Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mix Design
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BuiltWorlds Voices, 3D Printing on the Moon and Underwater | D-Shape Enterprises. 2016. Available online: https://www.youtube.com/watch?v=WLSX9kl9szc (accessed on 2 July 2021).
- Khoshnevis, B.; Hwang, D.; Yao, K.T.; Yeh, Z. Mega-scale fabrication by Contour Crafting. Int. J. Ind. Syst. Eng. 2006, 1, 301–320. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903440021&partnerID=40&md5=0f9b901b47a3f46c5509ad75b31764ab (accessed on 23 August 2021). [CrossRef] [Green Version]
- SQ4D. 2021. Available online: https://www.sq4d.com/ (accessed on 20 January 2021).
- Prater, T.J.; Roman, M.C.; Kim, T.; Mueller, R.P. Nasa’s centennial challenge: 3D-printed habitat. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, SPACE 2017, AIAA, Orlando, FL, USA, 12–14 September 2017; American Institute of Aeronautics and Astronautics Inc.: Reston, WV, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Forum, W.E. One-Quarter of Dubai’s Buildings Will Be 3D Printed by 2025. 2018. Available online: https://www.weforum.org/agenda/2018/05/25-of-dubai-s-buildings-will-be-3d-printed-by-2025/ (accessed on 20 December 2020).
- CyBe Construction, 3D Concrete Printers. 2021. Available online: https://cybe.eu/3d-concrete-printers/#1520593810839-083e40e7-6c20 (accessed on 2 July 2021).
- Twente Additive Manufacturing TAM. 2021. Available online: https://www.twente-am.com/ (accessed on 24 January 2021).
- Bruil, MaterialDistrict, 3D Printed Architectural Concrete. 2016. Available online: https://utrecht.materialdistrict.com/3d-printed-architectural-concrete/ (accessed on 9 February 2021).
- Costa, F.N.; Ribeiro, D.V. Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). J. Clean. Prod. 2020, 276, 123302. [Google Scholar] [CrossRef]
- Paul, S.C.; Tay, Y.W.D.; Panda, B.; Tan, M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch. Civ. Mech. Eng. 2018, 18, 311–319. [Google Scholar] [CrossRef]
- Kazemian, A.; Yuan, X.; Cochran, E.; Khoshnevis, B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Constr. Build. Mater. 2017, 145, 639–647. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Yang, Y.; Wu, M.; Pang, B. Fresh properties of a novel 3D printing concrete ink. Constr. Build. Mater. 2018, 174, 263–271. [Google Scholar] [CrossRef]
- Nerella, V.N.; Mechtcherine, V. Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D). In 3D Concrete Printing Technology, 1st ed.; Sanjayan, J.G., Nazari, A., Nematollahi, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 333–347. [Google Scholar] [CrossRef]
- Nerella, V.N.; Nather, M.; Iqbal, A.; Butler, M.; Mechtcherine, V. Inline quantification of extrudability of cementitious materials for digital construction. Cem. Concr. Compos. 2019, 95, 260–270. [Google Scholar] [CrossRef]
- Lediga, R.; Kruger, D. Optimizing concrete mix design for application in 3D printing technology for the construction industry. Solid State Phenom. 2017, 263, 24–29. [Google Scholar] [CrossRef]
- Ma, G.; Li, Z.; Wang, L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr. Build. Mater. 2018, 162, 613–627. [Google Scholar] [CrossRef]
- Tay, Y.W.D.; Li, M.Y.; Tan, M.J. Effect of printing parameters in 3D concrete printing: Printing region and support structures. J. Mater. Process. Technol. 2019, 271, 261–270. [Google Scholar] [CrossRef]
- Ting, G.H.A.; Tay, Y.W.D.; Qian, Y.; Tan, M.J. Utilization of recycled glass for 3D concrete printing: Rheological and mechanical properties. J. Mater. Cycles Waste Manag. 2019, 21, 994–1003. [Google Scholar] [CrossRef]
- Long, W.-J.; Tao, J.-L.; Lin, C.; Gu, Y.; Mei, L.; Duan, H.-B.; Xing, F. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. J. Clean. Prod. 2019, 239, 118054. [Google Scholar] [CrossRef]
- Weng, Y.; Li, M.; Tan, M.J.; Qian, S. Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model. Constr. Build. Mater. 2018, 163, 600–610. [Google Scholar] [CrossRef]
- Lim, J.H.; Li, M.; Weng, Y. Effect of Fiber Reinforced Polymer on Mechanical Performance of 3D Printed Cementitious Material. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing, Singapore, 14–17 May 2018; Yeong, T., Chua, T., Eds.; Nanyang Technological University: Nanyang, Singapore, 2018; pp. 44–49. [Google Scholar] [CrossRef]
- Dedenis, M.; Sonebi, M.; Amziane, S.; Perrot, A.; Amato, G. Effect of Metakaolin, Fly Ash and Polypropylene Fibres on Fresh and Rheological Properties of 3D Printing Based Cement Materials BT. In Second RILEM International Conference on Concrete and Digital Fabrication; Bos, F.P., Lucas, S.S., Wolfs, R.J.M., Salet, T.A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 206–215. [Google Scholar]
- Chen, Y.; Figueiredo, S.C.; Li, Z.; Chang, Z.; Jansen, K.; Çopuroğlu, O.; Schlangen, E. Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cem. Concr. Res. 2020, 132, 106040. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Chaves Figueiredo, S.; Çopuroğlu, O.; Veer, F.; Schlangen, E. Limestone and Calcined Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing: A Fundamental Study of Extrudability and Early-Age Strength Development. Appl. Sci. 2019, 9, 1809. [Google Scholar] [CrossRef] [Green Version]
- Bohuchval, M.; Sonebi, M.; Amziane, S.; Perrot, A. Effect of metakaolin and natural fibres on three-dimensional printing mortar. Proc. Inst. Civ. Eng. Constr. Mater. 2021, 174, 115–128. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, Z.; Zhou, D.; Huang, T.; Huang, H.; Jiao, D.; Shi, C. A feasible method for measuring the buildability of fresh 3D printing mortar. Constr. Build. Mater. 2019, 227, 116600. [Google Scholar] [CrossRef]
- Teixeira, J.; Schaefer, C.; Rangel, B.; Alves, J.L.; Maia, L.; Nunes, S.; Neto, R.; Lopes, M. Development of 3D printing sustainable mortars based on a bibliometric analysis. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 146442072199521. [Google Scholar] [CrossRef]
- Panda, B.; Tan, M.J. Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application. Mater. Lett. 2019, 237, 348–351. [Google Scholar] [CrossRef]
- Panda, B.; Tan, M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram. Int. 2018, 44, 10258–10265. [Google Scholar] [CrossRef]
- Papachristoforou, M.; Mitsopoulos, V. MStefanidou, Evaluation of workability parameters in 3D printing concrete. Procedia Struct. Integr. 2018, 10, 155–162. [Google Scholar] [CrossRef]
- Arunothayan, A.R.; Nematollahi, B.; Ranade, R.; Bong, S.H.; Sanjayan, J. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Constr. Build. Mater. 2020, 257, 119546. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Q.; Wang, H.; Chen, L. Influence of multi-walled nanotubes on the fresh and hardened properties of a 3D printing PVA mortar ink. Constr. Build. Mater. 2020, 247, 118590. [Google Scholar] [CrossRef]
- Malaeb, Z.; AlSakka, F.; Hamzeh, F. 3D Concrete Printing: Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups. In 3D Concrete Printing Technology, 1st ed.; Sanjayan, J.G., Nazari, A., Nematollahi, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 115–136. [Google Scholar] [CrossRef]
- Lafhaj, Z.; Rabenantoandro, A.Z.; el Moussaoui, S.; Dakhli, Z.; Youssef, N. Experimental Approach for Printability Assessment: Toward a Practical Decision-Making Framework of Printability for Cementitious Materials. Buildings 2019, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Tay, Y.W.D.; Qian, Y.; Tan, M.J. Printability region for 3D concrete printing using slump and slump flow test. Compos. Part B Eng. 2019, 174, 106968. [Google Scholar] [CrossRef]
- TSIVILIS, S. A study on the chloride diffusion into Portland limestone cement concrete. Mater. Sci. Forum 2010, 636, 1355–1361. [Google Scholar] [CrossRef]
- Sellevold, E.; Bager, D.; Klitgaard-Jensen, E.; Knudsen, T. Silica fume-cement pastes: Hydration and pore structure. Rep. BML 1982, 82, 19–50. [Google Scholar]
Mortar | PC | LF | FA | MTK | W | S1 | S2 | w/p | R (% by Cement Volume) |
---|---|---|---|---|---|---|---|---|---|
PC-1 | 623 | - | - | - | 253 | 132 | 1187 | 0.41 | - |
PC-2 | 641 | - | - | - | 247 | 132 | 1187 | 0.39 | - |
LF-1 | 312 | 271 | - | - | 253 | 132 | 1187 | 0.43 | 50% LF |
LF-2 | 330 | 287 | - | - | 241 | 132 | 1187 | 0.39 | 50% LF |
FA-1 | 231 | 230 | 122 | - | 241 | 132 | 1187 | 0.41 | 40% LF + 25% FA |
FA-2 | 241 | 240 | 127 | - | 232 | 132 | 1187 | 0.38 | 40% LF + 25% FA |
MTK-1 | 233 | 101 | - | 82 | 304 | 132 | 1187 | 0.73 | 25% LF + 25% MTK |
MTK-2 | 256 | 111 | - | 91 | 289 | 132 | 1187 | 0.63 | 25% LF + 25% MTK |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, J.; Schaefer, C.O.; Maia, L.; Rangel, B.; Neto, R.; Alves, J.L. Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials. Sustainability 2022, 14, 3970. https://doi.org/10.3390/su14073970
Teixeira J, Schaefer CO, Maia L, Rangel B, Neto R, Alves JL. Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials. Sustainability. 2022; 14(7):3970. https://doi.org/10.3390/su14073970
Chicago/Turabian StyleTeixeira, João, Cecília Ogliari Schaefer, Lino Maia, Bárbara Rangel, Rui Neto, and Jorge Lino Alves. 2022. "Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials" Sustainability 14, no. 7: 3970. https://doi.org/10.3390/su14073970
APA StyleTeixeira, J., Schaefer, C. O., Maia, L., Rangel, B., Neto, R., & Alves, J. L. (2022). Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials. Sustainability, 14(7), 3970. https://doi.org/10.3390/su14073970