Interpolated Stand Properties of Urban Forest Parks Account for Posted Facial Expressions of Visitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Tree Inventory
2.2. Sampling and Analyses of Soil Chemical Properties
2.3. Objective Urban Park Selection
- (i)
- All facial organs (eyes, nose, mouth, etc.) were fully shown in the photo.
- (ii)
- Facial area was accepted as being digitally decorated only when limit (i) was not violated.
- (iii)
- Subjects had typical facial characteristics of East Asia residents.
2.4. Facial Recognition and Analysis
2.5. Interpolation Prediction Using Inventory Data
2.6. Statistical Analysis
3. Results
3.1. Socio-Economic States of Regions for Tree Inventory
3.2. Forest Structure from Tree Inventory
3.3. Chemical Properties of Forest Stand Soils from Tree Inventory
3.4. Heavy Metal Concentration in Forest Stand Soils from Tree Inventory
3.5. Principal Component Analysis on Parameters from Tree Inventory
3.6. Interpolation Using Tree Inventory Data
3.7. Posted Facial Expressions of People in Objective Parks
3.8. Relationship Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruebner, O.; Rapp, M.A.; Adli, M.; Kluge, U.; Galea, S.; Heinz, A. Cities and Mental Health. Dtsch. Arztebl. Int. 2017, 114, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Vujcic, M.; Tomicevic-Dubljevic, J.; Grbic, M.; Lecic-Tosevski, D.; Vukovic, O.; Toskovic, O. Nature based solution for improving mental health and well-being in urban areas. Environ. Res. 2017, 158, 385–392. [Google Scholar] [CrossRef]
- Van den Bosch, M.; Ode Sang, Å. Urban natural environments as nature-based solutions for improved public health—A systematic review of reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, F.; Massetti, L.; Calaza-Martínez, P.; Cariñanos, P.; Dobbs, C.; Ostoić, S.K.; Marin, A.M.; Pearlmutter, D.; Saaroni, H.; Šaulienė, I.; et al. Effects of the COVID-19 pandemic on the use and perceptions of urban green space: An international exploratory study. Urban For. Urban Green. 2020, 56, 126888. [Google Scholar] [CrossRef]
- Sundara Rajoo, K.; Singh Karam, D.; Abdu, A.; Rosli, Z.; James Gerusu, G. Addressing psychosocial issues caused by the COVID-19 lockdown: Can urban greeneries help? Urban For. Urban Green. 2021, 65, 127340. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.L.; McHale, M.R.; Jennings, V.; Marquet, O.; Hipp, J.A.; Leung, Y.F.; Floyd, M.F. Relationships between Characteristics of Urban Green Land Cover and Mental Health in US Metropolitan Areas. Int. J. Environ. Res. Public Health 2018, 15, 340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vujcic, M.; Tomicevic-Dubljevic, J. Urban forest benefits to the younger population: The case study of the city of Belgrade, Serbia. For. Policy Econ. 2018, 96, 54–62. [Google Scholar] [CrossRef]
- Song, M.K.; Bang, K.S.; Kim, S.; Lee, G.; Jeong, Y. Effects of an Urban Forest-Based Health Promotion Program on Children Living in Group Homes. J. Psychosoc. Nurs. Ment. Health Serv. 2020, 58, 18–29. [Google Scholar] [CrossRef]
- Subiza-Pérez, M.; Hauru, K.; Korpela, K.; Haapala, A.; Lehvävirta, S. Perceived Environmental Aesthetic Qualities Scale (PEAQS)—A self-report tool for the evaluation of green-blue spaces. Urban For. Urban Green. 2019, 43, 126383. [Google Scholar] [CrossRef]
- Aerts, R.; Honnay, O.; Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 2018, 127, 5–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. A User’s Guide to the Self Reporting Questionnaire (SRQ); World Health Organization, Division of Mental Health: Geneva, Switzerland, 1994. [Google Scholar]
- Wei, H.; Hauer, R.J.; Chen, X.; He, X. Facial expressions of visitors in forests along the urbanization gradient: What can we learn from selfies on social networking services? Forests 2019, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Hauer, R.J.; Guo, S. Daytime dynamic of spontaneous expressions of pedestrians in an urban forest park. Urban For. Urban Green. 2021, 65, 127326. [Google Scholar] [CrossRef]
- Wei, H.; Ma, B.; Hauer, R.J.; Liu, C.; Chen, X.; He, X. Relationship between environmental factors and facial expressions of visitors during the urban forest experience. Urban For. Urban Green. 2020, 53, 126699. [Google Scholar] [CrossRef]
- Tomkins, S.S.; McCarter, R. What and where are the primary affects? Some evidence for a theory. Percept. Mot. Ski. 1964, 18, 119–158. [Google Scholar] [CrossRef]
- Park, S.; Lee, K.; Lim, J.A.; Ko, H.; Kim, T.; Lee, J.I.; Kim, H.; Han, S.J.; Kim, J.S.; Park, S.; et al. Differences in Facial Expressions between Spontaneous and Posed Smiles: Automated Method by Action Units and Three-Dimensional Facial Landmarks. Sensors 2020, 20, 1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Hauer, R.J.; He, X. A forest experience does not always evoke positive emotion: A pilot study on unconscious facial expressions using the face reading technology. For. Policy Econ. 2021, 123, 102365. [Google Scholar] [CrossRef]
- Sasaki, W.; Nishiyama, Y.; Okoshi, T.; Nakazawa, J. Investigating the occurrence of selfie-based emotional contagion over social network. Soc. Netw. Anal. Min. 2021, 11, 8. [Google Scholar] [CrossRef]
- Liu, P.; Liu, M.; Xia, T.; Wang, Y.; Guo, P. The Relationship between Landscape Metrics and Facial Expressions in 18 Urban Forest Parks of Northern China. Forests 2021, 12, 1619. [Google Scholar] [CrossRef]
- Mao, B.; Liang, F.; Li, Z.; Zheng, W. Microclimates Potentially Shape Spatial Distribution of Facial Expressions for Urban Forest Visitors: A Regional Study of 30 Parks in North China. Sustainability 2022, 14, 1648. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; Chen, Z.; Guo, M.; Guo, P. Optimizing Urban Forest Landscape for Better Perceptions of Positive Emotions. Forests 2021, 12, 1691. [Google Scholar] [CrossRef]
- Liu, P.; Liu, M.; Xia, T.; Wang, Y.; Wei, H. Can Urban Forest Settings Evoke Positive Emotion? Evidence on Facial Expressions and Detection of Driving Factors. Sustainability 2021, 13, 8687. [Google Scholar] [CrossRef]
- Wei, H.; Hauer, R.J.; Zhai, X. The relationship between the facial expression of people in university campus and host-city variables. Appl. Sci.-Basel 2020, 10, 1474. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Zhang, M.; Hitchman, G.; Qiu, J.; Liu, Y. When you smile, you become happy: Evidence from resting state task-based fMRI. Biol. Psychol. 2014, 103, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Wei, H.; Hauer, R.J.; Liu, P. Facial expressions of Asian people exposed to constructed urban forests: Accuracy validation and variation assessment. PLoS ONE 2021, 16, e0253141. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Zhang, Y.; Chen, J. Preference to home landscape: Wildness or neatness? Landsc. Urban Plan. 2011, 99, 1–8. [Google Scholar] [CrossRef]
- Oldfield, S.F. Botanic gardens and the conservation of tree species. Trends Plant Sci. 2009, 14, 581–583. [Google Scholar] [CrossRef] [PubMed]
- An, B.; Wang, D.; Liu, X.; Guan, H.; Wei, H.; Ren, Z. The effect of environmental factors in urban forests on blood pressure and heart rate in university students. J. For. Res. 2019, 24, 27–34. [Google Scholar] [CrossRef]
- Zhou, C.; Yan, L.; Yu, L.; Wei, H.; Guan, H.; Shang, C.; Chen, F.; Bao, J. Effect of short-term forest bathing in urban parks on perceived anxiety of young-adults: A pilot study in Guiyang, Southwest China. Chin. Geogr. Sci. 2019, 29, 139–150. [Google Scholar]
- Ren, Z.; He, X.; Zheng, H.; Zhang, D.; Yu, X.; Shen, G.; Guo, R. Estimation of the Relationship between Urban Park Characteristics and Park Cool Island Intensity by Remote Sensing Data and Field Measurement. Forests 2013, 4, 868–886. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Wei, H.; He, X.; Ren, Z.; An, B. The tree-species-specific effect of forest bathing on perceived anxiety alleviation of young-adults in urban forests. Ann. For. Res. 2017, 60, 327–341. [Google Scholar] [CrossRef]
- Dong, Y.; Ren, Z.; Fu, Y.; Hu, N.; Guo, Y.; Jia, G.; He, X. Decrease in the residents’ accessibility of summer cooling services due to green space loss in Chinese cities. Environ. Int. 2022, 158, 107002. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; He, X.; Pu, R.; Zheng, H. The impact of urban forest structure and its spatial location on urban cool island intensity. Urban Ecosyst. 2018, 21, 863–874. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, H.; Fu, Y.; Xiao, L.; Dong, Y. Effects of urban street trees on human thermal comfort and physiological indices: A case study in Changchun city, China. J. For. Res. 2021. Online first. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Wei, H.; Xia, T.; Liu, M. Geographical Distribution and Driving Meteorological Forces of Facial Expressions of Visitors in Urban Wetland Parks in Eastern China. Front. Earth Sci.-Hydrosphere 2022. Provisionally accepted. Available online: https://www.frontiersin.org/articles/10.3389/feart.2022.781204/abstract (accessed on 11 March 2022).
- Datta, D.; Deb, S. Forest structure and soil properties of mangrove ecosystems under different management scenarios: Experiences from the intensely humanized landscape of Indian Sunderbans. Ocean. Coast. Manag. 2017, 140, 22–33. [Google Scholar] [CrossRef]
- Peña-Claros, M.; Poorter, L.; Alarcón, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, M.J.; Leaño, C.; Licona, J.C.; Pariona, W.; et al. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest. Biotropica 2012, 44, 276–283. [Google Scholar] [CrossRef]
- Pulford, I.D.; Watson, C. Phytoremediation of heavy metal-contaminated land by trees—A review. Environ. Int. 2003, 29, 529–540. [Google Scholar] [CrossRef]
- Menon, M.; Hermle, S.; Günthardt-Goerg, M.S.; Schulin, R. Effects of heavy metal soil pollution and acid rain on growth and water use efficiency of a young model forest ecosystem. Plant Soil 2007, 297, 171–183. [Google Scholar] [CrossRef]
- Ma, B.; Hauer, R.J.; Östberg, J.; Koeser, A.K.; Wei, H.; Xu, C. A global basis of urban tree inventories: What comes first the inventory or the program. Urban For. Urban Green. 2021, 60, 127087. [Google Scholar] [CrossRef]
- Kielbaso, J.J. Management of Urban Forests in the United States. In Ecology, Planning, and Management of Urban Forests: International Perspectives; Carreiro, M.M., Song, Y.-C., Wu, J., Eds.; Springer New York: New York, NY, USA, 2008; pp. 240–258. [Google Scholar]
- Miller, R.W.; Hauer, R.J.; Werner, L.P. Urban Forestry: Planning and Managing Urban Greenspaces, 3rd ed.; Waveland Press, Inc.: Long Grove, IL, USA, 2015. [Google Scholar]
- Morgenroth, J.; Östberg, J.; Konijnendijk van den Bosch, C.; Nielsen, A.B.; Hauer, R.; Sjöman, H.; Chen, W.; Jansson, M. Urban tree diversity—Taking stock and looking ahead. Urban For. Urban Green. 2016, 15, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Corona, P.; Agrimi, M.; Baffetta, F.; Barbati, A.; Chiriaco, M.V.; Fattorini, L.; Pompei, E.; Valentini, R.; Mattioli, W. Extending large-scale forest inventories to assess urban forests. Environ. Monit. Assess. 2012, 184, 1409–1422. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.R.; Cunningham, P.; Donovan, G.H. Urban forests and social inequality in the Pacific Northwest. Urban For. Urban Green. 2016, 16, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Li, Z. Spatial analysis of mainland cities’ carbon emissions of and around Guangdong-Hong Kong-Macao Greater Bay area. Sustain. Cities Soc. 2020, 61, 102299. [Google Scholar] [CrossRef]
- Zhang, C.B.; Huang, L.N.; Wong, M.H.; Zhang, J.T.; Zhai, C.J.; Lan, C.Y. Characterization of soil physico-chemical and microbial parameters after revegetation near Shaoguan Pb/Zn smelter, Guangdong, PR China. Water Air Soil Pollut. 2006, 177, 81–101. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Q.; Yu, H.; Huang, X.; Li, F. Interactive effects of multiple heavy metal(loid)s on their bioavailability in cocontaminated paddy soils in a large region. Sci. Total Environ. 2020, 708, 135126. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Liao, B.; Shu, W.; Yang, B.; Lan, C. Pollution Assessment and Potential Sources of Heavy Metals in Agricultural Soils around Four Pb/Zn Mines of Shaoguan City, China. Soil Sediment Contam. Int. J. 2015, 24, 76–89. [Google Scholar] [CrossRef]
- Yan, Q.; Li, J. Park Green Space Planning and Design in ShaoGuan Based on Environmental Psychology. In Proceedings of the International Federation of Landscape Architects Asia-Pacific Region Annual Conference, IFLA Asia Pacif Region, Shanghai, China, 22–24 October 2012; London Science Publishing Ltd.: Shanghai, China, 2013; pp. 151–155. [Google Scholar]
- People’ Government of Shaoguan City. Nature and Geography of Shaoguan. Available online: https://www.sg.gov.cn/sq/sgjj/lnmj/content/post_1350291.html (accessed on 15 February 2022).
- People’ Government of Shaoguan City. Economic State of Shaoguan. Available online: https://www.sg.gov.cn/sq/sgjj/lnmj/content/post_1350290.html (accessed on 6 August 2021).
- Leung, H.M.; Duzgoren-Aydin, N.S.; Au, C.K.; Krupanidhi, S.; Fung, K.Y.; Cheung, K.C.; Wong, Y.K.; Peng, X.L.; Ye, Z.H.; Yung, K.K.L.; et al. Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): Bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environ. Sci. Pollut. Res. 2017, 24, 9079–9088. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.G.; Li, X.C.; Qi, Y.; Zhao, Z.Y.; Sun, D.X.; Wei, H.X. Depth-Dependent C-N-P Stocks and Stoichiometry in Ultisols Resulting from Conversion of Secondary Forests to Plantations and Driving Forces. Forests 2021, 12, 1300. [Google Scholar] [CrossRef]
- Statistics of Shaoguan City. Statistics of Shaoguan City in 2021. Available online: https://www.sg.gov.cn/bmpdlm/sgstjj/tjsj/ (accessed on 15 February 2022).
- Zhen, Z.; Wang, S.B.; Luo, S.W.; Ren, L.; Liang, Y.Q.; Yang, R.C.; Li, Y.T.; Zhang, Y.Q.; Deng, S.Q.; Zou, L.N.; et al. Significant Impacts of Both Total Amount and Availability of Heavy Metals on the Functions and Assembly of Soil Microbial Communities in Different Land Use Patterns. Front. Microbiol. 2019, 10, 2293. [Google Scholar] [CrossRef] [PubMed]
- Liu, G. Soil Physical and Chemical Analysis, Description of Soil Profiles; Standard Press of China: Beijing, China, 1996. [Google Scholar]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Jiang, X.L.; Xiong, Z.Q.; Liu, H.; Liu, G.H.; Liu, W.Z. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river-reservoir system. Environ. Sci. Pollut. Res. 2017, 24, 436–444. [Google Scholar] [CrossRef]
- Sun, L.; Guo, D.K.; Liu, K.; Meng, H.; Zheng, Y.J.; Yuan, F.Q.; Zhu, G.H. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena 2019, 175, 101–109. [Google Scholar] [CrossRef]
- U.S. EPA. Method 3050B: Acid Digestion of Sediments, Sludges and Soils. Revision 2; U.S. Environmental Proection Agency: Wathington, DC, USA, 1996.
- Sina Weibo. IR Home of Sina Weibo. Available online: http://ir.weibo.com/ (accessed on 15 February 2022).
- Sina Weibo. Annual Report 2020 of Sina Weibo. Available online: http://ir.weibo.com/static-files/9d492ab8-3e17-47e4-bbf4-ad8d01473ca4 (accessed on 15 February 2022).
- Rizwan, M.; Wan, W.; Cervantes, O.; Gwiazdzinski, L. Using Location-Based Social Media Data to Observe Check-In Behavior and Gender Difference: Bringing Weibo Data into Play. ISPRS Int. J. Geo-Inf. 2018, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Newing, A.; Clarke, G. Understanding Chinese tourist mobility and consumption-related behaviours in London using Sina Weibo check-ins. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2436–2452. [Google Scholar] [CrossRef]
- Gasper, K.; Spencer, L.A.; Hu, D. Does Neutral Affect Exist? How Challenging Three Beliefs About Neutral Affect Can Advance Affective Research. Front. Psychol. 2019, 10, 2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasper, K. Utilizing Neutral Affective States in Research: Theory, Assessment, and Recommendations. Emotion Rev. 2018, 10, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Ekman, P.; Oster, H. Facial Expressions of Emotion. Annu. Rev. Psychol. 1979, 30, 527–554. [Google Scholar] [CrossRef]
- Du, S.; Tao, Y.; Martinez, A.M. Compound facial expressions of emotion. Proc. Natl. Acad. Sci. USA 2014, 111, E1454–E1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 42. [Google Scholar] [CrossRef]
- Liu, L.L.; Liu, Q.Y.; Ma, J.; Wu, H.W.; Qu, Y.J.; Gong, Y.W.; Yang, S.H.; An, Y.F.; Zhou, Y.Z. Heavy metal(loid)s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment. Environ. Pollut. 2020, 260, 114083. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.X.; Zhou, S.L.; Wang, X.R.; Wu, S.H.; Cao, W. The Influence of Socio-economic Development on Soil Heavy Metals Accumulation in a Typical Region of Yangtze River Delta. In Proceedings of the International Conference on Energy and Environment Technology (ICEET 2009), Guilin, China, 16–18 October 2009; pp. 628–631. [Google Scholar]
- Pal, A.; Chowdhury, U.K.; Mondal, D.; Das, B.; Nayak, B.; Ghosh, A.; Maity, S.; Chakraborti, D. Arsenic Burden from Cooked Rice in the Populations of Arsenic Affected and Nonaffected Areas and Kolkata City in West-Bengal, India. Environ. Sci. Technol. 2009, 43, 3349–3355. [Google Scholar] [CrossRef]
- Wang, L.P.; Wang, X.; Wang, D.Y.; Qi, B.S.; Zheng, S.F.; Liu, H.J.; Luo, C.; Li, H.X.; Meng, L.H.; Meng, X.T.; et al. Spatiotemporal Changes and Driving Factors of Cultivated Soil Organic Carbon in Northern China’s Typical Agro-Pastoral Ecotone in the Last 30 Years. Remote Sens. 2021, 13, 3607. [Google Scholar] [CrossRef]
- Heo, E.J.; Lee, J. Allocating CO2 emissions: A dynamic claims problem. Rev. Econ. Des. 2022. [Google Scholar] [CrossRef]
- Huang, Z.J.; Ding, X.A.; Sun, H.; Liu, S.Y. Analysis of Influencing Factors of CO2 Emissions from Integrated Steelworks Based on LCA. In Proceedings of the China-Materials-Research-Society Annual Meeting, Suzhou, China, 15–17 October 2009; pp. 9–16. [Google Scholar]
- Wang, M.; Feng, C. Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications. Resour. Policy 2017, 53, 77–87. [Google Scholar] [CrossRef]
- Hu, C.; Han, X.; Li, Z.; Zhang, C. Comparison of CO2 emission between COREX and blast furnace iron-making system. J. Environ. Sci. 2009, 21 (Suppl. S1), S116–S120. [Google Scholar] [CrossRef]
- Shen, R.P.; Sun, B.; Zhao, Q.G. Spatial and temporal variability of N, P and K balances for agroecosystems in China. Pedosphere 2005, 15, 347–355. [Google Scholar]
- Nelson, T.; Johnson, T.; Strong, M.; Rudakewich, G. Perception of tree canopy. J. Environ. Psychol. 2001, 21, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Townsend, J.B.; Barton, S. The impact of ancient tree form on modern landscape preferences. Urban For. Urban Green. 2018, 34, 205–216. [Google Scholar] [CrossRef]
- Ren, Z.B.; Fu, Y.; Dong, Y.L.; Zhang, P.; He, X.Y. Rapid urbanization and climate change significantly contribute to worsening urban human thermal comfort: A national 183-city, 26-year study in China. Urban Clim. 2022, 43, 101154. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, M.; Huang, Y.; Sheng, Z.; Huang, X.; Lin, W.; Chen, Q.; Li, X.; Luo, Z.; Lv, B. Physiological and Psychological Effects of Watching Videos of Different Durations Showing Urban Bamboo Forests with Varied Structures. Int. J. Environ. Res. Public Health 2020, 17, 3434. [Google Scholar] [CrossRef]
- Sarkar, G.K.; Debnath, A.; Chattopadhyay, A.P.; Sanyal, S.K. Depletion of Soil Potassium under Exhaustive Cropping in Inceptisol and Alfisol. Commun. Soil Sci. Plant Anal. 2014, 45, 61–72. [Google Scholar] [CrossRef]
- Bielinis, E.; Janeczko, E.; Takayama, N.; Zawadzka, A.; Słupska, A.; Piętka, S.; Lipponen, M.; Bielinis, L. The effects of viewing a winter forest landscape with the ground and trees covered in snow on the psychological relaxation of young Finnish adults: A pilot study. PLoS ONE 2021, 16, e0244799. [Google Scholar]
- Shin, Y.-K.; Kim, D.J.; Jung-Choi, K.; Son, Y.-J.; Koo, J.-W.; Min, J.-A.; Chae, J.-H. Differences of psychological effects between meditative and athletic walking in a forest and gymnasium. Scand. J. For. Res. 2013, 28, 64–72. [Google Scholar] [CrossRef]
No. | Park | Longitude | Latitude | County/District | N |
---|---|---|---|---|---|
1 | Meiguan Gudao Scenic Area | 114.34° | 25.33° | Nanxiong | 44 |
2 | Cherry Valley | 114.23° | 24.18° | Xinfeng | 38 |
3 | Hat Peak | 114.18° | 25.27° | Nanxiong | 45 |
4 | Danxia Mount | 113.76° | 25.04° | Renhua | 75 |
5 | Yangyuan Mount | 113.73° | 25.03° | Renhua | 43 |
6 | Nanhua Temple | 113.64° | 24.65° | Qujiang | 33 |
7 | Qujiang People Park | 113.61° | 24.68° | Qujiang | 23 |
8 | Shaoguan National Forest Park | 113.60° | 24.78° | Zhenjiang | 39 |
9 | Shaoguan Furong Mt. National Mining Park | 113.57° | 24.79° | Wujiang | 28 |
10 | Shahu Park | 113.56° | 24.81° | Wujiang | 49 |
11 | Yunmen Temple Scenic Area | 113.31° | 24.81° | Ruyuan | 21 |
Stand Characteristics | F Value | p Value |
---|---|---|
Average tree height | 5.64 | <0.0001 |
Average diameter at breast height | 2.55 | 0.0175 |
Canopy density | 3.99 | 0.0007 |
Stand elevation | 4.46 | 0.0002 |
Soil total nitrogen concentration | 0.93 | 0.5001 |
Soil total phosphorus concentration | 0.60 | 0.7747 |
Soil total potassium concentration | 4.41 | 0.0003 |
Soil organic carbon content | 0.94 | 0.4921 |
Soil pH value | 2.87 | 0.0084 |
Soil As concentration | 1.62 | 0.1375 |
Soil Cr concentration | 1.09 | 0.3789 |
Soil Hg concentration | 3.27 | 0.0034 |
Soil Pb concentration | 0.48 | 0.8691 |
County/District | Park | Neutral (%) | Happy (%) | Sad (%) | PRI 1 (%) |
---|---|---|---|---|---|
Nanxiong | Meiguangudao scenic area | 32.20 ± 22.50 c 2 | 52.22 ± 29.62 a | 15.58 ± 17.56 ab | 36.64 ± 43.19 ab |
Xinfeng | Cherry valley | 66.11 ± 29.66 a | 21.81 ± 32.23 d | 12.08 ± 11.80 b | 9.74 ± 36.83 abc |
Nanxiong | Hat peak | 35.94 ± 29.86 c | 52.66 ± 35.21 a | 11.40 ± 15.88 b | 41.25 ± 45.75 ab |
Renhua | Danxia Mt. | 43.09 ± 27.97 bc | 45.56 ± 32.65 ab | 11.35 ± 11.74 b | 34.21 ± 40.31 c |
Renhua | Yangyuan Mt. | 34.07 ± 29.67 c | 56.19 ± 34.56 a | 9.74 ± 14.16 b | 46.45 ± 42.98 a |
Qujiang | Nanhua temple | 48.04 ± 25.78 bc | 28.91 ± 27.65 bcd | 23.05 ± 17.83 a | 5.86 ± 39.52 c |
Qujiang | Qujiang people park | 59.27 ± 30.56 ab | 23.78 ± 31.32 cd | 12.60 ± 13.06 b | 11.18 ± 38.00 abc |
Zhenjiang | Shaoguan national forest park | 44.58 ± 31.15 bc | 43.93 ± 34.69 abc | 11.49 ± 12.08 b | 32.44 ± 41.58 abc |
Wujiang | Shaoguanfurong Mt. national mining park | 42.99 ± 27.90 bc | 44.72 ± 33.74 ab | 12.29 ± 14.19 b | 32.42 ± 43.60 bc |
Wujiang | Shahu park | 49.15 ± 28.99 bc | 39.39 ± 34.13 abcd | 11.46 ± 13.94 b | 27.93 ± 42.66 a |
Ruyuan | Yunmen temple scenic area | 34.72 ± 29.66 c | 54.55 ± 37.50 a | 10.74 ± 13.07 b | 43.81 ± 49.83 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Deng, J.; Ding, X.; Ma, H. Interpolated Stand Properties of Urban Forest Parks Account for Posted Facial Expressions of Visitors. Sustainability 2022, 14, 3817. https://doi.org/10.3390/su14073817
Yu F, Deng J, Ding X, Ma H. Interpolated Stand Properties of Urban Forest Parks Account for Posted Facial Expressions of Visitors. Sustainability. 2022; 14(7):3817. https://doi.org/10.3390/su14073817
Chicago/Turabian StyleYu, Fei, Jianfeng Deng, Xiaogang Ding, and Hongyan Ma. 2022. "Interpolated Stand Properties of Urban Forest Parks Account for Posted Facial Expressions of Visitors" Sustainability 14, no. 7: 3817. https://doi.org/10.3390/su14073817
APA StyleYu, F., Deng, J., Ding, X., & Ma, H. (2022). Interpolated Stand Properties of Urban Forest Parks Account for Posted Facial Expressions of Visitors. Sustainability, 14(7), 3817. https://doi.org/10.3390/su14073817