A Survey on Sustainable Surrogate-Based Optimisation
Abstract
:1. Introduction
2. Surrogate-Based Optimisation
3. Sustainability and Surrogate-Based Optimisation
4. Survey Method
TITLE-ABS-KEY ( "surrogate" AND "sustainable" ) AND PUBYEAR > 2016 AND PUBYEAR < 2022
- It can be seen how sustainability is a topic of the report;
- The report uses a surrogate model based on machine learning;
- The surrogate model is used inside an optimisation framework.
4.1. Sustainability
4.2. Machine Learning
4.3. Optimisation
4.4. Other Criteria
5. Surrogate-Based Optimisation for Sustainable Applications
5.1. Year
5.2. Framework
5.2.1. Sequential Model-Based Optimisation (SMBO)
5.2.2. Predict-then-Optimise (PtO)
5.2.3. Optimise-then-Predict (OtP)
5.2.4. Predict-then-Interact (PtI)
5.2.5. Bi-level Optimisation (BlO)
5.2.6. Automated Machine Learning (AutoML)
5.2.7. Framework Discussion
5.3. Surrogate Model
5.4. Application and Domain
5.5. Sustainable SBO
5.6. Open Questions
Study | Year | Framework | Surrogate | Application | Domain | SSBO | Open Questions |
---|---|---|---|---|---|---|---|
[62] | 2017 | PtO | MARS | groundwater extraction | engineering | ✓ | parallelisation |
[44] | 2017 | PtO | ANN | aviation | engineering | ✓ | dimension reduction |
[38] | 2018 | PtO | ANN | food production | chemical engineering; computer science | - | assumptions |
[42] | 2018 | BlO | unknown | land development | chemical engineering; computer science | - | - |
[55] | 2018 | SMBO | ANN | production systems | chemical engineering; chemistry | ✓ | sustainability in objective |
[63] | 2018 | PtO | SVR | groundwater extraction | environmental science; earth and planetary sciences | - | hyperparameter optimization |
[64] | 2019 | PtO | SVR | groundwater extraction | environmental science; social sciences | - | - |
[39] | 2019 | OtP | polynomial, RBF, GP | electric vehicles | energy; engineering | - | high dimensionality |
[47] | 2019 | PtO | polynomial | outdoor thermal comfort | social sciences; engineering | - | many objectives |
[65] | 2019 | PtO | GP | thermal comfort | environmental science | - | - |
[36] | 2019 | review | multiple | building design | engineering | ✓ | high dimensionality; smoothness; efficiency; interpretability |
[66] | 2019 | PtO | SVR | groundwater management | environmental science | - | multiple objectives |
[17] | 2019 | SMBO | RBF | drug manufacturing | chemical engineering; chemistry; energy; environmental science | - | multiple objectives |
[51] | 2019 | OtP | ANN | building renovation | engineering | ✓ | generalisation; efficient sampling |
[67] | 2020 | BlO | ANN | water management | environmental science | - | multiple and fuzzy objectives |
[48] | 2020 | PtO | ANN | solar heat system | energy; engineering; environmental science; business, management and accounting | - | - |
[52] | 2020 | review | multiple | building design | engineering | - | incorporate behavioural data; reproducibility |
[40] | 2020 | PtI | RF; ensemble ANN | building design | engineering | - | multiple objectives; multiple users |
[41] | 2020 | PtI; PtO | RF | building design | social sciences; computer science; arts and humanities | ✓ | multiple users |
[68] | 2020 | SMBO | GP | sea transport | engineering; computer science | - | parallelisation |
[35] | 2020 | SMBO | ANN | water management | environmental science; engineering | - | many objectives |
[69] | 2020 | OtP | linear | cooling tower | engineering; environmental science | - | - |
[70] | 2020 | PtO | ANN | building energy management | engineering | - | efficiency |
[45] | 2020 | PtO | ANN | air conditioning | energy | - | transfer learning |
[54] | 2020 | SMBO | GP | material discovery | chemical engineering; materials science | - | include historic data |
[71] | 2020 | SMBO | polynomial | public transport | mathematics; computer science | - | complex variable interactions; visualisation |
[72] | 2020 | review | multiple | hydro-cracking | energy; environmental science; social sciences | ✓ | multidisciplinarity |
[73] | 2020 | BlO | RBF; GP; polynomial | transportation networks | engineering; social sciences; decision sciences | - | hyperparameter optimisation; model selection |
[74] | 2021 | PtO | linear; SVM | product design | engineering; chemical engineering | - | robustness |
[46] | 2021 | PtO | multiple | urban logistics | mathematics; computer science | ✓ | robustness |
[75] | 2021 | review; PtO | multiple | process design; material design | chemical engineering; computer science; energy; engineering; environmental science; materials science | ✓ | high dimensionality; generalisation |
[30,31] | 2021 | PtO | ANN | building design | energy; materials science | ✓ | high dimensionality and constraints |
[53] | 2021 | SMBO | RBF | soil health | agriculture and biological sciences; computer science | ✓ | variable reduction |
[49] | 2021 | SMBO | ANN | hydropower reservoir | engineering; computer science | - | high dimensionality; parallelisation |
[50] | 2021 | BlO | RBF | electric vehicles | business, management and accounting; engineering; social sciences | ✓ | mixed variables and constraints |
[56] | 2021 | SMBO | GP ensemble | chemical process | business, management and accounting; energy; engineering; environmental science | ✓ | high dimensionality; multimodality |
[43] | 2021 | AutoML | RBF; GP | groundwater management | computer science; decision sciences; mathematics | ✓ | generalisation |
[76] | 2021 | PtO | ANN | urban drainage systems | environmental science | ✓ | divide problem into subproblems |
[77] | 2021 | PtO | RNN | bridge maintenance | business, management and accounting; engineering | - | - |
[78] | 2021 | PtO | ANN | chemical process | chemical engineering; chemistry; engineering | - | robustness |
[79] | 2021 | PtO | RBF ensemble | concrete barriers | computer science; engineering; mathematics | - | - |
[80] | 2021 | PtO | ANN | water management | energy | - | multiple objectives; accuracy |
[16] | 2021 | SMBO | RBF | heat pump system | energy | - | multiple objectives; constraints; robustness; discrete variables |
[81] | 2021 | PtO | ANN | thermal comfort | engineering | ✓ | generalisation |
[82] | 2021 | PtO | piece-wise linear | agricultural system | energy; chemistry; chemical engineering; environmental science | ✓ | high dimensionality; nonlinearity; nonconvexity |
6. Discussion and Conclusions
- Report the hardware used for the SBO framework and the hardware used for the expensive simulator or algorithm (these are often the same).
- Report the number of calls to the expensive simulator or algorithm and the computation time used for this.
- Report the computation time used for training the surrogate model, including model selection and hyperparameter optimisation.
- Report the computation time used for the optimisation part of SBO. If this cannot be separated, this can be merged with the point above.
- Estimate the time it would take to solve the optimisation problem without a surrogate model, if the expensive simulator or algorithm was optimised directly.
- Consider using an iterative framework such as SMBO instead of PtO to potentially reduce the number of calls to the expensive simulator or algorithm.
- If possible, report not just the computation times, but also the energy consumption (and energy mix used) or even CO emissions used for the computations.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
SDG | Sustainable Development Goal |
SBO | Surrogate-Based Optimisation |
SSBO | Sustainable Surrogate-Based Optimisation |
SMBO | Sequential Model-Based Optimisation |
PtO | Predict-then-Optimise |
OtP | Optimise-then-Predict |
PtI | Predict-then-Interact |
BlO | Bi-level Optimisation |
AutoML | Automated Machine Learning |
ANN | Artificial Neural Network |
GP | Gaussian Process |
RBF | Radial Basis Function |
MARS | Multivariate Adaptive Regression Spline |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
RF | Random Forest |
RNN | Recurrent Neural Network |
References
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wynsberghe, A.R.V. Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics 2021, 1, 213–218. [Google Scholar] [CrossRef]
- Climate Change AI. Available online: https://www.climatechange.ai/ (accessed on 17 February 2021).
- AI for Good. Available online: https://ai4good.org/ (accessed on 17 February 2021).
- Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 17 February 2021).
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. ACM Comput. Surv. 2022, 55, 1–96. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Wang, T.; Sherratt, R.S.; Zhang, J. Big data service architecture: A survey. J. Internet Technol. 2020, 21, 393–405. [Google Scholar]
- Wang, W.; Yang, Y.; Li, J.; Hu, Y.; Luo, Y.; Wang, X. Woodland labeling in Chenzhou, China, via deep learning approach. Int. J. Comput. Intell. Syst. 2020, 13, 1393. [Google Scholar] [CrossRef]
- Maheswari, R.U.; Umamaheswari, R. Wind Turbine Drivetrain Expert Fault Detection System: Multivariate Empirical Mode Decomposition based Multi-sensor Fusion with Bayesian Learning Classification. Intell. Autom. Soft Comput. 2020, 26, 479–488. [Google Scholar] [CrossRef]
- Schwartz, R.; Dodge, J.; Smith, N.; Etzioni, O. Green AI. Commun. ACM 2020, 63, 54–63. [Google Scholar] [CrossRef]
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Deep Learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics: Florence, Italy, 2019; pp. 3645–3650. [Google Scholar] [CrossRef] [Green Version]
- Tornede, T.; Tornede, A.; Hanselle, J.; Wever, M.; Mohr, F.; Hullermeier, E. Towards Green Automated Machine Learning: Status Quo and Future Directions. arXiv 2021, arXiv:abs/2111.05850. [Google Scholar]
- Sadollah, A.; Nasir, M.; Geem, Z.W. Sustainability and Optimization: From Conceptual Fundamentals to Applications. Sustainability 2020, 12, 2027. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient Global Optimization of Expensive Black-Box Functions. J. Glob. Optim. 1998, 13, 455–492. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef] [Green Version]
- Vering, C.; Wüllhorst, F.; Mehrfeld, P.; Müller, D. Towards an integrated design of heat pump systems: Application of process intensification using two-stage optimization. Energy Convers. Manag. 2021, 250, 114888. [Google Scholar] [CrossRef]
- Ho, C.H.; Yi, J.; Wang, X. Biocatalytic Continuous Manufacturing of Diabetes Drug: Plantwide Process Modeling, Optimization, and Environmental and Economic Analysis. ACS Sustain. Chem. Eng. 2019, 7, 1038–1051. [Google Scholar] [CrossRef]
- Martins, J.R.; Ning, A. Engineering Design Optimization; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Lindauer, M.; Eggensperger, K.; Feurer, M.; Biedenkapp, A.; Deng, D.; Benjamins, C.; Ruhkopf, T.; Sass, R.; Hutter, F. SMAC3: A versatile Bayesian optimization package for hyperparameter optimization. J. Mach. Learn. Res. 2022, 23, 1–9. [Google Scholar]
- Wang, Z.; Jegelka, S. Max-Value Entropy Search for Efficient Bayesian Optimization; ICML: Sydney, Australia, 2017; pp. 3627–3635. [Google Scholar]
- Alcott, B. Jevons’ paradox. Ecol. Econ. 2005, 54, 9–21. [Google Scholar] [CrossRef]
- Sarkar, A.; Bardhan, R. A simulation based framework to optimize the interior design parameters for effective Indoor Environmental Quality (IEQ) experience in affordable residential units: Cases from Mumbai, India. IOP Conf. Ser. Earth Environ. Sci. 2019, 294, 012060. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Nahvi, A.; Sadoughi, M.K.; Arabzadeh, A.; Sassani, A.; Hu, C.; Ceylan, H.; Kim, S. Multi-objective Bayesian optimization of super hydrophobic coatings on asphalt concrete surfaces. J. Comput. Des. Eng. 2019, 6, 693–704. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Nguyen, L. An Adaptive Control for Surrogate Assisted Multi-objective Evolutionary Algorithms. Adv. Intell. Syst. Comput. 2021, 1270, 123–132. [Google Scholar]
- Kazi, S.R.; Short, M.; Biegler, L.T. Synthesis of Combined Heat and Mass Exchange Networks Via a Trust Region Filter Optimisation Algorithm Including Detailed Unit Designs. Comput. Aided Chem. Eng. 2021, 50, 13–18. [Google Scholar]
- Genedy, R.A.; Ogejo, J.A. Using machine learning techniques to predict liquid dairy manure temperature during storage. Comput. Electron. Agric. 2021, 187, 106234. [Google Scholar] [CrossRef]
- Hoque, M.M.; Rahman, M.T.U. Landfill area estimation based on solid waste collection prediction using ANN model and final waste disposal options. J. Clean. Prod. 2020, 256, 120387. [Google Scholar] [CrossRef]
- Giselle Fernandez-Godino, M.; Grosskopf, M.J.; Nakhleh, J.B.; Wilson, B.M.; Kline, J.L.; Srinivasan, G. Identifying Entangled Physics Relationships through Sparse Matrix Decomposition to Inform Plasma Fusion Design. IEEE Trans. Plasma Sci. 2021, 49, 2410–2419. [Google Scholar] [CrossRef]
- Ekici, B.; Kazanasmaz, Z.T.; Turrin, M.; Taşgetiren, M.F.; Sariyildiz, I.S. Multi-zone optimisation of high-rise buildings using artificial intelligence for sustainable metropolises. Part 1: Background, methodology, setup, and machine learning results. Sol. Energy 2021, 224, 373–389. [Google Scholar] [CrossRef]
- Ekici, B.; Kazanasmaz, Z.T.; Turrin, M.; Taşgetiren, M.F.; Sariyildiz, I.S. Multi-zone optimisation of high-rise buildings using artificial intelligence for sustainable metropolises. Part 2: Optimisation problems, algorithms, results, and method validation. Sol. Energy 2021, 224, 309–326. [Google Scholar] [CrossRef]
- Artificial Intelligence (AI) Worldwide—Statistics & Facts. Available online: https://www.statista.com/topics/3104/artificial-intelligence-ai-worldwide (accessed on 18 February 2021).
- The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 18 February 2021).
- Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-Based Optimization for General Algorithm Configuration. In Learning and Intelligent Optimization; Coello, C.A.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 507–523. [Google Scholar]
- Saadatpour, M. An Adaptive Surrogate Assisted CE-QUAL-W2 Model Embedded in Hybrid NSGA-II AMOSA Algorithm for Reservoir Water Quality and Quantity Management. Water Resour. Manag. 2020, 34, 1437–1451. [Google Scholar] [CrossRef]
- Westermann, P.; Evins, R. Surrogate modelling for sustainable building design—A review. Energy Build. 2019, 198, 170–186. [Google Scholar] [CrossRef]
- Garud, S.S.; Karimi, I.A.; Kraft, M. Smart sampling algorithm for surrogate model development. Comput. Chem. Eng. 2017, 96, 103–114. [Google Scholar] [CrossRef]
- Woldesellasse, H.; Govindan, R.; Al-Ansari, T. Role of analytics within the energy, water and food nexus—An Alfalfa case study. Comput. Aided Chem. Eng. 2018, 44, 997–1002. [Google Scholar]
- Chen, Y.; Dababneh, F.; Zhang, B.; Kassaee, S.; Smith, B.T.; Liu, X.; Momen, A.M. Surrogate Modeling for Capacity Planning of Charging Station Equipped With Photovoltaic Panel and Hydropneumatic Energy Storage. J. Energy Resour. Technol. 2019, 142, 50907. [Google Scholar] [CrossRef]
- Brown, N.C.; Jusiega, V.; Mueller, C.T. Implementing data-driven parametric building design with a flexible toolbox. Autom. Constr. 2020, 118, 103252. [Google Scholar] [CrossRef]
- Brown, N.C. Design performance and designer preference in an interactive, data-driven conceptual building design scenario. Des. Stud. 2020, 68, 1–33. [Google Scholar] [CrossRef]
- Avraamidou, S.; Beykal, B.; Pistikopoulos, I.P.; Pistikopoulos, E.N. A hierarchical Food-Energy-Water Nexus (FEW-N) decision-making approach for Land Use Optimization. Comput. Aided Chem. Eng. 2018, 44, 1885–1890. [Google Scholar]
- Müller, J.; Park, J.; Sahu, R.; Varadharajan, C.; Arora, B.; Faybishenko, B.; Agarwal, D. Surrogate optimization of deep neural networks for groundwater predictions. J. Glob. Optim. 2021, 81, 203–231. [Google Scholar] [CrossRef]
- Secco, N.R.; De Mattos, B.S. Artificial neural networks to predict aerodynamic coefficients of transport airplanes. Aircr. Eng. Aerosp. Technol. 2017, 89, 211–230. [Google Scholar] [CrossRef]
- Saikia, P.; Gaurav; Rakshit, D. Designing a clean and efficient air conditioner with AI intervention to optimize energy-exergy interplay. Energy AI 2020, 2, 100029. [Google Scholar] [CrossRef]
- Yang, J.; Lau, H.C. A Learning and Optimization Framework for Collaborative Urban Delivery Problems with Alliances. Lect. Notes Comput. Sci. 2021, 13004, 316–331. [Google Scholar]
- Du, Y.; Mak, C.M.; Li, Y. A multi-stage optimization of pedestrian level wind environment and thermal comfort with lift-up design in ideal urban canyons. Sustain. Cities Soc. 2019, 46, 101424. [Google Scholar] [CrossRef]
- May Tzuc, O.; Bassam, A.; Ricalde, L.J.; Jaramillo, O.A.; Flota-Bañuelos, M.; Escalante Soberanis, M.A. Environmental-economic optimization for implementation of parabolic collectors in the industrial process heat generation: Case study of Mexico. J. Clean. Prod. 2020, 242, 118538. [Google Scholar] [CrossRef]
- Saadatpour, M.; Javaheri, S.; Afshar, A.; Sandoval Solis, S. Optimization of selective withdrawal systems in hydropower reservoir considering water quality and quantity aspects. Expert Syst. Appl. 2021, 184, 115474. [Google Scholar] [CrossRef]
- Liu, H.; Zou, Y.; Chen, Y.; Long, J. Optimal locations and electricity prices for dynamic wireless charging links of electric vehicles for sustainable transportation. Transp. Res. Part Logist. Transp. Rev. 2021, 152, 102187. [Google Scholar] [CrossRef]
- Sharif, S.A.; Hammad, A. Developing surrogate ANN for selecting near-optimal building energy renovation methods considering energy consumption, LCC and LCA. J. Build. Eng. 2019, 25, 100790. [Google Scholar] [CrossRef]
- Roman, N.D.; Bre, F.; Fachinotti, V.D.; Lamberts, R. Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review. Energy Build. 2020, 217, 109972. [Google Scholar] [CrossRef]
- Ramos-Castillo, M.; Orvain, M.; Naves-Maschietto, G.; de Faria, A.B.B.; Chenu, D.; Albuquerque, M. Optimal agricultural spreading scheduling through surrogate-based optimization and MINLP models. Inf. Process. Agric. 2021, 8, 159–172. [Google Scholar] [CrossRef]
- Flores, R.A.; Paolucci, C.; Winther, K.T.; Jain, A.; Torres, J.A.G.; Aykol, M.; Montoya, J.; Nørskov, J.K.; Bajdich, M.; Bligaard, T. Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction. Chem. Mater. 2020, 32, 5854–5863. [Google Scholar] [CrossRef]
- González-Garay, A.; Guillén-Gosálbez, G. SUSCAPE: A framework for the optimal design of SUStainable ChemicAl ProcEsses incorporating data envelopment analysis. Chem. Eng. Res. Des. 2018, 137, 246–264. [Google Scholar] [CrossRef]
- Dai, M.; Yang, F.; Zhang, Z.; Liu, G.; Feng, X. Energetic, economic and environmental (3E) multi-objective optimization of the back-end separation of ethylene plant based on adaptive surrogate model. J. Clean. Prod. 2021, 310, 127426. [Google Scholar] [CrossRef]
- Oh, C.; Gavves, E.; Welling, M. BOCK: Bayesian optimization with cylindrical kernels. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 3868–3877. [Google Scholar]
- Kirschner, J.; Mutný, M.; Hiller, N.; Ischebeck, R.; Krause, A. Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces; PMLR: Long Beach, CA, USA, 2019; pp. 3429–3438. [Google Scholar]
- Krause, A.; Ong, C. Contextual Gaussian process bandit optimization. NIPS 2011, 24, 2447–2455. [Google Scholar]
- Bliek, L.; Verwer, S.; Weerdt, M.D. Black-box mixed-variable optimisation using a surrogate model that satisfies integer constraints. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Lille, France, 10–14 July 2021; pp. 1851–1859. [Google Scholar]
- Daxberger, E.A.; Makarova, A.; Turchetta, M.; Krause, A. Mixed-Variable Bayesian Optimization. arXiv 2019, arXiv:1907.01329. [Google Scholar]
- Roy, D.K.; Datta, B. A surrogate based multi-objective management model to control saltwater intrusion in multi-layered coastal aquifer systems. Civ. Eng. Environ. Syst. 2017, 34, 238–263. [Google Scholar] [CrossRef]
- Lal, A.; Datta, B. Modelling saltwater intrusion processes and development of a multi-objective strategy for management of coastal aquifers utilizing planned artificial freshwater recharge. Model. Earth Syst. Environ. 2018, 4, 111–126. [Google Scholar] [CrossRef]
- Lal, A.; Datta, B. Optimal Groundwater-Use Strategy for Saltwater Intrusion Management in a Pacific Island Country. J. Water Resour. Plan. Manag. 2019, 145, 4019032. [Google Scholar] [CrossRef]
- Xu, G.; Xing, X.; Nguyen, V.T.; Poh, H.J.; Lou, J. CFD-driven optimization of air supplies deployment in an air-conditioned office. IOP Conf. Ser. Earth Environ. Sci. 2019, 238, 12054. [Google Scholar] [CrossRef]
- Lal, A.; Datta, B. Multi-objective groundwater management strategy under uncertainties for sustainable control of saltwater intrusion: Solution for an island country in the South Pacific. J. Environ. Manag. 2019, 234, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, S.K.; Saadatpour, M.; Afshar, A. A fuzzy equilibrium strategy for sustainable water quality management in river-reservoir system. J. Hydrol. 2020, 586, 124892. [Google Scholar] [CrossRef]
- Pedrielli, G.; Xing, Y.; Peh, J.H.; Koh, K.W.; Ng, S.H. A real time simulation optimization framework for vessel collision avoidance and the case of singapore strait. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1204–1215. [Google Scholar] [CrossRef]
- Guerras, L.S.; Martín, M. On the water footprint in power production: Sustainable design of wet cooling towers. Appl. Energy 2020, 263, 114620. [Google Scholar] [CrossRef]
- Gonçalves, D.; Sheikhnejad, Y.; Oliveira, M.; Martins, N. One step forward toward smart city Utopia: Smart building energy management based on adaptive surrogate modelling. Energy Build. 2020, 223, 110146. [Google Scholar] [CrossRef]
- Leprêtre, F.; Fonlupt, C.; Verel, S.; Marion, V. Combinatorial Surrogate-Assisted Optimization for Bus Stops Spacing Problem. Lect. Notes Comput. Sci. 2020, 12052, 42–52. [Google Scholar]
- Iplik, E.; Aslanidou, I.; Kyprianidis, K. Hydrocracking: A perspective towards digitalization. Sustainability 2020, 12, 7058. [Google Scholar] [CrossRef]
- Rodriguez-Roman, D.; Ritchie, S.G. Surrogate-based optimization for multi-objective toll design problems. Transp. Res. Part Policy Pract. 2020, 137, 485–503. [Google Scholar] [CrossRef]
- Mohajeri, M.J.; van den Bergh, A.J.; Jovanova, J.; Schott, D.L. Systematic design optimization of grabs considering bulk cargo variability. Adv. Powder Technol. 2021, 32, 1723–1734. [Google Scholar] [CrossRef]
- Zhou, T.; Gani, R.; Sundmacher, K. Hybrid Data-Driven and Mechanistic Modeling Approaches for Multiscale Material and Process Design. Engineering 2021, 7, 1231–1238. [Google Scholar] [CrossRef]
- Seyedashraf, O.; Bottacin-Busolin, A.; Harou, J.J. A Disaggregation-Emulation Approach for Optimization of Large Urban Drainage Systems. Water Resour. Res. 2021, 57, e2020WR029098. [Google Scholar] [CrossRef]
- Abdelkader, E.M.; Moselhi, O.; Marzouk, M.; Zayed, T. Integrative Evolutionary-Based Method for Modeling and Optimizing Budget Assignment of Bridge Maintenance Priorities. J. Constr. Eng. Manag. 2021, 147, 4021100. [Google Scholar] [CrossRef]
- Vázquez, D.; Guillén-Gosálbez, G. Process design within planetary boundaries: Application to CO2 based methanol production. Chem. Eng. Sci. 2021, 246, 116891. [Google Scholar] [CrossRef]
- Ozcanan, S.; Atahan, A.O. Minimization of Accident Severity Index in concrete barrier designs using an ensemble of radial basis function metamodel-based optimization. Optim. Eng. 2021, 22, 485–519. [Google Scholar] [CrossRef]
- Tariq, R.; Cetina-Quiñones, A.J.; Cardoso-Fernández, V.; Daniela-Abigail, H.L.; Soberanis, M.A.; Bassam, A.; De Lille, M.V. Artificial intelligence assisted technoeconomic optimization scenarios of hybrid energy systems for water management of an isolated community. Sustain. Energy Technol. Assess. 2021, 48, 101561. [Google Scholar] [CrossRef]
- Azevedo, L.; Gomes, R.; Silva, C. Influence of model calibration and optimization techniques on the evaluation of thermal comfort and retrofit measures of a Lisbon household using building energy simulation. Adv. Build. Energy Res. 2021, 15, 630–661. [Google Scholar] [CrossRef]
- Wang, H.; Palys, M.; Daoutidis, P.; Zhang, Q. Optimal Design of Sustainable Ammonia-Based Food-Energy-Water Systems with Nitrogen Management. ACS Sustain. Chem. Eng. 2021, 9, 2816–2834. [Google Scholar] [CrossRef]
- Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models. arXiv 2020, arXiv:2007.03051. [Google Scholar]
- Lacoste, A.; Luccioni, A.; Schmidt, V.; Dandres, T. Quantifying the Carbon Emissions of Machine Learning. arXiv 2019, arXiv:1910.09700. [Google Scholar]
- Lannelongue, L.; Grealey, J.; Inouye, M. Green Algorithms: Quantifying the Carbon Footprint of Computation. Adv. Sci. 2021, 8, 2100707. [Google Scholar] [CrossRef] [PubMed]
- Van der Blom, K.; Deist, T.M.; Volz, V.; Marchi, M.; Nojima, Y.; Naujoks, B.; Oyama, A.; Tušar, T. Identifying Properties of Real-World Optimisation Problems through a Questionnaire. arXiv 2021, arXiv:cs.NE/2011.05547. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bliek, L. A Survey on Sustainable Surrogate-Based Optimisation. Sustainability 2022, 14, 3867. https://doi.org/10.3390/su14073867
Bliek L. A Survey on Sustainable Surrogate-Based Optimisation. Sustainability. 2022; 14(7):3867. https://doi.org/10.3390/su14073867
Chicago/Turabian StyleBliek, Laurens. 2022. "A Survey on Sustainable Surrogate-Based Optimisation" Sustainability 14, no. 7: 3867. https://doi.org/10.3390/su14073867
APA StyleBliek, L. (2022). A Survey on Sustainable Surrogate-Based Optimisation. Sustainability, 14(7), 3867. https://doi.org/10.3390/su14073867