European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovalenko, N.; Hutsol, T.; Kovalenko, V.; Glowacki, S.; Kokovikhin, S.; Dubik, V.; Mudragel, O.; Kuboń, M.; Tomaszewska-Górecka, W. Hydrogen production analysis: Prospects for Ukraine. Agric. Eng. 2021, 25, 99–114. [Google Scholar] [CrossRef]
- Kuboń, M.; Latawiec, A.E.; Scarano, F.R.; Drosik, A.; Strassburg, B.B.; Grzebieniowski, W.; Bastos, J.G. Searching for solutions to the conflict over Europe's oldest forest. Conserv. Biol. 2019, 33, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Latawiec, A.E.; Koryś, A.; Koryś, K.A.; Kuboń, M.; Sadowska, U.; Gliniak, M.; Sikora, J.; Drosik, A.; Niemiec, M.; Klimek-Kopyra, A. Analysis of the Economic Potential Trough Biochar Use for Soybean Production in Poland. Agronomy 2021, 11, 2108. [Google Scholar] [CrossRef]
- The European Green Deal. Communication from the Commission; European Commission: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN (accessed on 1 November 2021).
- Sikora, J.; Niemiec, M.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Kuboń, M.; Komorowska, M. The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage. Energies 2020, 13, 2063. [Google Scholar] [CrossRef] [Green Version]
- Kuboń, M.; Niemiec, M.; Klimek-Kopyra, A.; Gliniak, M.; Jakub Sikora, J.; Sadowska, U.; Latawiec, A.E.; Kobyłecki, R.; Zarzycki, R.; Kacprzak, A.; et al. Assessment of Greenhouse Gas Emissions in Soybean Cultivation Fertilized with Biochar from Various Utility Plants. Agronomy 2021, 11, 2224. [Google Scholar] [CrossRef]
- Lutsiak, V.; Hutsol, T.; Kovalenko, N.; Kwaśniewski, D.; Kowalczyk, Z.; Belei, S.; Marusei, T. Enterprise Activity Modeling in Walnut Sector in Ukraine. Sustainability 2021, 13, 13027. [Google Scholar] [CrossRef]
- Rashidov, N.; Chowaniak, M.; Niemiec, M.; Mamurovich, G.S.; Gufronovich, M.J.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Komorowska, M. Assessment of the Multiannual Impact of the Grape Training System on GHG Emissions in North Tajikistan. Energies 2021, 14, 6160. [Google Scholar] [CrossRef]
- Gródek-Szostak, Z.; Suder, M.; Kusa, R.; Szeląg-Sikora, A.; Duda, J.; Niemiec, M. Renewable Energy Promotion Instruments Used by Innovation Brokers in a Technology Transfer Network. Case Study of the Enterprise Europe Network. Energies 2020, 13, 5752. [Google Scholar] [CrossRef]
- A Farm to Fork Strategy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee, and the Committee of the Regions; European Commission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 (accessed on 1 November 2021).
- Factsheet: From Farm to Fork: Our Food, Our Health, Our Planet, Our Future; European Commission: Brussels, Belgium, 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/fs_20_908 (accessed on 1 November 2021).
- Kostornoi, S.; Yatsukh, O.; Tsap, V.; Demchenko, I.; Zakharova, N.; Klymenko, M.; Labenko, O.; Baranovska, V.; Daniel, Z.; Tomaszewska-Górecka, W. Tax Burden of Agricultural Enterprises in Ukraine. Agric. Eng. 2021, 25, 157–169. [Google Scholar] [CrossRef]
- Niemiec, M.; Komorowska, M.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Gródek-Szostak, Z.; Kapusta-Duch, J. Risk assessment for social practices in small vegetable farms in Poland as a tool for the optimization of quality management systems. Sustainability 2019, 11, 3913. [Google Scholar] [CrossRef] [Green Version]
- A European Union Carbon Border Adjustment Mechanism: Implications for Developing Countries; United Nations Conference on Trade and Development: Geneva, Switzerland, 2021. Available online: https://unctad.org/webflyer/european-union-carbon-border-adjustment-mechanism-implications-developing-countries (accessed on 2 November 2021).
- Kovalenko, N.; Kovalenko, V.; Hutsol, T.; Ievstafiieva, Y.; Polishchuk, A. Economic Efficiency and Internal Competitive Advantages of Grain Production in the Central Region of Ukraine. Agric. Eng. 2021, 25, 51–62. [Google Scholar] [CrossRef]
- Larina, Y.; Galchynska, J.; Kucheruk, P.; Zghurska, O.; Ortina, G.; Al-Nadzhar, F.; Marusei, T.; Kuboń, M.; Dzieniszewski, U. Estimation of the Domestic Agricultural Sector Potential for the Growth of Energy Cultures for Bioenergy Fuel Production. Agric. Eng. 2021, 25, 73–82. [Google Scholar] [CrossRef]
- Tryhuba, A.; Hutsol, T.; Glowacki, S.; Tryhuba, I.; Tabor, S.; Kwasniewski, D.; Kwasniewski, D.; Yermakov, S. Forecasting Quantitative Risk Indicators of Investors in Projects of Biohydrogen Production from Agricultural Raw Materials. Processes 2021, 9, 258. [Google Scholar] [CrossRef]
- Romaniuk, W.; Mazur, K.; Borek, K.; Borusiewicz, A.; Wardal, W.; Tabor, S.; Kuboń, M. Biomass Energy Technologies from Innovative Dairy Farming Systems. Processes 2021, 9, 335. [Google Scholar] [CrossRef]
- Tryhuba, A.; Bashynsky, O.; Hutsol, T.; Rozkosz, A.; Prokopova, O. Justification of Parameters of the Energy Supply System of Agricultural Enterprises with Using Wind Power Installations. E3S Web Conf. 2020, 154, 6001. [Google Scholar] [CrossRef] [Green Version]
- Tryhuba, A.; Hutsol, T.; Kuboń, M.; Tryhuba, I.; Komarnitskyi, S.; Tabor, S.; Kwaśniewski, D.; Mudryk, K.; Faichuk, O.; Hohol, T.; et al. Taxonomy and Stakeholder Risk Management in Integrated Projects of the European Green Deal. Energies 2022, 15, 2015. [Google Scholar] [CrossRef]
- Siddi, M. The European Green Deal: Assessing Its Current State and Future Implementation; FIIA Working Paper 114; Finnish Institute of International Affairs: Helsinki, Finland, 2020; Available online: https://www.fiia.fi/en/publication/the-europeangreen-deal (accessed on 2 November 2021).
- Dupré, M. European Trade Policy and the Green Deal. Green Eur. J. 2020. Available online: https://www.greeneuropeanjournal.eu/european-trade-policy[M2]-and-the-green-deal (accessed on 2 November 2021).
- Pietrzyck, K.; Jarzębowski, S.; Petersen, B. Exploring Sustainable Aspects Regarding the Food Supply Chain, Agri-Food Quality Standards, and Global Trade: An Empirical Study among Experts from the European Union and the United States. Energies 2021, 14, 5987. [Google Scholar] [CrossRef]
- Grübler, J.; Stöllinger, R.; Tondl, G. Are EU Trade Agreements in Line with the European Green Deal? Available online: https://wiiw.ac.at/are-eu-trade-agreements-in-line-with-the-european-green-deal-n-484.html (accessed on 2 November 2021).
- Kettunen, M.; Bodin, E.; Davey, E.; Gionfra, S.; Charveriat, C. An EU Green Deal for Trade Policy and the Environment: Aligning Trade with Climate and Sustainable Development Objectives; Institute for European Environmental Policy (IEEP): Brussels, Belgium; London, UK, 2020; Available online: https://eu.boell.org/en/2020/02/06/eu-green-deal-trade-policy-and-environment (accessed on 2 November 2021).
- Schebesta, H.; Candel, J.J.L. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 2020, 1, 586–588. [Google Scholar] [CrossRef]
- Schrauwen, A. Geopolitical Commission, a European Green Deal and Trade. Leg. Issues Econ. Integr. 2020, 47, 1–7. Available online: https://hdl.handle.net/11245.1/95dd4684-e0f4-4177-a6b4-0bdd393b4a35 (accessed on 3 November 2021).
- Grimm, S.; Reiners, W.; Helwig, N.; Siddi, M.; Mourier, L. The Global Dimension of the European Green Deal: The EU as a Green Leader? The Multinational Development Policy Dialogue, KAS: Brussels, Belgium, 2021; Available online: https://www.die-gdi.de/en/others-publications/article/the-global-dimension-of-the-european-green-deal-the-eu-as-a-green-leader/ (accessed on 3 November 2021).
- Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal—More Than Climate Neutrality. Intereconomics 2021, 56, 99–107. [Google Scholar] [CrossRef]
- Fuchs, R.; Brown, C.; Rounsevell, M. Europe’s Green Deal offshores environmental damage to other nations. Nature 2020, 586, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, A. Why are the United States so Afraid of the Green Deal? Examination of an American Attempt at Rough Misinformation. 7 December 2020. Available online: https://www.agriculture-strategies.eu/en/2021/01/why-are-the-united-states-so-afraid-of-the-green-deal-2/ (accessed on 10 November 2021).
- Beckman, J.; Ivanic, M.; Jelliffe, J.L.; Baquedano, F.G.; Scott, S.G. Economic and Food Security Impacts of Agricultural Input Reduction Under the European Union Green Deal’s Farm to Fork and Biodiversity Strategies; EB-30; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2020. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=997409 (accessed on 12 November 2021).
- Sihlobo, W.; Kapuya, T. The EU’s Green Deal: Opportunities, Threats and Risks for South African Agriculture. 29 October 2021. Available online: https://theconversation.com/the-eus-green-deal-opportunities-threats-and-risks-for-south-african-agriculture-170811 (accessed on 14 November 2021).
- United Nations Conference on Trade and Development. UNCTADSTAT. 2021. Available online: https://unctadstat.unctad.org/en/RcaRadar.html (accessed on 5 November 2021).
- Kovalyov, V.V.; Volkova, O.N. Analiz Hozyaistvennoy Deyatelnosti Predpriyatia; Infra-M: Moscow, Russia, 2007; p. 424. [Google Scholar]
- World Trade Statistical Review. 2020. Available online: https://www.wto.org/english/res_e/statis_e/wts2020_e/wts2020chapter06_e.pdf (accessed on 5 November 2021).
- Eurostat. 2021. Available online: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 5 November 2021).
- European Commission. Agri-Food Trade Statistical Factsheet. European Union—China. Directorate-General for Agriculture and Rural Development. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/farming/documents/agrifood-china-region_en.pdf (accessed on 7 November 2021).
- World Trade Organization STATS. 2021. Available online: https://timeseries.wto.org/ (accessed on 8 November 2021).
- The European Green Deal Sets out how to Make Europe the First Climate-Neutral Continent by 2050, Boosting the Economy, Improving People’s Health and Quality of Life, Caring for Nature, and Leaving no one behind; European Commission: Brussels, Belgium, 2019; Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_19_6691 (accessed on 8 November 2021).
- Australian Trade and Investment Commission; Australian Government. Insight—The limited impact of the European Union’s Carbon Border Adjustment Mechanism on Australian Agriculture. 2021. Available online: https://www.austrade.gov.au/news/insights/the-limited-impact-of-the-european-union-s-carbon-border-adjustment-mechanism-on-australian-agriculture (accessed on 9 November 2021).
- Kovalenko, N.; Perederiy, N.K.; Labenko, O.; Faichuk, O.; Faichuk, O. Bioenergy sustainable development: Achieving the balance between social and economic aspects. E3S Web Conf. 2020, 154, 7008. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QV (accessed on 11 November 2021).
- Leitão, N.C.; Balogh, J.M. The impact of intra-industry trade on carbon dioxide emissions: The case of the European Union. Agric. Econ. 2020, 66, 203–214. [Google Scholar] [CrossRef]
- Faichuk, O.M. The relationship between GHG emissions and agricultural land productivity in the EU member states and Ukraine. Bioeconomics Agrar[M3] . Bus. 2021, 2, 48–57. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, F.; Huang, Z.G.; Chen, S.; Wang, X.K. Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China. J. Appl. Ecol. 2016, 27, 2875–2883. [Google Scholar]
- Audsley, E.; Stacey, K.; Parsons, D.J.; Williams, A.G. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use; Cranfield University: Cranfield, UK, 2009; 20p. [Google Scholar]
- Szelag-Sikora, A.; Niemiec, M.; Sikora, J.; Chowaniak, M. Possibilities of Designating Swards of Grasses and Small-Seed Legumes from Selected Organic Farms in Poland for Feed. In Proceedings of the IX International Scientific Symposium Farm Machinery and Processes Management in Sustainable Agriculture, Lublin, Poland, 22–24 November 2017; pp. 365–370. [Google Scholar]
- Chai, R.; Ye, X.; Ma, C.; Wang, Q.; Tu, R.; Zhang, L.; Gao, H. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance Manag. 2019, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Lu, X.; Zhuang, M.; Shi, G.; Hu, C.; Wang, S.; Hao, J. China’s greenhouse gas emissions for cropping systems from 1978–2016. Sci. Data 2021, 8, 171. [Google Scholar] [CrossRef]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
no | Country | Export of Agricultural Products, Million USD (XAI) | Total Exports of All Products, Million USD (ΣjϵpXAj) | The World’s Export of Agricultural Products, Million USD (XWI) | The World’s Total Export of All Products, Million USD (ΣjϵpXWj) | Revealed Comparative Advantage Index (RCAAI) |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
EU-28 | 640,755 | 5,825,085 | × | × | 1.17 | |
1 | Brazil | 89,098 | 225,383 | × | × | 4.22 |
2 | USA | 164,803 | 135,950 | × | × | 12.93 |
3 | Norway | 13,814 | 102,799 | × | × | 1.43 |
4 | China | 81,676 | 2,499,457 | × | × | 0.35 |
5 | Turkey | 20,284 | 180,833 | × | × | 1.20 |
6 | Argentina | 38,999 | 65,116 | × | × | 6.39 |
7 | Switzerland | 9,836 | 313,934 | × | × | 0.33 |
8 | Ukraine | 22,900 | 50,066 | × | × | 4.88 |
9 | Morocco | 6394 | 29,132 | × | × | 2.34 |
10 | Côte d’Ivoire | 8062 | 12,629 | × | × | 6.81 |
11 | Vietnam | 29,943 | 264,268 | × | × | 1.21 |
12 | India | 37,371 | 324,340 | × | × | 1.23 |
13 | Peru | 10,826 | 47,690 | × | × | 2.42 |
14 | South Africa | 11,285 | 90,016 | × | × | 1.34 |
15 | Chile | 23,051 | 68,763 | × | × | 3.57 |
16 | Ecuador | 11,835 | 22,329 | × | × | 5.65 |
17 | Thailand | 42,982 | 246,269 | × | × | 1.86 |
18 | New Zealand | 29,343 | 39,517 | × | × | 7.92 |
19 | Canada | 65,045 | 446,585 | × | × | 1.55 |
20 | Russia | 33,722 | 419,850 | × | × | 0.86 |
21 | Colombia | 7360 | 39,489 | × | × | 1.99 |
22 | Costa Rica | 4687 | 11,712 | × | × | 4.27 |
23 | Ghana | 3871 | 15,668 | × | × | 2.63 |
24 | Iceland | 2471 | 5223 | × | × | 5.04 |
25 | Mexico | 39,746 | 460,704 | × | × | 0.92 |
26 | Indonesia | 42,953 | 167,683 | × | × | 2.73 |
27 | Serbia | 3792 | 19,630 | × | × | 2.06 |
28 | Egypt | 5592 | 28,993 | × | × | 2.06 |
World | × | × | 1,783,648 | 19,019,026 | × |
Variables | Correlations (Spreadsheet1) Marked Correlations Are Significant at p < 0.05000 n = 28 (Casewise Deletion of Missing Data) | |||||
---|---|---|---|---|---|---|
Means | Std.Dev. | Emissions Carbon Dioxide per Agricultural Land, Tonnes per Hectare | Pesticides Use per Area of Cropland, kg/ha | Fertilisers (Nutrient) Use per Area of Cropland, kg/ha | Soil nutrient Budget per Cropland Area, kg/ha | |
Emissions carbon dioxide equivalent per agricultural land, tonnes per hectare | 2.11 | 1.88 | 1.00 | 0.05 | 0.59 | 0.45 |
Pesticides use per area of cropland, kg/ha | 3.97 | 4.91 | 0.05 | 1.00 | 0.47 | 0.33 |
Fertilisers (nutrient) use per area of cropland, kg/ha | 142.92 | 98.64 | 0.59 | 0.47 | 1.00 | 0.31 |
Soil nutrient budget per cropland area, kg/ha | 110.16 | 162.06 | 0.45 | 0.33 | 0.31 | 1.00 |
Variables | t-Value | df | p | F-Ratio | p |
---|---|---|---|---|---|
Variances | Variances | ||||
Emissions carbon dioxide equivalent per agricultural land, tonnes per hectare vs. Pesticides use per area of cropland, kg/ha | 1.868 | 54 | 0.067 | 6.799 | 0.000 |
Emissions carbon dioxide per agricultural land, tonnes per hectare vs. Fertilisers (nutrient) use per area of cropland, kg/ha | 7.552 | 54 | 0.000 | 2746.776 | 0.000 |
Emissions carbon dioxide per agricultural land, tonnes per hectare vs. soil nutrient budget per cropland area, kg/ha | 3.527 | 54 | 0.000 | 7414.992 | 0.000 |
Variables | Regression Summary | |||||
---|---|---|---|---|---|---|
b | Std.Err. | β | Std.Err. | t (25) | p-Value | |
Intercept | 0.386 | 0.505 | 0.764 | 0.452 | ||
Fertilisers (nutrient) use per area of cropland, kg/ha | 0.492 | 0.160 | 0.009 | 0.003 | 3.087 | 0.005 |
Soil nutrient budget per cropland area, kg/ha | 0.301 | 0.160 | 0.003 | 0.002 | 1.887 | 0.071 |
no | Countries | Emissions CO2eg per Agricultural Land, Tonnes per Hectare (X1) | Fertilisers(Nutrient) Use per Area of Cropland, kg/ha (X2) |
---|---|---|---|
1 | Brazil | 2.19 | 260.50 |
2 | USA | 0.96 | 124.35 |
3 | Norway | 5.21 | 210.01 |
4 | China | 1.28 | 350.50 |
5 | Turkey | 1.30 | 106,77 |
6 | Argentina | 1.25 | 61.60 |
7 | Switzerland | 3.86 | 162.78 |
8 | Ukraine | 0.71 | 63.43 |
9 | Morocco | 0.51 | 52.30 |
10 | Côte d’Ivoire | 0.29 | 22.69 |
11 | Vietnam | 6.14 | 233.00 |
12 | India | 4.22 | 171.10 |
13 | Peru | 1,11 | 89.31 |
14 | South Africa | 0.32 | 61.37 |
15 | Chile | 0.68 | 277.92 |
16 | Ecuador | 2.36 | 155.08 |
17 | Thailand | 3.33 | 94.79 |
18 | New Zealand | 4.19 | 113.54 |
19 | Canada | 1.00 | 105.04 |
20 | Russia | 0.45 | 22.26 |
21 | Colombia | 1.35 | 110.66 |
22 | Costa Rica | 2.39 | 268.99 |
23 | Ghana | 0.81 | 35.84 |
24 | Iceland | 0.35 | 117.68 |
25 | Mexico | 1.04 | 97.56 |
26 | Indonesia | 2.90 | 107.22 |
27 | Serbia | 1.67 | 110.11 |
28 | Egypt | 7.34 | 415.31 |
no | Countries | Zx1 | Zx4 |
---|---|---|---|
1 | Brazil | 0.04 | 1.21 |
2 | USA | −0.63 | −0.19 |
3 | Norway | 1.68 | 0.69 |
4 | China | −0.45 | 2.14 |
5 | Turkey | −0.44 | −0.37 |
6 | Argentina | −0.46 | −0.84 |
7 | Switzerland | 0.94 | 0.21 |
8 | Ukraine | −0.76 | −0.82 |
9 | Morocco | −0.87 | −0.94 |
10 | Côte d’Ivoire | −0.99 | −1.24 |
11 | Vietnam | 2.18 | 0.93 |
12 | India | 1.14 | 0.29 |
13 | Peru | −0.54 | −0.55 |
14 | South Africa | −0.97 | −0.84 |
15 | Chile | −0.78 | 1.39 |
16 | Ecuador | 0.13 | 0.13 |
17 | Thailand | 0.66 | −0.50 |
18 | New Zealand | 1.12 | −0.30 |
19 | Canada | −0.61 | −0.39 |
20 | Russia | −0.90 | −1.25 |
21 | Colombia | −0.42 | −0.33 |
22 | Costa Rica | 0.15 | 1.30 |
23 | Ghana | −0.71 | −1.11 |
24 | Iceland | −0.96 | −0.26 |
25 | Mexico | −0.58 | −0.47 |
26 | Indonesia | 0.42 | −0.37 |
27 | Serbia | −0.24 | −0.34 |
28 | Egypt | 2.83 | 2.81 |
no | Countries | (Z1 − Ze)2 | (Z2 − Ze)2 | Rij | Rank |
---|---|---|---|---|---|
1 | Côte d’Ivoire | 0.00 | 0.00 | 0.00 | 1 |
2 | Russia | 0.01 | 0.00 | 0.01 | 2 |
3 | Ghana | 0.08 | 0.02 | 0.10 | 3 |
4 | Morocco | 0.01 | 0.10 | 0.11 | 4 |
5 | South Africa | 0.00 | 0.16 | 0.16 | 5 |
6 | Ukraine | 0.05 | 0.18 | 0.23 | 6 |
7 | Argentina | 0.27 | 0.16 | 0.44 | 7 |
8 | Peru | 0.20 | 0.48 | 0.68 | 8 |
9 | Mexico | 0.16 | 0.60 | 0.77 | 9 |
10 | Canada | 0.15 | 0.73 | 0.88 | 10 |
11 | Iceland | 0.00 | 0.97 | 0.97 | 11 |
12 | Turkey | 0.30 | 0.76 | 1.07 | 12 |
13 | Colombia | 0.33 | 0.83 | 1.16 | 13 |
14 | USA | 0.13 | 1.11 | 1.24 | 14 |
15 | Serbia | 0.56 | 0.82 | 1.38 | 15 |
16 | Indonesia | 2.00 | 0.77 | 2.77 | 16 |
17 | Ecuador | 1.26 | 1.88 | 3.14 | 17 |
18 | Thailand | 2.71 | 0.56 | 3.27 | 18 |
19 | New Zealand | 4.47 | 0.89 | 5.36 | 19 |
20 | Switzerland | 3.74 | 2.10 | 5.84 | 20 |
21 | India | 4.52 | 2.36 | 6.88 | 21 |
22 | Chile | 0.04 | 6.97 | 7.01 | 22 |
23 | Brazil | 1.06 | 6.05 | 7.11 | 23 |
24 | Costa Rica | 1.29 | 6.49 | 7.78 | 24 |
25 | Norway | 7.11 | 3.76 | 10.87 | 25 |
26 | China | 0.29 | 11.48 | 11.77 | 26 |
27 | Vietnam | 10.05 | 4.73 | 14.78 | 27 |
28 | Egypt | 14.58 | 16.47 | 31.04 | 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faichuk, O.; Voliak, L.; Hutsol, T.; Glowacki, S.; Pantsyr, Y.; Slobodian, S.; Szeląg-Sikora, A.; Gródek-Szostak, Z. European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU. Sustainability 2022, 14, 3712. https://doi.org/10.3390/su14073712
Faichuk O, Voliak L, Hutsol T, Glowacki S, Pantsyr Y, Slobodian S, Szeląg-Sikora A, Gródek-Szostak Z. European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU. Sustainability. 2022; 14(7):3712. https://doi.org/10.3390/su14073712
Chicago/Turabian StyleFaichuk, Oleksandr, Lesia Voliak, Taras Hutsol, Szymon Glowacki, Yuriy Pantsyr, Sergii Slobodian, Anna Szeląg-Sikora, and Zofia Gródek-Szostak. 2022. "European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU" Sustainability 14, no. 7: 3712. https://doi.org/10.3390/su14073712
APA StyleFaichuk, O., Voliak, L., Hutsol, T., Glowacki, S., Pantsyr, Y., Slobodian, S., Szeląg-Sikora, A., & Gródek-Szostak, Z. (2022). European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU. Sustainability, 14(7), 3712. https://doi.org/10.3390/su14073712