Influencing Factors of the Continuous Use of a Knowledge Payment Platform—Fuzzy-Set Qualitative Comparative Analysis Based on Triadic Reciprocal Determinism
Abstract
:1. Introduction
2. Theoretical Background
2.1. Continued Use of Knowledge Payment Platforms
2.2. Triadic Reciprocal Determinism
3. Methods
3.1. Fuzzy-Set Qualitative Comparative Analysis (fsQCA)
3.2. Outcome and Casual Conditions
3.2.1. Causal Conditions
3.2.2. Outcome
3.3. Data
3.4. Reliability and Validity Tests
3.5. Data Calibration
4. Results
4.1. Analysis of Necessary Conditions
4.2. Configurational Analysis
4.2.1. Configuration Analysis of Continuous Use Intention
4.2.2. Configuration Analysis of Continuous Use Behavior
4.3. Robustness Test
5. Discussion
5.1. Practical Implications
5.2. Research Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lambrecht, A.; Misra, K. Fee or Free: When Should Firms Charge for Online Content? Manag. Sci. 2017, 63, 1150–1165. [Google Scholar] [CrossRef] [Green Version]
- Qi, T.; Wang, T.; Ma, Y.; Zhou, X. Knowledge payment research: Status quo and key issues. Int. J. Crowd Sci. 2019, 3, 117–137. [Google Scholar] [CrossRef] [Green Version]
- Pavlou, P.A. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. Int. J. Electron. Comm. 2003, 7, 101–134. [Google Scholar]
- Fait, M.; Scorrano, P.; Mastroleo, G.; Cillo, V.; Scuotto, V. A novel view on knowledge sharing in the agri-food sector. J. Knowl. Manag. 2019, 23, 953–974. [Google Scholar] [CrossRef]
- Shen, X.L.; Cheung, C.M.; Lee, M.K. What leads students to adopt information from W ikipedia? An empirical investigation into the role of trust and information usefulness. Br. J. Educ. Technol. 2013, 44, 502–517. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- DeLone, W.H.; McLean, E.R. Information systems success: The quest for the dependent variable. Inf. Syst. Res. 1992, 3, 60–95. [Google Scholar] [CrossRef] [Green Version]
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Bhattacherjee, A.; Perols, J.; Sanford, C. Information Technology Continuance: A Theoretic Extension and Empirical Test. J. Comput. Inf. Syst. 2008, 49, 17–26. [Google Scholar] [CrossRef]
- Limayem, M.; Hirt, S.G.; Cheung, C.M.K. How habit limits the predictive power of intention: The case of information systems continuance. MIS Q. 2007, 31, 705–737. [Google Scholar] [CrossRef] [Green Version]
- Bonsón, E.; Escobar, T.; Ratkai, M. Testing the inter-relations of factors that may support continued use intention: The case of Facebook. Soc. Sci. Inf. 2014, 53, 293–310. [Google Scholar] [CrossRef]
- Hsu, M.H.; Chang, C.M.; Chuang, L.W. Understanding the determinants of online repeat purchase intention and moderating role of habit: The case of online group-buying in Taiwan. Int. J. Inf. Manag. 2015, 35, 45–56. [Google Scholar] [CrossRef]
- Kim, K.H. Understanding the consistent use of internet health information. Online Inf. Rev. 2010, 34, 875–891. [Google Scholar] [CrossRef]
- Kim, H.-J.; Choi, H.; Kim, J. A comparative study of the effects of low and high uncertainty avoidance on continuance behavior. In International Comparisons of Information Communication Technologies: Advancing Applications; IGI Global: Hershey, PA, USA, 2012. [Google Scholar]
- Zhao, Y.; Deng, S.L.; Zhou, R.X. Understanding Mobile Library Apps Continuance Usage in China: A Theoretical Framework and Empirical Study. Libri 2015, 65, 161–173. [Google Scholar] [CrossRef]
- Bandura, A. Social cognitive theory in cultural context. Appl. Psychol. 2002, 51, 269–290. [Google Scholar] [CrossRef]
- Cialdini, R.B.; Kallgren, C.A.; Reno, R.R. A focus theory of normative conduct: A theoretical refinement and reevaluation of the role of norms in human behavior. In Advances in Experimental Social Psychology; Elsevier: Amsterdam, The Netherlands, 1991; Volume 24, pp. 201–234. [Google Scholar]
- Fiss, P.C. Building Better Causal Theories: A Fuzzy Set Approach to Typologies in Organization Research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef] [Green Version]
- Ragin, C.C. Redesigning Social Inquiry: Fuzzy Sets and Beyond; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Kan, A.K.S.; Adegbite, E.; El Omari, S.; Abdellatif, M. On the use of qualitative comparative analysis in management. J. Bus. Res. 2016, 69, 1458–1463. [Google Scholar]
- Greckhamer, T.; Furnari, S.; Fiss, P.C.; Aguilera, R.V. Studying configurations with qualitative comparative analysis: Best practices in strategy and organization research. Strateg. Organ. 2018, 16, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Fainshmidt, S.; Witt, M.A.; Aguilera, R.V.; Verbeke, A. The contributions of qualitative comparative analysis (QCA) to international business research. J. Int. Bus. Stud. 2020, 51, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Kraus, S.; Ribeiro-Soriano, D.; Schussler, M. Fuzzy-set qualitative comparative analysis (fsQCA) in entrepreneurship and innovation research—The rise of a method. Int. Entrep. Manag. J. 2018, 14, 15–33. [Google Scholar] [CrossRef]
- Shipley, M.F.; Johnson, M.; Pointer, L.; Yankov, N. A fuzzy attractiveness of market entry (FAME) model for market selection decisions. J. Oper. Res. Soc. 2013, 64, 597–610. [Google Scholar] [CrossRef]
- Rihoux, B.; Ragin, C.C. Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques; Sage: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Misangyi, V.F.; Acharya, A.G. Substitutes or Complements? A Configurational Examination of Corporate Governance Mechanisms. Acad. Manag. J. 2014, 57, 1681–1705. [Google Scholar] [CrossRef] [Green Version]
- Furnari, S.; Crilly, D.; Misangyi, V.F.; Greckhamer, T.; Fiss, P.C.; Aguilera, R. Capturing Causal Complexity: Heuristics for Configurational Theorizing. Acad. Manag. Rev. 2021, 46, 778–799. [Google Scholar] [CrossRef]
- Douglas, E.J.; Shepherd, D.A.; Prentice, C. Using fuzzy-set qualitative comparative analysis for a finer-grained understanding of entrepreneurship. J. Bus. Ventur. 2020, 35, 105970. [Google Scholar] [CrossRef]
- Schneider, C.Q.; Wagemann, C. Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Zeithaml, V.A. Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Sheth, J.N.; Newman, B.I.; Gross, B.L. Why we buy what we buy: A theory of consumption values. J. Bus. Res. 1991, 22, 159–170. [Google Scholar] [CrossRef]
- Sweeney, J.C.; Soutar, G.N. Consumer perceived value: The development of a multiple item scale. J. Retail. 2001, 77, 203–220. [Google Scholar] [CrossRef]
- Petrick, J.F. Development of a multi-dimensional scale for measuring the perceived value of a service. J. Leis. Res. 2002, 34, 119–134. [Google Scholar] [CrossRef]
- Bhattacherjee, A. An empirical analysis of the antecedents of electronic commerce service continuance. Decis. Support Syst. 2001, 32, 201–214. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Q.; Davison, R.M.; Hua, Z. What drives trust transfer? The moderating roles of seller-specific and general institutional mechanisms. Int. J. Electron. Commer. 2015, 20, 261–289. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Kim, D.J.; Ferrin, D.L.; Rao, H.R. A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decis. Support Syst. 2008, 44, 544–564. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, attitude, intention, and behavior: An introduction to theory and research. Philos. Rhetor. 1977, 10, 177–188. [Google Scholar]
- DeLone, W.H.; McLean, E.R. The DeLone and McLean model of information systems success: A ten-year update. J. Manag. Inf. Syst. 2003, 19, 9–30. [Google Scholar]
- Alruwaie, M.; El-Haddadeh, R.; Weerakkody, V. Citizens’ continuous use of eGovernment services: The role of self-efficacy, outcome expectations and satisfaction. Gov. Inf. Q. 2020, 37, 101485. [Google Scholar] [CrossRef]
- Alruwaie, M.; El-Haddadeh, R.; Weerakkody, V. A Framework for Evaluating Citizens’ Expectations and Satisfaction Toward Continued Intention to Use E-Government Services. In Proceedings of the International Conference on Electronic Government, Kristiansand, Norway, 3–6 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 273–286. [Google Scholar]
- Lee, Y.; Kwon, O. Intimacy, familiarity and continuance intention: An extended expectation-confirmation model in web-based services. Electron. Commer. Res. Appl. 2011, 10, 342–357. [Google Scholar] [CrossRef]
- Lin, W.S.; Wang, C.H. Antecedences to continued intentions of adopting e-learning system in blended learning instruction: A contingency framework based on models of information system success and task-technology fit. Comput. Educ. 2012, 58, 88–99. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Zhao, K.X.; Stylianou, A. The impacts of information quality and system quality on users’ continuance intention in information-exchange virtual communities: An empirical investigation. Decis. Support Syst. 2013, 56, 513–524. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Kanaani, F.; Elahi, S. A model for measuring e-learning systems success in universities. Expert Syst. Appl. 2012, 39, 10959–10966. [Google Scholar] [CrossRef]
- Roca, J.C.; Chiu, C.M.; Martinez, F.J. Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. Int. J. Hum.-Comput. Stud. 2006, 64, 683–696. [Google Scholar] [CrossRef] [Green Version]
- Murphy, P.E.; Enis, B.M. Classifying products strategically. J. Mark. 1986, 50, 24–42. [Google Scholar] [CrossRef]
- Tan, Y.-H.; Thoen, W. Toward a generic model of trust for electronic commerce. Int. J. Electron. Commer. 2000, 5, 61–74. [Google Scholar]
- Carter, L.; Belanger, F. The utilization of e-government services: Citizen trust, innovation and acceptance factors. Inf. Syst. J. 2005, 15, 5–25. [Google Scholar] [CrossRef]
- Xu, D.M.; Huang, W.W.; Wang, H.Q.; Heales, J. Enhancing e-learning effectiveness using an intelligent agent-supported personalized virtual learning environment: An empirical investigation. Inf. Manag. 2014, 51, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.J.; Barry, T.E.; Dacin, P.A.; Gunst, R.F. Spreading the word: Investigating antecedents of consumers’ positive word-of-mouth intentions and behaviors in a retailing context. J. Acad. Mark. Sci. 2005, 33, 123–138. [Google Scholar] [CrossRef]
- Landis, D.; Triandis, H.C.; Adamopoulos, J. Habit and behavioral intentions as predictors of social behavior. J. Soc. Psychol. 1978, 106, 227–237. [Google Scholar] [CrossRef]
- Pappas, I.O.; Woodside, A.G. Fuzzy-set Qualitative Comparative Analysis (fsQCA): Guidelines for research practice in Information Systems and marketing. Int. J. Inf. Manag. 2021, 58, 102310. [Google Scholar] [CrossRef]
- Fainshmidt, S.; Wenger, L.; Pezeshkan, A.; Mallon, M.R. When do Dynamic Capabilities Lead to Competitive Advantage? The Importance of Strategic Fit. J. Manag. Stud. 2018, 56, 758–787. [Google Scholar] [CrossRef]
- Du, Y.; Kim, P.H. One size does not fit all: Strategy configurations, complex environments, and new venture performance in emerging economies. J. Bus. Res. 2021, 124, 272–285. [Google Scholar] [CrossRef]
- Campbell, J.T.; Sirmon, D.G.; Schijven, M. Fuzzy Logic and the Market: A Configurational Approach to Investor Perceptions of Acquisition Announcements. Acad. Manag. J. 2016, 59, 163–187. [Google Scholar] [CrossRef]
- Jacqueminet, A.; Durand, R. Ups and Downs: The Role of Legitimacy Judgment Cues in Practice Implementation. Acad. Manag. J. 2020, 63, 1485–1507. [Google Scholar] [CrossRef]
- Wu, J.; An, W.W.; Zheng, X.; Zhang, J.Q. How Business Model Designs Influence Firm Growth in a Transforming Economy: A Configurational Perspective. Manag. Organ. Rev. 2021, 17, 226–253. [Google Scholar] [CrossRef]
- White, L.; Lockett, A.; Currie, G.; Hayton, J. Hybrid Context, Management Practices and Organizational Performance: A Configurational Approach. J. Manag. Stud. 2021, 58, 718–748. [Google Scholar] [CrossRef]
- Xie, X.; Wang, H. How can open innovation ecosystem modes push product innovation forward? An fsQCA analysis. J. Bus. Res. 2020, 108, 29–41. [Google Scholar] [CrossRef]
- Waldkirch, M.; Kammerlander, N.; Wiedeler, C. Configurations for corporate venture innovation: Investigating the role of the dominant coalition. J. Bus. Ventur. 2021, 36, 106137. [Google Scholar] [CrossRef]
- Leppänen, P.T.; McKenny, A.F.; Short, J.C. Qualitative comparative analysis in entrepreneurship: Exploring the approach and noting opportunities for the future. In Standing on the Shoulders of Giants: Traditions and Innovations in Research Methodology; Emerald Publishing Limited: Bingley, UK, 2019. [Google Scholar]
Variable | Questions | Literature Sources |
---|---|---|
CUI | 5 | Lin and Wang [43], Zheng, et al. [44], Bhattacherjee [34] |
CUB | 5 | Bhattacherjee [34] |
PQ | 10 | DeLone and McLean [39], Hassanzadeh, et al. [45]; Kim, et al. [14], Roca, et al. [46] |
PV | 10 | Davis [6], Murphy and Enis [47] |
TR | 3 | Yao-Hua Tan [48], Carter and Belanger [49], Pavlou [3] |
SN | 4 | Fishbein and Ajzen [38] |
SA | 4 | Xu, et al. [50] |
HA | 3 | Brown, et al. [51], Landis, et al. [52], Limayem, et al. [10] |
Attribute | Classification | Ratio (%) |
Gender | Male | 54.4 |
Female | 45.6 | |
Age | Under 20 years | 5.2 |
20–29 years | 28.5 | |
30–39 years | 35.0 | |
40–49 years | 28.0 | |
Education | College education or below | 26.2 |
Undergraduate | 53.9 | |
Master’s | 10.8 | |
Ph.D. students | 9.2 | |
Disposable income (CNY) | Lower than 2000 | 13.1 |
2001–4000 | 10.5 | |
4001–6000 | 10.3 | |
6001–8000 | 37.9 | |
Above 8000 | 28.2 | |
Occupation | Students | 19.7 |
Employees of state-owned enterprises | 10.1 | |
Foreign/joint venture employees | 18.9 | |
Private enterprise | 30.3 | |
Individual/boss | 1.3 | |
Freelance work | 7.3 |
Outcome: CUI | Outcome: CUB | |||
---|---|---|---|---|
Conditions | Consistency | Coverage | Consistency | Coverage |
PQ | 0.844079 | 0.870409 | 0.704076 | 0.757658 |
PV | 0.813500 | 0.886981 | 0.682416 | 0.776461 |
TR | 0.829845 | 0.807985 | 0.741017 | 0.752919 |
HA | 0.818723 | 0.829229 | 0.707161 | 0.747428 |
SN | 0.868390 | 0.843412 | 0.740560 | 0.750583 |
SA | 0.839616 | 0.839656 | 0.727080 | 0.758781 |
~PQ | 0.633261 | 0.576668 | 0.610206 | 0.579873 |
~PV | 0.672540 | 0.584444 | 0.625294 | 0.567051 |
~TR | 0.599580 | 0.576056 | 0.568490 | 0.569973 |
~HA | 0.628493 | 0.581636 | 0.602706 | 0.582063 |
~SN | 0.609630 | 0.587157 | 0.586606 | 0.589588 |
~SA | 0.641500 | 0.600691 | 0.603835 | 0.590047 |
Configurations | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|
PQ | ● | ● | ● | ● | ● | ⊗ | |
PV | • | • | • | • | ⊗ | ||
TR | • | ⊗ | ● | • | |||
HA | ⊗ | ⊗ | • | • | |||
SA | ⊗ | ● | ● | ● | ● | ||
SN | • | • | Ⓧ | • | |||
CV | 0.577 | 0.750 | 0.457 | 0.557 | 0.713 | 0.482 | 0.594 |
NCV | 0.006 | 0.023 | 0.005 | 0.001 | 0.006 | 0.007 | 0.004 |
CS | 0.966 | 0.946 | 0.978 | 0.976 | 0.967 | 0.985 | 0.982 |
OCV | 0.802 | ||||||
OCS | 0.925 |
Configurations | B1 | B2 | B3 | B4 | B5 | B6 |
---|---|---|---|---|---|---|
PQ | ● | ● | ● | ● | ⊗ | ⊗ |
PV | • | ⊗ | • | ⊗ | • | |
TR | ⊗ | ● | • | |||
HA | ⊗ | ⊗ | ⊗ | ⊗ | ● | ● |
SA | ⊗ | ⊗ | • | • | • | |
SN | • | • | ⊗ | • | ⊗ | |
CV | 0.419 | 0.344 | 0.436 | 0.382 | 0.432 | 0.417 |
NCV | 0.005 | 0.000 | 0.012 | 0.006 | 0.017 | 0.015 |
CS | 0.876 | 0.906 | 0.876 | 0.892 | 0.885 | 0.890 |
OCV | 0.546 | |||||
OCS | 0.827 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, H.; Li, Q. Influencing Factors of the Continuous Use of a Knowledge Payment Platform—Fuzzy-Set Qualitative Comparative Analysis Based on Triadic Reciprocal Determinism. Sustainability 2022, 14, 3696. https://doi.org/10.3390/su14063696
Huo H, Li Q. Influencing Factors of the Continuous Use of a Knowledge Payment Platform—Fuzzy-Set Qualitative Comparative Analysis Based on Triadic Reciprocal Determinism. Sustainability. 2022; 14(6):3696. https://doi.org/10.3390/su14063696
Chicago/Turabian StyleHuo, Hong, and Quanxi Li. 2022. "Influencing Factors of the Continuous Use of a Knowledge Payment Platform—Fuzzy-Set Qualitative Comparative Analysis Based on Triadic Reciprocal Determinism" Sustainability 14, no. 6: 3696. https://doi.org/10.3390/su14063696
APA StyleHuo, H., & Li, Q. (2022). Influencing Factors of the Continuous Use of a Knowledge Payment Platform—Fuzzy-Set Qualitative Comparative Analysis Based on Triadic Reciprocal Determinism. Sustainability, 14(6), 3696. https://doi.org/10.3390/su14063696