, B.; Hazarika, J.; Hazarika, J.P.; Bora, A.S.; Das, A.K.; Borah, M.; Sutradhar, P. Maximizing system productivity and profitability through crop intensification and diversification with rice (Oryza sativa)-based cropping systems in acid soils of Assam. Indian J. Agron. 2016, 61, 274–280. [Google Scholar]
- Gill, M.S.; Pal, S.S.; Ahlawat, I.P.S. Approaches for sustainability of rice (Oryza sativa)–wheat (Triticum aestivum) cropping system in Indo-Gangetic plains of India—A review. Indian J. Agron. 2008, 53, 81–96. [Google Scholar]
- Chai, Q.; Qin, A.; Gan, Y.; Yu, A. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron. Sustain. Dev. 2013, 34, 535–543. [Google Scholar] [CrossRef]
- Lal, B.; Gautam, P.; Panda, B.B.; Raja, R.; Singh, T.; Tripathi, R.; Shahid, M.; Nayak, A.K. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India. PLoS ONE 2017, 12, e0175709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, D.; Shivay, Y.S.; Singh, Y.V.; Sharma, V.K.; Bhatia, A. Water Use and Soil Fertility under Rice–Wheat Cropping System in Response to Green Manuring and Zinc Nutrition. Commun. Soil Sci. Plant Anal. 2019, 50, 2836–2847. [Google Scholar] [CrossRef]
- Sultani, M.I.; Gill, M.A.; Anwar, M.M.; Athar, M. Evaluation of soil physical properties as influenced by various green manuring legumes and phosphorus fertilization under rain fed conditions. Int. J. Environ. Sci. Technol. 2007, 4, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Tuti, M.; Prakash, V.; Pandey, B.; Bhattacharyya, R.; Mahanta, D.; Bisht, J.; Kumar, M.; Mina, B.; Kumar, N.; Bhatt, J.; et al. Energy budgeting of colocasia-based cropping systems in the Indian sub-Himalayas. Energy 2012, 45, 986–993. [Google Scholar] [CrossRef]
Crop | Variety | Seed Rate (kg ha−1) | Crop Season | Nutrient Applied (kg ha−1) | Time of Application of Fertilizers | Weeding/Plant Protection |
---|---|---|---|---|---|---|
Sesbania green manure (GM) | Local seed | 50.0 | Pre kharif | - | GM crop buried two weeks before transplanting | - |
Rice residue incorporation (RRI) | - | - | - | - | RRI one month prior to transplanting 5 t ha−1 | - |
Rice | Naveen | 35.0 | Kharif | 80:40:40 (100% RDF) | 1/3 N + full P + 2/3 K as basal, 1/3 N at active tillering and 1/3 N + 1/3 K at panicle initiation | Pre-emergence application of Pretilachlor 1.0 L a.i. ha−1 |
Lentil | PL 406 | 40.0 | Rabi | Grown on residual nutrients of previous crop | ||
Linseed | T 397 | 15.0 | Rabi | Grown on residual nutrients of previous crop | ||
Rapeseed | TS 36 | 5.0 | Rabi | Grown on residual nutrients of previous crop |
Input | Sesbania Green Manuring | Rice Residue Incorporation | ||||||
---|---|---|---|---|---|---|---|---|
Rice Fallow | Rice Lentil | Rice Linseed | Rice Rapeseed | Rice Fallow | Rice Lentil | Rice Linseed | Rice Rapeseed | |
Seed of green manure crop (kg ha−1) | 50 | 50 | 50 | 50 | ||||
Green manure matter/rice residue (t ha−1) | 5.4 | 5.4 | 5.4 | 5.4 | 5 | 5 | 5 | 5 |
Nitrogen (100% N) (kg ha−1) | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
Phosphorus (kg ha−1) | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
Potassium (kg ha−1) | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
Seed (kg ha−1) | 35 | 75 | 75 | 40 | 35 | 75 | 75 | 40 |
Pesticides (kg ha−1) | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 |
Diesel (L ha−1) | 35 | 47 | 47 | 47 | 35 | 47 | 47 | 47 |
Tractor (h ha−1) | 12 | 18 | 18 | 18 | 12 | 18 | 18 | 18 |
Human labor (8 h d−1 ha−1) | ||||||||
Men | 105 | 135 | 139 | 145 | 105 | 135 | 139 | 145 |
Women | 82 | 102 | 108 | 110 | 82 | 102 | 108 | 110 |
Particulars | Unit | Energy Equivalent (MJ Unit−1) |
---|---|---|
A. Inputs | ||
Seed of green manure crop | kg | 14.70 |
Green manure dry matter | kg | 12.5 |
Rice residue incorporation | kg | 12.50 |
Nitrogen (N) | kg | 66.14 |
Phosphorus (P2O5) | kg | 12.44 |
Potassium (K2O) | kg | 11.15 |
Seed | kg | 14.70 |
Herbicides | kg | 238.00 |
Diesel | L | 56.31 |
Farm Machinery (Tractor) | h | 62.70 |
Men labor | h | 1.96 |
Women labor | h | 1.57 |
B. Output | ||
Seed yield of rice, lentil, linseed and rapeseed | kg | 17.00 |
Straw | kg | 12.50 |
Treatment | Plant Height (cm) | Tillers (m−2) | Spikelets Panicle−1 | Panicle Length (cm) | Panicle Weight (g) | Filled Grains Panicle−1 | Fertility (%) | Test Weight (g) | Straw Yield (kg ha−1) | Grain Yield (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|---|
Green manuring and rice residue management | ||||||||||
Green manuring | 124.1 A | 269.2 | 146.7 | 25.9 A | 3.94 | 146.2 A | 89.2 | 19.84 | 6086.9 | 5212.6 A |
Rice residue incorporation | 118.1 B | 252.4 | 135.0 | 24.9 B | 3.72 | 133.6 B | 87.4 | 19.79 | 5714.4 | 4896.5 B |
Tukey’s HSD at 5% | 1.44 | NS | NS | 0.42 | NS | 7.20 | NS | NS | NS | 104.89 |
Fertility levels | ||||||||||
Control | 118.3 | 242.4 C | 123.5 C | 24.1 C | 2.81 C | 120.2 C | 86.4 | 19.78 | 5313.3 C | 4464.8 C |
50% RDF | 120.5 | 254.4 BC | 141.8 B | 25.3 B | 3.58 BC | 139.1 B | 88.2 | 19.70 | 5718.3 BC | 4980.1 B |
75% RDF | 122.8 | 269.7 AB | 145.8 AB | 26.1 AB | 4.35 AB | 148.3 AB | 89.2 | 19.85 | 6146.1 AB | 5309.6 AB |
100% RDF | 122.8 | 276.8 A | 152.3 A | 26.3 A | 4.58 A | 152.1 A | 89.4 | 19.94 | 6425.0 A | 5463.6 A |
Tukey’s HSD at 5% | NS | 16.69 | 9.81 | 0.80 | 0.92 | 9.75 | NS | NS | 694.99 | 368.57 |
Treatment | Plant Stand (m−2) | Plant Height (cm) | Straw Yield (kg/ha) | Grain Yield (kg/ha) |
---|---|---|---|---|
Green manuring and rice residue management | ||||
Green manuring | 147.63 | 52.73 A | 819 | 382 A |
Rice residue incorporation | 127.55 | 51.32 B | 768 | 336 B |
Tukey’s HSD at 5% | NS | 0.51 | NS | 21.0 |
Fertility levels | ||||
Control | 122.92 B | 51.37 | 703 C | 307 C |
50% RDF | 133.52 B | 51.80 | 760 BC | 349 B |
75% RDF | 146.91 A | 51.88 | 831 AB | 382 A |
100% RDF | 147.02 A | 53.05 | 879 A | 400 A |
Tukey’s HSD at 5% | 12.07 | NS | 106.7 | 31.5 |
Succeeding Rabi crops | ||||
Lentil | 109.25 B | 29.24 C | 582 C | 375 A |
Linseed | 202.04 A | 50.73 B | 1051 A | 395 A |
Rapeseed | 101.48 B | 76.11 A | 746 B | 309 B |
Tukey’s HSD at 5% | 8.11 | 1.05 | 80.5 | 27.4 |
Succeeding Rabi Crops | Green Manuring | Rice Residue Incorporation |
---|---|---|
Lentil | 413 A | 336 CD |
Linseed | 416 A | 374 B |
Rapeseed | 318 D | 299 DE |
Tukey’s HSD at 5% | GM and RRI means at same or different succeeding crop | 38.8 |
Succeeding crop means at same or different GM and RRI | 37.1 |
Cropping System | Green Manuring | Rice Residue Incorporation |
---|---|---|
Rice Fallow | 5213 | 4896 |
Rice Lentil | 6339 | 5790 |
Rice Linseed | 6861 | 6466 |
Rice Rapeseed | 6141 | 5932 |
Tukey’s HSD at 5% | GM and RRI means at same or different cropping system | 261.4 |
Cropping system means at same or different GM and RRI condition | 221.1 |
Cropping System Fertility Level | Cropping Systems | |||
---|---|---|---|---|
Rice Fallow | Rice Lentil | Rice Linseed | Rice Rapeseed | |
Control | 4465 | 5529 | 6179 | 5408 |
50% RDF | 4980 | 6007 | 6431 | 6119 |
75% RDF | 5310 | 6157 | 6932 | 6410 |
100% RDF | 5464 | 6565 | 7111 | 6209 |
Tukey’s HSD at 5% | Fertility means at same or different cropping system | 393.4 | ||
Cropping system means at same or different fertility level | 312.7 |
Treatment | Rice Equivalent Yield (kg ha−1) | Production Efficiency (kg day−1 ha−1) | Net Return (INR ha−1) | B:C Ratio |
---|---|---|---|---|
Green manuring and rice residue management | ||||
Green manuring | 6138 A | 28.58 | 43,181 A | 1.94 A |
Rice residue incorporation | 5771 B | 27.22 | 36,185 B | 1.76 B |
Tukey’s HSD at 5% | 188.2 | NS | 2669 | 0.05 |
Fertility levels | ||||
Control | 5395 C | 25.14 B | 32,701 C | 1.73 C |
50% RDF | 5884 B | 28.09 A | 38,962 B | 1.84 B |
75% RDF | 6202 A | 28.82 A | 42,610 AB | 1.90 AB |
100% RDF | 6337 A | 29.55 A | 44,460 A | 1.93 A |
Tukey’s HSD at 5% | 286.1 | 2.23 | 4022 | 0.09 |
Succeeding Rabi crops | ||||
Rice Fallow | 5055 C | 24.76 D | 32,217 C | 1.78 C |
Rice Lentil | 6065 B | 27.65 C | 37,818 B | 1.77 C |
Rice Linseed | 6663 A | 30.13 A | 44,762 A | 1.90 B |
Rice Rapeseed | 6037 B | 29.06 A | 43,936 A | 1.96 A |
Tukey’s HSD at 5% | 156.4 | 1.35 | 2226 | 0.05 |
Treatment | Consumptive Water Use of Rabi Crops (mm ha–1) | System Consumptive Water Use (mm ha–1) | Water Use Efficiency (kg grain ha–1 mm) | Land Use Efficiency (%) | Sustainability Yield Index |
---|---|---|---|---|---|
Green manuring and rice residue management | |||||
Green manuring | 295.9 | 1331.4 | 4.84 | - | - |
Rice residue incorporation | 252.0 | 1287.5 | 4.71 | - | - |
Fertility levels | |||||
Control | 274.0 | 1309.5 | 4.36 | - | - |
50% RDF | 272.4 | 1307.9 | 4.73 | - | - |
75% RDF | 286.4 | 1321.9 | 4.92 | - | - |
100% RDF | 263.0 | 1298.5 | 5.11 | - | - |
Succeeding Rabi crops | |||||
Rice Fallow | - | 1035.5 | 4.88 | 32.88 | 0.80 |
Rice Lentil | 272.4 | 1307.9 | 4.63 | 61.64 | 0.82 |
Rice Linseed | 270.4 | 1305.9 | 5.10 | 64.38 | 0.84 |
Rice Rapeseed | 279.0 | 1314.5 | 4.59 | 56.16 | 0.86 |
Input | Sesbania Green Manuring | Rice Residue Incorporation | ||||||
---|---|---|---|---|---|---|---|---|
Rice Fallow | Rice Lentil | Rice Linseed | Rice Rapeseed | Rice Fallow | Rice Lentil | Rice Linseed | Rice Rapeseed | |
Seed of Green manure crop | 735 | 735 | 735 | 735 | ||||
Green manure matter/rice residue | 67,500 | 67,500 | 67,500 | 67,500 | 62,500 | 62,500 | 62,500 | 62,500 |
Nitrogen (100% N) | 5291 | 5291 | 5291 | 5291 | 5291 | 5291 | 5291 | 5291 |
Phosphorus | 498 | 498 | 498 | 498 | 498 | 498 | 498 | 498 |
Potassium | 446 | 446 | 446 | 446 | 446 | 446 | 446 | 446 |
Seed | 515 | 1103 | 1103 | 588 | 515 | 1103 | 1103 | 588 |
Pesticides | 238 | 238 | 238 | 476 | 238 | 238 | 238 | 476 |
Diesel | 1971 | 2647 | 2647 | 2647 | 1971 | 2647 | 2647 | 2647 |
Tractor | 752 | 1129 | 1129 | 1129 | 752 | 1129 | 1129 | 1129 |
Human labor | ||||||||
Men | 1646 | 2117 | 2180 | 2274 | 1646 | 2117 | 2180 | 2274 |
Women | 1030 | 1281 | 1356 | 1382 | 1030 | 1281 | 1356 | 1382 |
Treatment | Input Energy | Output Energy | Net Energy | Energy Ratio | Human Energy Profitability | Energy Profitability | Energy Productivity | Energy Intensity |
---|---|---|---|---|---|---|---|---|
MJ ha–1 | kg MJ−1 | MJ INR–1 | ||||||
Rice residue management | ||||||||
Green manuring | 76,793 | 182,657 | 105,864 | 2.38 | 787 | 1.38 | 0.080 | 1.68 |
Rice residue incorporation | 70,720 | 171,292 | 100,572 | 2.42 | 758 | 1.42 | 0.082 | 1.49 |
Fertility levels | ||||||||
Control | 70,250 | 157,972 | 87,722 | 2.25 | 690 | 1.25 | 0.077 | 1.56 |
50% RDF | 73,367 | 172,415 | 99,048 | 2.35 | 753 | 1.35 | 0.080 | 1.59 |
75% RDF | 74,926 | 185,035 | 110,110 | 2.47 | 808 | 1.47 | 0.083 | 1.58 |
100% RDF | 76,484 | 192,477 | 115,992 | 2.52 | 841 | 1.52 | 0.083 | 1.60 |
Succeeding Rabi crops | ||||||||
Rice Fallow | 72,477 | 163,493 | 91,016 | 2.26 | 886 | 1.26 | 0.070 | 1.75 |
Rice Lentil | 74,260 | 178,064 | 103,804 | 2.40 | 759 | 1.40 | 0.082 | 1.51 |
Rice Linseed | 74,276 | 186,305 | 112,029 | 2.51 | 765 | 1.51 | 0.090 | 1.49 |
Rice Rapeseed | 74,014 | 180,037 | 106,023 | 2.43 | 716 | 1.43 | 0.082 | 1.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, T.; Bana, R.S.; Satapathy, B.S.; Lal, B.; Yogi, A.K.; Singh, R. Energy Balance, Productivity and Resource-Use Efficiency of Diverse Sustainable Intensification Options of Rainfed Lowland Rice Systems under Different Fertility Scenarios. Sustainability 2022, 14, 3657. https://doi.org/10.3390/su14063657
Singh T, Bana RS, Satapathy BS, Lal B, Yogi AK, Singh R. Energy Balance, Productivity and Resource-Use Efficiency of Diverse Sustainable Intensification Options of Rainfed Lowland Rice Systems under Different Fertility Scenarios. Sustainability. 2022; 14(6):3657. https://doi.org/10.3390/su14063657
Chicago/Turabian StyleSingh, Teekam, Ram Swaroop Bana, Bhabani Sankar Satapathy, Banwari Lal, Akshay Kumar Yogi, and Raj Singh. 2022. "Energy Balance, Productivity and Resource-Use Efficiency of Diverse Sustainable Intensification Options of Rainfed Lowland Rice Systems under Different Fertility Scenarios" Sustainability 14, no. 6: 3657. https://doi.org/10.3390/su14063657
APA StyleSingh, T., Bana, R. S., Satapathy, B. S., Lal, B., Yogi, A. K., & Singh, R. (2022). Energy Balance, Productivity and Resource-Use Efficiency of Diverse Sustainable Intensification Options of Rainfed Lowland Rice Systems under Different Fertility Scenarios. Sustainability, 14(6), 3657. https://doi.org/10.3390/su14063657